RelOS: Reflective Architecting in the Internet of Objects

Marina Mongiello, Gennaro Boggia and Eugenio Di Sciascio

Dept. of Electrical and Information Engineering, Politecnico di Bari
Via Orabona, 4, 70125, Bari, Italy

Keywords: Reflection, Middleware, 10T, Architectural Modeling.

Abstract: Self-adaptive systems are modern applications in which the running software system should be able to react on
its own, by dynamically adapting its behavior, for sustaining a required set of qualities of service, and dynamic
changes in the context or in user requirements. They are typically involved in Future Internet development
such as the Internet of Things where interoperability, flexibility, and adaptability are key requirements. Con-
vergence of contents, services, things and networks seems to be the cornerstone to fullfil these requirements.
We propose a reflective approach to provide a common abstraction for automating the deployment of com-
ponent based applications in the Internet of Things environment. The proposed framework allows the design
of heterogeneous, distributed, and adaptive applications built on the component based software engineering
paradigm. The framework considers a metamodel instantiated in a Rest middleware properly modified for
allowing different implementations by using reflective design patterns. We are currently working to refine the

framework metamodel and to validate it in several implementation domains.

1 INTRODUCTION

Model Driven engineering is a solid approach for
the development of complex systems and applications
since it enables modeling abstraction at different lev-
els. But in modern applications the adaptation to
changes in context and requirements implies an ex-
tension of the modeling use from design time to run
time(Lehmann et al., 2011). In fact, changes in re-
quirements, assumptions about the environment, and
continuous changes in usage profiles are difficult to
predict and to anticipate at design time. Thus, the
models @ runtime is the emerging paradigm aiming to
manage the transfer of traditional modeling activities
(such as verification, design and quality evaluation)
to the running system. Several approaches and pro-
posals in the field of self adaptive applications, with
the purpose of modeling the architecture and verify-
ing the system properties, have been proposed in the
recent past (Salehie and Tahvildari, 2009). A com-
mon denominator in many of these works is the ob-
jective to give systems an acceptable level of reliabil-
ity and of flexibility necessary to ensure adaptability,
without compromising dependability.

A winning strategy to fulfill the main conflicting
quality requirements of self adaptive applications and,
at the same time, to enable the modeling extension to
run time situation is the formalization. The use of a

384

Mongiello, M., Boggia, G. and Sciascio, E.
RelOS: Reflective Architecting in the Internet of Objects.
DOI: 10.5220/0005800603840389

metamodel is fundamental in run time models to iden-
tify and, thus, separate descriptive features — descrip-
tion of the model — from prescriptive features — the
prescription of how the model and hence the system
should be. In fact, to use a run time model it is nec-
essary to identify elements which are descriptive and
elements that are prescriptive (that can be identified
through the metamodel).

Among the numerous domains and applications,
herein, we consider, as a significant and very attract-
ing example of application, the Internet of Things.
This emerging paradigm refers to a combined part
of Future Internet — communication and network is-
sues — and of physical objects or devices or virtual
objects devices, that is information heterogeneous in
nature and seamless integrated into the communica-
tion network. In this context, considering that there
are no standardized modeling approach, we propose a
new solution, namely, RelOS: a Reflective framework
for Internet of Objects and Sensor network. It should
be useful in designing heterogeneous, distributed, and
adaptive applications built on the component based
software engineering paradigm. The framework is
made up of an abstract level in which we model rel-
evant building blocks of a distributed environment in
which resources, events, applications are managed us-
ing a reflective controller, ensuring at the same time

In Proceedings of the 4th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2016), pages 384-389

ISBN: 978-989-758-168-7

Copyright (© 2016 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

flexibility and adaptability. The abstract level is in-
stantiated in a concrete level where the reflective con-
troller enables application execution using reflective
design patterns. The remaining of the paper is orga-
nized as it follows. In Section 2 main concepts useful
to define our domain and the proposed methodology
are drawn. Section 3 defines the proposal. An in-
stantiation of the proposed metamodel is described in
Section 4. Final discussion and future development of
the proposal are reported in Section 6.

