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Abstract: In recent years, business process management and Service-based applications have been an active area of 
research from both the academic and industrial communities. The emergence of revolutionary ICT 
technologies such as Internet-of-Things (IoT) and cloud computing has led to a paradigm shift that opens 
new opportunities for consumers, businesses, cities and governments; however, this significantly increases 
the complexity of such systems and in particular the engineering of Cloud Service-Based Application 
(CSBA). A crucial dimension in industrial practice is the non-functional service aspects, which are related 
to Quality-of-Service (QoS) aspects. Service Level Agreements (SLAs) define quantitative QoS 
objectivesandis a part of a contract between the service provider and the service consumer. Although 
significant work exists on how SLA may be specified, monitored and enforced, few efforts have considered 
the problem of SLA monitoring in the context of Cloud Service-Based Application (CSBA), which caters 
for tailoring of services using a mixture of Software-as-a-Service (SaaS), Platform-as-a-Service (PaaS) and 
Infrastructure-as-a-Service (IaaS) solutions. With a preventive focus, the main contribution of this paper is a 
novel learning and prediction approach for SLA violations, which generates models that are capable of 
proactively predicting upcoming SLAs violations, and suggesting recovery actions to react to such SLA 
violations before their occurrence. A prototype has been developed as a Proof-Of-Concept (POC) to 
ascertain the feasibility and applicability of the proposed approach. 

1 INTRODUCTION 

In CSBA (Cloud Service Based Application), a client 
can rent a cloud service or a set of cloud services from 
a single or multiple providers to create his/her 
application. The provisioning of these services relies 
on a Service Level Agreement (SLA) (Peter et al., 
2011). In cloud computing, (Brandic et al., 2009) 
during the application execution, various events are 
produced by several layers (i.e., Cloud and SOA 
specific), leading to potential Service Level Objective 
(SLO) violations.This crucial dimension in industrial 
practice concerns the non-functional service aspects, 
which are related to Quality-of-Service (QoS). 
Service Level Agreements (SLAs) (Boniface et al., 
2007) define quantitative QoS objectives, which 
represents a service contract between the service 
provider and the service consumer. The service 
provider promises to deliver the requested service 
complying with some measurable QoS 
objectives/constraints. Typically, a SLA comprises of 

a set of Service Level Objectives (SLOs), each of 
which represents a quality constraint on the system. 
SLAs usually define penalties, in monetary terms that 
the provider has to grant to the customer if a QoS is 
violated. Furthermore, service-based business 
processes have to comply with an ever-growing 
number of laws, regulations and standards, such as 
Sarbanes-Oxley, Basel-III and ISO 9001. Maintaining 
the promised QoS level (George et al., 2003) further 
increases the complexity of such systems. The high 
dynamism of such systems, and the unprecedented 
complexity that arises from the mass of information 
that is associated with runtime, puts an emphasis on 
their adaptive capabilities. In practice, the rapid 
evolving nature of the business and the compliance 
domains requires these systems to be equipped with 
self-adaptive capabilities to ensure the proper 
execution of Cloud Services-Based Applications. 
These systems have to autonomously adapt 
themselves to changes on service provisioning, 
availability of things and content, computing 
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resources, and network connectivity, while continually 
meeting QoS and regulatory constraints. Current 
solutions for adaptive Web services and adaptive 
service-based business processes fall short to support 
essential characteristics of such applications. The 
highly rapid and unforeseen adaptive nature of these 
applications with their complex and distributed nature 
may indirectly affect various layers and components of 
the cloud stack (i.e., SaaS, PaaS and IaaS). This puts a 
significant emphasis on the monitoring of SLAs, as 
well as detecting, predicting and resisting to violations, 
which appear to be more challenging in the case of 
CSBAs as various providers are dynamically involved. 
In the literature, there are two main approaches for 
systems monitoring, i.e., reactive and proactive. The 
reactive approach mainly reacts after an occurrence of a 
violation has occurred. While the proactive approach is 
more preventive, by possibly predicting potential future 
violations before their occurrence, and by reacting to 
avoid their occurrence. 

