
Proactive Learning from SLA Violation in Cloud Service based
Application

Ameni Meskini1, Yehia Taher2, Amal El gammal3, Béatrice Finance2 and Yahya Slimani1
1University of Carthage, INSAT, LISI Research Laboratory, Tunis, Tunisia

2Laboratoire PRiSM, Universite de Versailles/Saint-Quentin-en-Yvelines, Versailles, France
3Faculty of Computers and Information, Cairo University, Cairo, Egypt

Keywords: Cloud Service based Application, SLA Violations Prevention, Cloud Environments, Decision Tree.

Abstract: In recent years, business process management and Service-based applications have been an active area of
research from both the academic and industrial communities. The emergence of revolutionary ICT
technologies such as Internet-of-Things (IoT) and cloud computing has led to a paradigm shift that opens
new opportunities for consumers, businesses, cities and governments; however, this significantly increases
the complexity of such systems and in particular the engineering of Cloud Service-Based Application
(CSBA). A crucial dimension in industrial practice is the non-functional service aspects, which are related
to Quality-of-Service (QoS) aspects. Service Level Agreements (SLAs) define quantitative QoS
objectivesandis a part of a contract between the service provider and the service consumer. Although
significant work exists on how SLA may be specified, monitored and enforced, few efforts have considered
the problem of SLA monitoring in the context of Cloud Service-Based Application (CSBA), which caters
for tailoring of services using a mixture of Software-as-a-Service (SaaS), Platform-as-a-Service (PaaS) and
Infrastructure-as-a-Service (IaaS) solutions. With a preventive focus, the main contribution of this paper is a
novel learning and prediction approach for SLA violations, which generates models that are capable of
proactively predicting upcoming SLAs violations, and suggesting recovery actions to react to such SLA
violations before their occurrence. A prototype has been developed as a Proof-Of-Concept (POC) to
ascertain the feasibility and applicability of the proposed approach.

1 INTRODUCTION

In CSBA (Cloud Service Based Application), a client
can rent a cloud service or a set of cloud services from
a single or multiple providers to create his/her
application. The provisioning of these services relies
on a Service Level Agreement (SLA) (Peter et al.,
2011). In cloud computing, (Brandic et al., 2009)
during the application execution, various events are
produced by several layers (i.e., Cloud and SOA
specific), leading to potential Service Level Objective
(SLO) violations.This crucial dimension in industrial
practice concerns the non-functional service aspects,
which are related to Quality-of-Service (QoS).
Service Level Agreements (SLAs) (Boniface et al.,
2007) define quantitative QoS objectives, which
represents a service contract between the service
provider and the service consumer. The service
provider promises to deliver the requested service
complying with some measurable QoS
objectives/constraints. Typically, a SLA comprises of

a set of Service Level Objectives (SLOs), each of
which represents a quality constraint on the system.
SLAs usually define penalties, in monetary terms that
the provider has to grant to the customer if a QoS is
violated. Furthermore, service-based business
processes have to comply with an ever-growing
number of laws, regulations and standards, such as
Sarbanes-Oxley, Basel-III and ISO 9001. Maintaining
the promised QoS level (George et al., 2003) further
increases the complexity of such systems. The high
dynamism of such systems, and the unprecedented
complexity that arises from the mass of information
that is associated with runtime, puts an emphasis on
their adaptive capabilities. In practice, the rapid
evolving nature of the business and the compliance
domains requires these systems to be equipped with
self-adaptive capabilities to ensure the proper
execution of Cloud Services-Based Applications.
These systems have to autonomously adapt
themselves to changes on service provisioning,
availability of things and content, computing

186
Meskini, A., Taher, Y., gammal, A., Finance, B. and Slimani, Y.
Proactive Learning from SLA Violation in Cloud Service based Application.
In Proceedings of the 6th International Conference on Cloud Computing and Services Science (CLOSER 2016) - Volume 1, pages 186-193
ISBN: 978-989-758-182-3
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

resources, and network connectivity, while continually
meeting QoS and regulatory constraints. Current
solutions for adaptive Web services and adaptive
service-based business processes fall short to support
essential characteristics of such applications. The
highly rapid and unforeseen adaptive nature of these
applications with their complex and distributed nature
may indirectly affect various layers and components of
the cloud stack (i.e., SaaS, PaaS and IaaS). This puts a
significant emphasis on the monitoring of SLAs, as
well as detecting, predicting and resisting to violations,
which appear to be more challenging in the case of
CSBAs as various providers are dynamically involved.
In the literature, there are two main approaches for
systems monitoring, i.e., reactive and proactive. The
reactive approach mainly reacts after an occurrence of a
violation has occurred. While the proactive approach is
more preventive, by possibly predicting potential future
violations before their occurrence, and by reacting to
avoid their occurrence.

The contributions of this paper are twofold: (i)
we present a novel monitoring framework for
CSBA, namely Proactive learning from SLA
violation, based on MAPE-K1 adaptation loop, and
(ii) we concretely address the ‘Analysis’ component
of the proposed framework. This novel proactive
learning approach takes advantage of the massive
amount of past process execution data in order to
predict potential violations. It identifies the best
counter measures that need to be applied. As a
proof-of-concept of the proposed approach, a
prototype has been developed that ascertains the
applicability and feasibility of the proposed solution.

The rest of this paper is structured as follows.
Section 2 discusses related work. Section 3 introduces
a running scenario that will be used throughout the
paper. Section 4 lays the background needed to
understand the work proposed in this paper. The
proposed predictive monitoring framework is
presented in Section 5. Section 6 presents our
proposed SLA violations learning approach. Section
7discusses the implementation of the proposed
approach on a real-life log. Finally, Section 8 draws
conclusions and perspectives.