2 SOME BACKGROUND

2.1 Reflective Patterns

Reflective systems are characterized by a multi-level
architecture separating meta-levels from the base
level. In reflective object-oriented systems, certain
aspects of the base level are represented or reified as
meta-objects to provide a representation of the exe-
cution state as data. The role of meta-objects is to
observe and modify the base objects they represent
(their referents). The code dealing with meta-objects
is called a meta-program and its interfaces are called
meta-object protocols. By combining design patterns
and reflective languages it is possible to obtain reflec-
tive design patterns, useful in managing flexibility is-
sues in adaptive system implementation and model-
ing. A reflective enhancement of design patterns to
improve flexibility is proposed in (Ferreira and Ru-
bira, 1998; Maes, 1987a; Maes, 1987b). Improve-
ment is performed by adapting standard design pat-
tern (Gamma et al., 1994) to a reflective implemen-
tation obtaining reflective design patterns by extend-
ing the programming language with reflective opera-
tors. The approach provides a flexible implementa-
tion toward design patterns-based software evolution
in which loose coupling and high cohesion are guar-
anteed.

2.2 Internet of Things

An increasing number of everyday machines and ob-
jects are now embedded with sensors or actuators
and have the ability to communicate each other over
the Internet. Collectively they make up the new and
emerging Internet of Things (IoT) paradigm. In this
scenario, individual devices are connected through
Machine-to-Machine (M2M) communication inter-
faces. Potential applications and services in the IoT
include: smart devices, smart cities, smart grids, au-
tomotive, eHealth, home automation and energy man-
agement, remote industrial process control (Tan and

RelOS: Reflective Architecting in the Internet of Objects

Wang, 2010; Guinard et al., 2012). But, smart ob-
jects produce large volumes of data that need to be
managed, processed, transferred, stored securely and,
hence, standardized. The use of standards ensures
interoperable and cost-effective solutions, opens up
opportunities in new areas, and allows the market to
reach its full potential (Guinard et al., 2010; Hamida
etal., 2012).

2.3 REST Middleware

Nowadays, many vertical M2M solutions have been
designed independently for different applications,
making the current M2M market very fragmented,
which inevitably hinders a large-scale M2M deploy-
ment. To decrease the market fragmentation there
have been many efforts from different standardization
bodies to define horizontal service layers. Among
others, The European Telecommunications Standards
Institute (ETSI) has defined with the SmartM2M stan-
dard a middleware which has a RESTful architecture
(Vogli et al., 2015). On the other side, OneM2M,
where are collaborating more than 200 standard-
ization bodies and companies, is defining a REST-
ful middleware which will have a global validity
(Swetina et al., 2014). Also other solutions based on
the use of CoAP proposes RESTful based approach
(Palattella et al., 2013).

All the proposed solutions have a common de-
nominator: they provide RESTful middlewares sep-
arating the application from the communication do-
main. Middlewares are accessible via open interfaces
and enable the development of services and applica-
tions independently of the underlying network. In
addition, they provide several service capabilities to
enable machine registration, synchronous and asyn-
chronous communication, resource discovery, access
rights management, group broadcast, and so on.

All the resources in the RESTful middlewares are
organized in standardized resource trees and can be
uniquely addressed by a Uniform Resource Identifier
(URI). Their representations can be transferred and
manipulated with verbs (i.e., retrieve, update, delete,
and execute).

3 THE PROPOSED RelOS
FRAMEWORK

The aim of this paper is the proposal of a new frame-
work, namely RelOS: a Reflective framework for In-
ternet of Objects and Sensor network. Its goal is to
support modeling and design of heterogeneous, dis-
tributed and adaptive applications starting from the

385

MODELSWARD 2016 - 4th International Conference on Model-Driven Engineering and Software Development

component based software engineering paradigm and
using a run time modeling approach. For this reason,
we use a reflective architecture as metamodel. More
precisely the metamodel comprises the following ab-
stractions:

e modeling the state event properties of the domain;

e modeling the discovery of services or applica-
tions;
e managing a repository of available apps;

o reflective management of applications to enforce
the flexibility to ensure adaptability.

Each abstraction is a conceptual building block
formalizing the framework: an Event Processing
node, a Finite State Machine to model the states and
events, a Discovery node, a Protocol Layer, a Reflec-
tive Controller, a Knowledge Base, as shown in Fig-
ure 1. More in details, the Finite State Machine de-
scribes the states and the events of the domain. The
event processing node manages the events without the
need of storing them persistently on the storage de-
vice; it changes the behavior of the devices accord-
ing to the data stream generated by the devices them-
selves, depending on the reflective execution of apps
managed in the reflective controller. A discovery node
is used to search for given applications and services.