The contributions of this paper are twofold: (i) 
we present a novel monitoring framework for 
CSBA, namely Proactive learning from SLA 
violation, based on MAPE-K1 adaptation loop, and 
(ii) we concretely address the ‘Analysis’ component 
of the proposed framework. This novel proactive 
learning approach takes advantage of the massive 
amount of past process execution data in order to 
predict potential violations. It identifies the best 
counter measures that need to be applied. As a 
proof-of-concept of the proposed approach, a 
prototype has been developed that ascertains the 
applicability and feasibility of the proposed solution. 

The rest of this paper is structured as follows. 
Section 2 discusses related work. Section 3 introduces 
a running scenario that will be used throughout the 
paper. Section 4 lays the background needed to 
understand the work proposed in this paper. The 
proposed predictive monitoring framework is 
presented in Section 5. Section 6 presents our 
proposed SLA violations learning approach. Section 
7discusses the implementation of the proposed 
approach on a real-life log. Finally, Section 8 draws 
conclusions and perspectives. 

2 LITERATURE REVIEW 

There is a massive amount of work in the literature 
related to cloud-based environment, covering 

                                 
1 MAPE-K (Monitoring, Analysis, Planning Execution-

Knowledge). 

various aspects of this multi-disciplinary domain. In 
the next discussion, we are focusing on prominent 
efforts in the area of SLA monitoring and 
management in CBSA, which is appraised against 
the work proposed in this paper.and. 

In principle, approaches for monitoring and 
detecting SLA violations with respect to QoS 
constraints are mainly based on techniques and 
strategies to adapt QoS settings according to changes 
and violations detected during execution of CSBA. 
In this case QoS parameters are generally used to 
repair and optimize a web service. Generally, these 
adaptive approaches are based on the ability to select 
and replace the failed services dynamically at 
runtime or during deployment. The selection is 
governed not only by the need to substitute services 
but to optimize the requirements of QoS of the 
system. Accordingly, the system must autonomously 
adapt itself in order to improve the quality of service 
of the process. In (Tao et al., 2014) proposed a novel 
hybrid and adaptive multi learners approach for 
online QoS modeling in the cloud; they described an 
adaptive solution that dynamically selects the best 
learning algorithm for prediction (Leitner et al., 
2011). The proposals in (Fugini et al. 2010) and 
(Schmieders et al., 2011) address the problem of 
violation detection and adaptation of SLA contracts 
between several layers. For example, (Fugini et al., 
2010) proposed a methodology to create, monitor 
and adapt the inter-layer SLA contracts. The SLA 
model includes parameters such as KPI (key 
performance indicators), KGI (indicators key 
objectives), and metrics infrastructure. (Schmieders et 
al., 2011) proposed a solution to avoid SLA violations 
by applying inter-layer techniques. The proposed 
approach uses three layers for the prediction of SLA 
violations. The identification of adaptation needs is 
based on the prediction of QoS, which uses 
assumptions about the characteristics of the execution 
context. In (Vincent et al., 2015), the authors 
introduced a Cloud Application and SLA monitoring 
architecture, and proposed two methods for 
determining the frequency these applications need to 
monitor, they also identified the challenges in regard 
with application provisioning and SLA enforcement, 
especially in multi-tenant Cloud services. 

Discussion: The main limitation of the 
aforementioned approaches is that they only 
consider certain services regions (execution points) 
of the composition and do not consider all process 
tasks. Most of the works targeting SLA violations 
prediction is addressing grid environments or 
service-oriented infrastructure that differs from 
cloud infrastructure, therefore the applicability of 
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these approaches on CSBA is limited. To the best of 
our knowledge, the approach proposed in this paper 
is the first that uses data mining techniques (Han et 
al., 2011) to learn from SLA violations (Vaitheki et 
al., 2014) in order to correlate between multiple 
violated SLAs. It recommends actions for 
automatically reconfiguring the CSBA to avoid the 
predicted violation before its occurrence. 

3 MOTIVATION SCENARIO 

To illustrate the ideas presented in this paper we will 
use a simple travel agency scenario, which is 
composed of three services: (i) Reserve Flight, (ii) 
Payment Service, and (iii) Reserve Hotel Service. 

 

Figure 1: A simple process describing the travel agency 
scenario. 

Table 1: QoS constraints of SLA relevant to the scenario. 

SLA Parameter Value 
Response time  ≤ 20 Sec 

Storage (St) ≥ 2GB 
CPU number ≥ 3 

 

Figure 2: Travel agency SLA Violations. 