Standardized resources are stored in a Knowledge
base and each resource is uniquely addressable via a
Universal Resource Identifier (URI) and has a rep-
resentation that can be transferred and manipulated
(retrieved, updated, deleted and executed). The use
of a metamodel and its structure facilitates the future
development and extension of the model itself being
compositional and scalable thanks to its abstraction
with more complex and effective reasoning method
for resource discovery.

The protocol manager handles RESTful requests.
It receives information requests, independent on the
protocol, and responds with a confirmation always
independent on the adopted protocol; it allows also
direct access to the underlying protocols so that de-
velopers could abstract from the details without los-
ing track of them. It enable connection among mul-
tiple servers residing in the cloud, on PCs or single-
board computers (Raspberry Pi, BeagleBone, and so
on), by creating networks of distributed IoT devices.
Moreover, it creates a manageable image of all the
connected devices for communicating with microcon-
trollers, such as Arduino and Spark Core giving each
device a REST API, both locally and in the cloud.

The Reflective controller is the main feature of the
framework since it exploits the reflective approach.
The proposed idea is to design the reflective con-
troller using a reflective enhancement of design pat-

386

RelOS Container
: S '
Processing
[=
" Knowledge
Reflective controller b

| Protocol Layer |

Devices
Finite State
Machine

Figure 1: Graphical schema of the ReIOS framework.

terns in order to prevent modification and changes of
middleware codes used in the IoT domain subsequent
to changes in contexts, environment and user pro-
file. Enhancement of design pattern flexibility is per-
formed by adapting standard design pattern (Gamma
et al., 1994) to a reflective implementation: Reflec-
tive design patterns are obtained by extending the pro-
gramming language with reflective operators accord-
ing to the approach defined in (Ferreira and Rubira,
1998; Maes, 1987a; Maes, 1987b) this provides a
flexible approach toward design patterns-based soft-
ware evolution in which loose coupling and high co-
hesion are guaranteed. The reflective controller en-
ables deployment and execution of the apps respond-
ing to detached changes and modifications.

4 RelOS INSTANTIATION: A
REFLECTIVE CONTROLLER
IN MIDDLEWARE
IMPLEMENTATION

The proposed reflection model, established with the
help of proxies, provides a means of customizing ap-
plication behavior and of adapting to new require-
ments without the need for modification. The reflec-
tion model supports customization of applications.

A meta-level architecture inherently exhibits a de-
gree of separation of concerns, where the application
core concerns (at the base level) are separated from
the non-functional concerns (at the meta-level) in a
natural way. To instantiate the metamodel, we build
a reflective controller implementing the CRUD (Cre-
ate, Retrieve, Update and Delete) methods for each
resource. It carries out the checks required for oper-
ations, such as access permissions and verification of
syntax resources. The functional architecture of the
controller also manages the access of a resource from
remote server to make the resource accessible to other
machines.

To validate our proposal, we instantiated the meta-

model in real implementation environment. We
mapped our controller on a state of the art IoT mid-
dleware. We refer to well-known REST Middlewares
(see Sec. II) and modified the standard class diagram
by using Reflective pattern according to the meth-
ods proposed in in (Ferreira and Rubira, 1998; Maes,
1987a; Maes, 1987b). The main changes on the func-
tional architecture and on the class design are per-
formed on the controller of the Rest middleware on
which we map the Resource controller of our frame-
work. Here we briefly summarize these modifica-
tions:

e implementation of the Bridge pattern to decouple
the implementations of classes AnnouncerCon-
troller with the implementation of the Controller.
In this way, the abstract class Announce Con-
troller will inherit methods of the abstract con-
troller class while maintaining a level of abstrac-
tion that allows to decouple implementations for
various resources.

e Elimination of the use of two distinct classes to
perform operations on a single resource or a col-
lection of identical resources. In the code the
two implementations are fundamentally different:
some operations are valid for a single resource,
the other for a collection, performing a prelimi-
nary operation to examine the passed parameter
and decides which method to apply or to under-
stand if it is a single resource or a collection.

e application of a proxy that stores temporarily calls
to instantiate objects and then balance the trade-
off flexibility / performance.

Figures 2 and 3 show the class design before and
after reflective adaptation.