We summarize in Table 1 the Service Level 
Objectives (SLOs) for our CSBA. It corresponds to 
the SLA specifications of all the QoS constraints for 
the whole application. Each cloud service provider 
involved in the Travel-Agency-CSBA configuration 
promises to satisfy the stipulated Qualities of 
Services (QoS) through a Service Level Agreement 
(SLA) with his consumer. Each of these services is 
made up of a mixture of rented Cloud Services 
(SaaS, PaaS and IaaS).This work aims at locating 
the failure event and determine adaptation actions in 
order to prevent its spread at the others layers, as 

soon as possible. The central focus of Travel-
Agency CSBA scenario is the SLA between the 
client Travel-Agency and the cloud service 
providers offering the Reserve Fly, the Reserve hotel 
and the payment cloud services. Upon receiving a 
request placed by the customer ‘C’, a process 
instance is created.  For this instance, the process 
execution starts with the activity ‘Reserve Fly’ (S1). 
Then, the SLA monitor is called and the software 
services are invoked if they are available. The 
maximum duration of the Response time of the 
whole process should be less than 20 seconds, a 
violation of the respective SLA occurs, as it can be 
seen in Figure 2. 

4 BACKGROUND 

Numerous tasks are reached by data mining. They 
can be classified in descriptive tasks which are the 
association rules in our case and predictive tasks 
which is here the decision Tree used for the 
prediction from execution logs. In this section, we 
first introduce the decision Tree, a commonly used 
data mining technique in order to build predictions 
models from execution logs to be able to predict 
potential violation and react to it proactively. This is 
followed by an overview of association rules.  

4.1 Decision Tree 

Objective: classification of people or things into 
groups by recognizing patterns. The user or the 
expert has always a tendency to structure or classify 
data into groups of similar objects called classes. For 
this purpose, he uses distance measurements in order 
to evaluate the belonging of an object to a class. The 
most known classification methods are nearest 
neighbor and decision trees. A decision tree seeks to 
represent the studied objects in a tree, according to a 
hierarchy of attributes. Decision trees are popular 
because they provide a synthetic representation of 
data. They are graphical representations of a 
classification procedure aiming to derive a result 
from a test of attributes (internal nodes of the tree). 
A node represents a class, an arc represents a 
partitioning predicate of the source class and the 
leaves of the tree are the classes we want to predict 
or explain their statements. CART (Breiman et al., 
1984) and C4.5 are among the best known 
algorithms for generating decision tree. These 
algorithms generate classification rules easy to 
interpret by the user. The generated rules can be 
used to build predictive models. A decision tree is 
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used to classify records by hierarchical division into 
subclasses. 

4.2 Association Rules 

Objective: associating what events are likely to 
occur together. 

Association models aim to discover relationships 
or correlations in a set of items. Association rules is 
a data mining technique intending to find associated 
values in a given dataset and serving decision 
making. It has the following form: A->B (S %), (C 
%). This rule means that tuples satisfying conditions 
in A also satisfy conditions in B. 

A rule is always given with two measures (the 
support (S) and the confidence (C)) describing its 
strength and its interestingness. The support 
(equation (1)) is the percentage of transactions that 
satisfy A and B among all the transactions of the 
transactions base. The confidence (equation (2)) is 
the percentage of transactions that verify the 
consequent of a rule among those that satisfy the 
antecedent (premise) data.A rule is always given 
with two measures (the support (S) and the 
confidence (C)) describing its strength and its 
interestingness. The support (equation (1)) is the 
percentage of transactions that satisfy A and B 
among all the transactions of the transactions base. 
The confidence (equation (2)) is the percentage of 
transactions that verify the consequent of a rule 
among those that satisfy the antecedent (premise) 
data. 

ܣ	ݐݎݑܵ → ܲሺܣ ∪ (1) (ܤ
 

Confidence A → B = P (B/A) = Support 
AUB/Support (A) 

(2)

The extraction of association rules is the generation 
of the interesting rules with support and confidence 
greater than minimum thresholds of support and 
confidence. The process of extracting association 
rules involves two distinct phases. Firstly, the items 
having a support level that exceeds a certain 
threshold are segregated. Secondly, the most 
frequent items are combined in order to generate 
associations (Chelghoum, 2004). 

5 A FRAMEWORK FOR 
PROACTIVE LEARNING 
FROM SLA VIOLATIONS 

Figure 3 portrays a high-level architectural view of 
the proposed cross-layer self-adaptation framework. 

The framework is based on MAPE-K adaptation 
loop, introduced by IBM as an efficient and novel 
approach for self-adaptation in autonomic 
computing. As shown in Figure 3, the MAPE-K 
adaptation loop comprises of five main components 
corresponding to its acronym, which will be 
discussed in the following. The main focus of this 
paper is on the Analysis component of the MAPE-K 
loop, where a proactive learning approach is 
proposed (cf. Section 5) to predict potential QoS 
violations based on historical execution logs and 
react accordingly to avoid/prevent the predicted 
violation. Therefore, the upcoming sections will 
focus on presenting the details of these two main 
components.  

 

Figure 3: High-level architectural view of the proposed 
proactive monitoring framework. 

Knowledge: SLA is a predominant entity in cloud 
service based systems (CSBS). In CSBS, clients rent 
services from providers instead of buying services. 
This means that a CSBS is a composition of a list of 
rented services. Thus, SLA becomes critical to both 
service clients and providers and it needs to be 
monitored constantly while a CSBS is running with 
the aim to not only detect violations but also prevent 
them. As in CSBS a number of providers are 
involved, detecting and resisting violations (of 
multiple SLAs that engage different providers form 
different locations) are enormously challenging. 
Therefore, an efficient and effective approach is of a 
paramount importance for CSBS. As CSBS rely on 
third party cloud service providers, an SLA involves 
a ‘consumer’ and one to many ‘providers’.  

Monitoring: Monitoring of SLA compliance is of 
crucial importance to the proposed framework. 
Monitoring is intended to be in a near real-time 
fashion in order to take corrective actions before it is 
too late (Yehia et al. 2014). Our intention also is to 
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predict possible SLA violation and avoid them 
before they occur. To tackle the monitoring task, we 
will depend on complex event processing (CEP) 
technology.  

Analysis: Analysis is based on the monitoring 
results; the analysis component is responsible for 
performing complex data analysis and reasoning, by 
the continuous interaction with the knowledge 
component. Based on information extracted from the 
historical traces, predictions and recommendations 
are provided for running instances. Such predictions 
and recommendation rely on data mining techniques, 
more specifically, decision trees. 

Planning: Once a violation is predicted, the planning 
component takes the hand over. To deal with such a 
predicted violation, the planning component starts by 
searching for alternative solutions in order to avoid 
the occurrence of the predicted violation. The 
planning component will attempt to adapt the smallest 
possible set of services without directly targeting a re-
engineering process of the whole system. 

Execution: Based on the results of the prediction 
models constructed in the previous planning 
component, the execution component is responsible 
for selecting the adaptation plan (in the form of 
recommendations as passed from the planning 
component) with the highest probability of success. 
This evaluation will iteratively enhance the quality 
of the predication models by better learning (the 
feedback loop in Figure 3).Our work in this 
component is ongoing. 

6 THE PROPOSED LEARNING 
APPROACH IN CLOUD 
ENVIRONMENTS 

In this section, we present the details of the proposed 
learning approach, which combines different existing 
techniques ranging from learning approaches to 
decision tree learning, to provide predictions, at 
runtime, about the achievement of business goals in a 
Business Process (BP) execution trace. In the 
following sections, we provide an overview of the 
approach. Section 7 discusses the implementation of 
the proposed approach as a Proof-Of-Concept (POC) 
of the realization of the proposed approach.  

6.1 The Proposed Learning Approach 

The process of learning from SLA violation and 
making dependencies precedence between different 

SLAs violations in CSBAs have been identified as 
major research challenges in Cloud environments. 

 

Figure 4: Proposed SLA Violation Learning approach: 
Architecture overview. 

SLA does not contain information about the 
dynamicity of the system. In other words, it is 
independent of the context of the business process, 
and it contains information about the service 
behavior or quality provided by the service which 
we aim to exploit. SLAs are not mathematically 
defined. That means that the semantics of the SLA 
elements and metrics are defined in natural 
languages, which makes it harder to understand the 
semantic of QoS, and it is usually dependent on the 
client and provider contract. Thus, being precise and 
formal about SLA semantic is necessary.  SLAs 
violations come from different kind of failures, 
determining the appropriate type of actions to be 
taken when predicting an SLA violation is equally 
important.  
First Phase: Learning phase: It is a continuous 
evolving process. The association rules extraction is 
explained as follows:  
Given: a set of historical BP event logs of SLA 
violations. 
Find: Association rules 

 

Figure 5: Learning Phase. 