S RELATED WORK

Herein, we briefly recall state of the art in the field
of adaptive modeling of software architecture con-
sidering two main categories of investigations: run-
time modeling and/or verification for adaptive soft-
ware systems and runtime composition and integra-
tion of applications in future internet and IoT domain.
With respect to existing approach, we propose a for-
mal framework to model adaptive architectures that
can be used to instantiate architectural design of adap-
tive systems in various contexts at runtime.

RelOS: Reflective Architecting in the Internet of Objects

Abstract controller

AN AN
Access right controller J
(single resource)
Access Right
Access rights Announcer
controller (multiple Controller
resources)
' Application Application
Different controller Announcer
implementation Applications Controller
s for single —
controller
resource and a

collection of
resources

Figure 2: Class diagram of abstract controller.

Desi pattern
SSIEN | Abstract controller —

Abstract Announcer
Controller

Proxy Proxy
Access right Application Access Right || Application
controller controller Announcer Announcer
Controller Controller
object passed to the Reflactive

constructor to decide
which implementation
to use

implementation

Figure 3: Revised Class diagram of abstract controller for
reflective implementation.

5.1 Runtime Modeling and/or
Verification for Adaptive Software
Systems

Models for context-aware and self-adaptive systems
have been widely studied in the last years. The
work in (Baldauf et al., 2007) summarizes the com-
mon principles for the development of context-aware
applications, in terms of architecture, middleware,
and frameworks. Work (Strang and Linnhoff-Popien,
2004) provides a survey on methods for context mod-
eling. Several surveys on self-adaptive systems have
been proposed (see the work in (Cheng, 2009; R.
de Lemos et al., 2013) and in (Weyns et al., 2012),
just to name the most well-known). The work in
(Salvaneschi et al., 2013) provides an exhaustive and
structured state the art and compares three approaches
to support the implementation of adaptive systems. A
survey on architectural modeling in self-management
may be found in (Kramer and Magee, 2007).
According to the cited works, formal approaches

387

MODELSWARD 2016 - 4th International Conference on Model-Driven Engineering and Software Development

seem to be the most powerful instrument for model-
ing self-adaptive systems, while still preserving cor-
rectness and quality properties. Formal methods have
been used to model MAPE-K loops in (Arcaini et al.,
2015) and services composition in (Riccobene and
Scandurra, 2015). In (Bucchiarone et al., 2015) graph
transformation is used to model self-adaptation. Mod-
eling of evolving systems based on components is in-
stead adopted in (Pelliccione et al., 2008). Models for
service choreography and composition is employed
in (Autili et al., 2009) and by the same authors in (Au-
tili et al., 2014), with specific reference to Future In-
ternet applications. Composition of self-adaptive sys-
tems for dependability is proposed in (Cubo et al.,
2014). The work in (Mongiello et al., 2015b) adopts
semantic approach for run-time verification.

In (Calinescu, 2013), the authors overview emerg-
ing techniques for the engineering of high-integrity
self-adaptive software; in the same paper, a service-
based architecture aimed at integrating these tech-
niques is introduced.

5.2 Runtime Composition and
Integration of Applications in
Future Internet and IoT Domain

Lightweight applications executable on gateways
connecting heterogeneous devices are studied in
(Vogler et al., 2015). Services are autonomous tasks
that can be executed in run-time enviroments. A rig-
orous and lightweight theoretical foundation for rep-
resenting the behavior of heterogeneous things is pro-
posed in (Cubo et al., 2012). This work relies on a
service-oriented paradigm. The approach proposed
in (Torjusen et al., 2014) integrates run-time verifi-
cation enablers in the feedback adaptation loop of
the ASSET adaptive security framework. The scope
of this integration is guaranteeing self-adaptive se-
curity and privacy properties in the eHealth settings.
In (Gonzélez et al., 2013), the authors present an
approach dealing with the run-time verification of
behavior-aware composition of things. They propose
to check whether a mashup of things respects the
specified behavior of the composed things. The ap-
proach is based on mediation techniques and com-
plex event processing and is able to detect and in-
hibit invalid invocations. As a consequence, things
only receive requests compatible with their behavior.
Semantic approaches are in (Mongiello et al., 2015a)
to model self-adaptive architectural model in IoT, the
proposal uses a graph based model for data and pro-
cesses to be exectued in IoT environment.