Our method of Association Rules (AR) 
determination goes through three steps: 
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 The first step is to discover frequent itemsets.  
 The second step is dedicated to find out ARs on 

the basis of the first step outputs. 
 The third step is the refinement of the extracted 

ARs.  

These steps are depicted in the diagram shown in 
Figure 5. Two steps are combined in order to carry 
out ARs. They are respectively the generation of 
frequent itemsets and the extraction of association 
rules. The frequent itemsets are extracted as defined 
in Algorithm 1. 

Algorithm 1: Extraction and refinement of AR. 

Inputs: Execution logs 
Outputs:  ARs 
      Reject-rule: = Boolean 
Begin 
      Reject-rule: =False 
Do 
(1) Find all the frequent itemsets 

by C4.5 execution (execution 
logs) 

(2) Find all the possible ARs by 
C4.5 execution 

(3) Save the obtained ARs 

End 
(4) Save the rules set containing 

only correct rules 

End 

The input corresponds to the set of historical data 
generated by the previous SLA violation of CSBA. 
The AR contains QoS property of SLA in the 
antecedent and the violated SLA as consequent of 
the rule. The proposed formula of the AR is given in 
equation: 

 ሺperformሻactionܖ܍ܐܜconditioneventܑܖ۽

The next phase is the prediction phase (described 
below), in that phase some historical executions of 
CSBA are necessary to bootstrap the prediction. The 
concrete amount of instances that are necessary, 
depend both on the expected quality of prediction 
and on the size and complexity of the service 
composition. 

Second Phase: SLA Prediction 
The objective of this phase is to (i) predict potential 
violation, and to (ii) construct/build the best 
configuration as the recommendation from what 
have been detected and learned based on the 
previous learning phase.The set of such entries is 
presented in the Decision Tree of the Figurewhere 
the output is the frequent set of dependencies.The 
Prediction algorithm gives precise predictions and 

avoids unnecessary adaptations. Generally, the 
approach that predicts SLA violations is based on 
the idea of predicting concrete SLO values based on 
whatever monitoring information is already 
available. In order to identify which data should be 
used to train which model, some domain knowledge 
is necessary. However, dependency analysis can be 
used to identify the factors that have the biggest 
influence on the respective SLOs. 

The association rules prediction is explained as 
follows: 
Given: ARs extracted. 
Find: Predictive ARs. 
The process of this phase is shown in Algorithm 2: 

Algorithm 2: Prediction of predictive AR. 

Inputs: ARs 
Outputs:  Predicted ARs 
      Reject-rule: = Boolean 
Begin 
      Reject-rule: =False 
Do 
(5) Compare all the obtained ARs in 

different time intervals 
(6) Suggest predicted Rules 

End 
(7) Save the predicted rules set 

containing only correct rules  

End 

6.2 Exemplifying on the Running 
Scenario 

In this section, the prediction of violations is applied 
on the Travel agency CSBA scenario (described in 
section 3). The rules below are an outcome of the 
Decision Tree mining the data sets sent as inputs 
from an Excel file of the Travel-Agency scenarios is 
described in (section 3). 
Example of rule 
IF sum RT2+RT3 ≤ 10 = no And RT3≤ 6AndRT2 ≤ 
11 And RT1≥ 5 Then Violation = Viol (P1, P6), the 
configuration will be: {Response time ≤ 20, 1CPU, 
2GB RAM}. 

As presented in Figure 2, IaaS is an 
infrastructure as a service that is a rented service 
from amazon service provider with 1 CPU and 2 GB 
Ram and it promises PaaS is a platform as a service 
that presents a rented IIS (internet information 
services), with 1 CPU and 2 GB Ram and it 
promises to satisfy response time <20 sec. The 
Global SLA service promises to satisfy response 
time <20 sec, giving 10 sec as a response time for 

Proactive Learning from SLA Violation in Cloud Service based Application

191



Table 2: Proactive Actions. 