388

6 DISCUSSION AND FUTURE
DEVELOPMENT

In this paper, we proposed a reflective framework for
adaptive modeling of self-adaptive software in the in-
ternet of things domain. The framework is a meta-
model to manage applications deployment and exe-
cution to enable software system to react on its own,
by dynamically adapting its behavior, in response to
changes in the environment, in the context or in user’s
experience. The proposed solution allows the design
of heterogeneous, distributed and adaptive applica-
tions built on the component based software engineer-
ing paradigm. The metamodel has been instantiated
in a Rest middleware example to modify its imple-
mentation by using reflective design patterns. We are
currently working to refine the metamodel definition
and its implementation in several real domain scenar-
i0s.

REFERENCES

Arcaini, P., Riccobene, E., and Scandurra, P. (2015). Mod-
eling and analyzing MAPE-K feedback loops for self-
adaptation. In /0th IEEE/ACM International Sym-
posium on Software Engineering for Adaptive and
Self-Managing Systems, SEAMS 2015, Florence, Italy,
May 18-19, 2015, pages 13-23.

Autili, M., Benedetto, P. D., and Inverardi, P. (2009).
Context-aware adaptive services: The PLASTIC ap-
proach. In Fundamental Approaches to Software En-
gineering, 12th International Conference, FASE 2009,
ETAPS 2009, York, UK, March 22-29, 2009. Proceed-
ings, pages 124-139.

Autili, M., Inverardi, P., and Tivoli, M. (2014). CHOREOS:
large scale choreographies for the future internet. In
2014 Software Evolution Week - IEEE Conference on
Software Maintenance, Reengineering, and Reverse
Engineering, CSMR-WCRE 2014, Antwerp, Belgium,
February 3-6, 2014, pages 391-394.

Baldauf, M., Dustdar, S., and Rosenberg, F. (2007). A sur-
vey on context-aware systems. Int. J. of Ad Hoc and
Ubiquitous Computing, 2(4):263-277.

Bucchiarone, A., Ehrig, H., Ermel, C., Pelliccione, P., and
Runge, O. (2015). Rule-based modeling and static
analysis of self-adaptive systems by graph transforma-
tion. In Software, Services, and Systems, pages 582—
601.

Calinescu, R. (2013). Emerging techniques for the engi-
neering of self-adaptive high-integrity software. In As-
surances for Self-Adaptive Systems, pages 297-310.
Springer.

Cheng, B. H. e. a. (2009). Software engineering for self-
adaptive systems: A research roadmap. In Software
Engineering for Self-Adaptive Systems, pages 1-26.
Springer-Verlag, Berlin, Heidelberg.

Cubo, J., Brogi, A., and Pimentel, E. (2012). Behaviour-
aware compositions of things. In Green Computing
and Communications (GreenCom), 2012 IEEE Inter-
national Conference on, pages 1-8. IEEE.

Cubo, J., Ortiz, G., Boubeta-Puig, J., Foster, H., and
Lamersdorf, W. (2014). Adaptive services for the fu-
ture internet. J. UCS, 20(8):1046-1048.

Ferreira, L. L. and Rubira, C. M. F. (1998). Reflective de-
sign patterns to implement fault tolerance. In OOP-
SLA 1998.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J.
(1994). Design Patterns: Elements of Reusable
Object-Oriented Software. Pearson Education.

Gonzélez, L., Cubo, J., Brogi, A., Pimentel, E., and Ruggia,
R. (2013). Run-time verification of behaviour-aware
mashups in the internet of things. In Advances in
Service-Oriented and Cloud Computing, pages 318—
330. Springer.

Guinard, D., Ion, 1., and Mayer, S. (2012). In search of
an internet of things service architecture: Rest or ws-
*?7 a developers perspective. In Mobile and Ubiqui-
tous Systems: Computing, Networking, and Services,
pages 326-337. Springer.

Guinard, D., Trifa, V., and Wilde, E. (2010). A resource
oriented architecture for the web of things. In Internet
of Things (10T), 2010, pages 1-8. IEEE.

Hamida, A. B., Kon, F., Oliva, G. A., Dos Santos, C. E. M.,
Lorré, J.-P., Autili, M., De Angelis, G., Zarras, A.,
Georgantas, N., Issarny, V., et al. (2012). An inte-
grated development and runtime environment for the
future internet. In The Future Internet, pages 81-92.
Springer.

Kramer, J. and Magee, J. (2007). Self-managed systems:
an architectural challenge. In Future of Software En-
gineering, 2007. FOSE’07, pages 259-268. IEEE.