Violation ID Violation Type Action Type Action 

Viol1 Violation  Qos  Reparation Raise the RAM capacity to 2GB 

Viol 2 Availability Substitution Change violated service 

Viol 3 Security Reparation Adapt the service to security police 

 
each of ‘Reserve Hotel’ and 5 sec for ‘Reserve 
Flight’, and 5 sec for ‘Payment Application’ service. 
The response time for example could be violated 
when any of these application services has an 
internal violation in response time at the level of 
SaaS, PaaS or IaaS. In order to avoid such situation, 
the SLA manager acts proactively based on history 
of completed activities. At the same time, another 
monitoring component detects that there is an I/O 
failure at the SaaS layer as S1 has produced a wrong 
output. A specific rule is triggered that derives the 
best strategy which consists of executing another 
instance of the web service on a more powerful 
server with a better memory and CPU allocation. 
(Amazon (3cpu, 3GB RAM)). Assume that a 
Monitoring Component, running at the server where 
the web service is executed, detects that the available 
main memory is not sufficient (IaaS layer) for the 
web service. At this stage, proactive actions are 
suggestions to be taken based on some predefined 
suitable actions for each type of violation the system 
may encounter. In Table 2, we can see that each 
violation has a violation type that could be 
availability or security depending on the type of 
violation. The actions taken are of two types, namely 
surgery and elastic actions. 

7 IMPLEMENTATION  

To demonstrate the applicability and feasibility of 
our approach, we developed a prototype2using 
JAVA. We trigger the execution of 100 process 
instances using a test client. For each of these 
instances we select the concrete supplier service and 
shipper service randomly in order to ensure that 
history data used for learning contains metrics data 
on each of these services. During process instance 
execution, the previously specified metrics are 
measured and saved in the knowledge database. 
Then, for each checkpoint a decision tree is learned 

                                 
2 A video demonstration is available at: https://www.youtube. 

com/watch?v=oDEFYGBPdH0 

using the J48 algorithm. For the implementation of 
the Predictor, we rely on the WeKa J48 
implementation of the C4.5 algorithm, which takes 
as input a‘.arff’ file and builds a decision tree as 
shown in Figure 6: Text files of real data. The ‘.arff’ 
file contains a list of typed variables (including the 
target variable) and, for each trace prefix (e.g., for 
each data snapshot), the corresponding values are 
also maintained. The resulting Decision Tree is then 
analyzed to generate predictions and 
recommendations as shown in Figure 6. The 
configuration manager is responsible for configuring 
the CSBA. The proactive actions suggested by the 
proactive engine are mapped into the configuration 
manager to take the action. The action taken is then 
stored in the knowledgebase. The algorithm searches 
in the database (as shown in (Figure 7) for suitable 
actions that can be used. Below in figure 8 is a part 
of the Excel file that we used for our decision. For 
example, as shown in the Table 3 since the violation 
is Response Time, then the suitable action is to add 1 
CPU to the violating service.  

 

Figure 6: Text files of real data. 

We evaluated experimentally the model’s 
performance and accuracy. The experiments were 
performed on a machine with quad-core CPU 2.6 
GHz, 8GB RAM and Mac OS X operating system. 
This experiment evaluates the algorithm’s raw 
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relevant and absolute accuracy. The static metrics 
precision and recall is measured while fluctuating 
the interval size from 4 to 20 events. Figure 8 shows 
that relevant precision is 1 for small intervals and 
falls while increasing the interval size, while 
absolute precision fluctuates similarly at lower 
levels (as more irrelevant sub-patterns are 
discovered). 

 

Figure 7: A screenshot of ARs Extraction. 

 
Figure 8: Evaluation results. 

8 CONCLUSION AND FUTURE 
WORK 

In this paper, we proposed a proactive framework 
for learning from SLA violations in Cloud Service 
Based application. We proposed a proactive 
approach that uses business process execution logs 
to learn from past violations and extracts knowledge 
between violated SLA’s, This is based on building 
predictions models that is capable of predicting 
potential violations before their occurrence, as well 
as recommending proactive response 
recovery/preventive actions. As future work 
directions, we plan to design and implement the 
planning and Execution components of the 
comprehensive framework for automatic cross-layer 

self-adaptation of service-based business processes 
running on cloud environments, proposed in this 
paper. Future work will also focus on validating the 
approach by applying it to large-scale case studies 
from diverse problem domains. 
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