Lehmann, G., Blumendorf, M., Trollmann, F., and Al-
bayrak, S. (2011). Meta-modeling runtime models. In
Proceedings of the 2010 International Conference on
Models in Software Engineering, MODELS’ 10, pages
209-223, Berlin, Heidelberg. Springer-Verlag.

Maes, P. (1987a). Concepts and experiments in com-
putational reflection. In Conference Proceedings
on Object-oriented Programming Systems, Languages
and Applications, OOPSLA ’87, pages 147-155, New
York, NY, USA. ACM.

Maes, P. (1987b). Concepts and experiments in computa-
tional reflection. SIGPLAN Not., 22(12):147-155.

Mongiello, M., Grieco, A. L., Sciancalepore, M., and Vogli,
E. (2015a). Adaptive architectural model for future
internet applications. In Proc. of the 5th International
Workshop on Adaptive services for future internet.

Mongiello, M., Pelliccione, P., and Siancalepore, M.
(2015b). Ac-contract: run-time verification of
context-aware systems. In Software Engineering for
Adaptive and Self-Managing Systems, 2015. SEAMS
’15. ICSE Workshop on, pages 106-115.

Palattella, M. R., Accettura, N., Vilajosana, X., Wat-
teyne, T., Grieco, L. A., Boggia, G., and
Dohler, M. (2013). Standardized protocol stack
for the internet of (important) things. IEEE

RelOS: Reflective Architecting in the Internet of Objects

Commun. Surveys & Tutorials, 15(3):1389-1406.
doi:10.1109/SURV.2012.111412.00158.

Pelliccione, P., Tivoli, M., Bucchiarone, A., and Polini,
A. (2008). An architectural approach to the cor-
rect and automatic assembly of evolving component-
based systems. Journal of Systems and Software,
81(12):2237-2251.

R. de Lemos et al. (2013). Software engineering for self-
adaptive systems: A second research roadmap. In
Software Engineering for Self-Adaptive Systems II,
volume 7475 of Lecture Notes in Computer Science,
pages 1-32. Springer Berlin Heidelberg.

Riccobene, E. and Scandurra, P. (2015). Formal mod-
eling self-adaptive service-oriented applications. In
Proceedings of the 30th Annual ACM Symposium on
Applied Computing, Salamanca, Spain, April 13-17,
2015, pages 1704-1710.

Salehie, M. and Tahvildari, L. (2009). Self-adaptive soft-
ware: Landscape and research challenges. ACM
Trans. Auton. Adapt. Syst., 4(2):14:1-14:42.

Salvaneschi, G., Ghezzi, C., and Pradella, M. (2013). An
analysis of language-level support for self-adaptive
software. ACM (TAAS), 8(2):7.

Strang, T. and Linnhoff-Popien, C. (2004). A context mod-
eling survey. In Workshop Proceedings.

Swetina, J., Lu, G., Jacobs, P., Ennesser, F., and Song, J.
(2014). Toward a standardized common m2m service
layer platform: Introduction to onem2m. /EEE Wire-
less Communications, 21(3):20-26.

Tan, L. and Wang, N. (2010). Future internet: The inter-
net of things. In Advanced Computer Theory and En-
gineering (ICACTE), 2010 3rd International Confer-
ence on, volume 5, pages V5-376. IEEE.

Torjusen, A. B., Abie, H., Paintsil, E., Trcek, D., and
Skomedal, A. (2014). Towards run-time verification
of adaptive security for IoT in eHealth. In Proc. of the
2014 European Conf. on Software Architecture Work-
shops, page 4. ACM.

Vogler, M., Li, F,, Claelens, M., Schleicher, J. M., Sehic,
S., Nastic, S., and Dustdar, S. (2015). Colt collabo-
rative delivery of lightweight iot applications. In In-
ternet of Things. User-Centric loT, pages 265-272.
Springer.

Vogli, E., Ben Alaya, M., Monteil, T., Grieco, L. A., and
Drira, K. (2015). An efficient resource naming for en-
abling constrained devices in smartm2m architecture.
In IEEE International Conference on Industrial Tech-
nology (ICIT) 2015, pages 1832—1837.

Weyns, D., Iftikhar, M. U., de la Iglesia, D. G., and Ahmad,
T. (2012). A survey of formal methods in self-adaptive
systems. In Proceedings of the Fifth International C*
Conference on Computer Science and Software Engi-
neering, pages 67-79. ACM.

389