2 LITERATURE REVIEW

There is a massive amount of work in the literature
related to cloud-based environment, covering

1 MAPE-K (Monitoring, Analysis, Planning Execution-

Knowledge).

various aspects of this multi-disciplinary domain. In
the next discussion, we are focusing on prominent
efforts in the area of SLA monitoring and
management in CBSA, which is appraised against
the work proposed in this paper.and.

In principle, approaches for monitoring and
detecting SLA violations with respect to QoS
constraints are mainly based on techniques and
strategies to adapt QoS settings according to changes
and violations detected during execution of CSBA.
In this case QoS parameters are generally used to
repair and optimize a web service. Generally, these
adaptive approaches are based on the ability to select
and replace the failed services dynamically at
runtime or during deployment. The selection is
governed not only by the need to substitute services
but to optimize the requirements of QoS of the
system. Accordingly, the system must autonomously
adapt itself in order to improve the quality of service
of the process. In (Tao et al., 2014) proposed a novel
hybrid and adaptive multi learners approach for
online QoS modeling in the cloud; they described an
adaptive solution that dynamically selects the best
learning algorithm for prediction (Leitner et al.,
2011). The proposals in (Fugini et al. 2010) and
(Schmieders et al., 2011) address the problem of
violation detection and adaptation of SLA contracts
between several layers. For example, (Fugini et al.,
2010) proposed a methodology to create, monitor
and adapt the inter-layer SLA contracts. The SLA
model includes parameters such as KPI (key
performance indicators), KGI (indicators key
objectives), and metrics infrastructure. (Schmieders et
al., 2011) proposed a solution to avoid SLA violations
by applying inter-layer techniques. The proposed
approach uses three layers for the prediction of SLA
violations. The identification of adaptation needs is
based on the prediction of QoS, which uses
assumptions about the characteristics of the execution
context. In (Vincent et al., 2015), the authors
introduced a Cloud Application and SLA monitoring
architecture, and proposed two methods for
determining the frequency these applications need to
monitor, they also identified the challenges in regard
with application provisioning and SLA enforcement,
especially in multi-tenant Cloud services.

Discussion: The main limitation of the
aforementioned approaches is that they only
consider certain services regions (execution points)
of the composition and do not consider all process
tasks. Most of the works targeting SLA violations
prediction is addressing grid environments or
service-oriented infrastructure that differs from
cloud infrastructure, therefore the applicability of

Proactive Learning from SLA Violation in Cloud Service based Application

187

these approaches on CSBA is limited. To the best of
our knowledge, the approach proposed in this paper
is the first that uses data mining techniques (Han et
al., 2011) to learn from SLA violations (Vaitheki et
al., 2014) in order to correlate between multiple
violated SLAs. It recommends actions for
automatically reconfiguring the CSBA to avoid the
predicted violation before its occurrence.

3 MOTIVATION SCENARIO

To illustrate the ideas presented in this paper we will
use a simple travel agency scenario, which is
composed of three services: (i) Reserve Flight, (ii)
Payment Service, and (iii) Reserve Hotel Service.

Figure 1: A simple process describing the travel agency
scenario.

Table 1: QoS constraints of SLA relevant to the scenario.

SLA Parameter Value
Response time ≤ 20 Sec

Storage (St) ≥ 2GB
CPU number ≥ 3

Figure 2: Travel agency SLA Violations.

We summarize in Table 1 the Service Level
Objectives (SLOs) for our CSBA. It corresponds to
the SLA specifications of all the QoS constraints for
the whole application. Each cloud service provider
involved in the Travel-Agency-CSBA configuration
promises to satisfy the stipulated Qualities of
Services (QoS) through a Service Level Agreement
(SLA) with his consumer. Each of these services is
made up of a mixture of rented Cloud Services
(SaaS, PaaS and IaaS).This work aims at locating
the failure event and determine adaptation actions in
order to prevent its spread at the others layers, as

soon as possible. The central focus of Travel-
Agency CSBA scenario is the SLA between the
client Travel-Agency and the cloud service
providers offering the Reserve Fly, the Reserve hotel
and the payment cloud services. Upon receiving a
request placed by the customer ‘C’, a process
instance is created. For this instance, the process
execution starts with the activity ‘Reserve Fly’ (S1).
Then, the SLA monitor is called and the software
services are invoked if they are available. The
maximum duration of the Response time of the
whole process should be less than 20 seconds, a
violation of the respective SLA occurs, as it can be
seen in Figure 2.

4 BACKGROUND

Numerous tasks are reached by data mining. They
can be classified in descriptive tasks which are the
association rules in our case and predictive tasks
which is here the decision Tree used for the
prediction from execution logs. In this section, we
first introduce the decision Tree, a commonly used
data mining technique in order to build predictions
models from execution logs to be able to predict
potential violation and react to it proactively. This is
followed by an overview of association rules.

4.1 Decision Tree

Objective: classification of people or things into
groups by recognizing patterns. The user or the
expert has always a tendency to structure or classify
data into groups of similar objects called classes. For
this purpose, he uses distance measurements in order
to evaluate the belonging of an object to a class. The
most known classification methods are nearest
neighbor and decision trees. A decision tree seeks to
represent the studied objects in a tree, according to a
hierarchy of attributes. Decision trees are popular
because they provide a synthetic representation of
data. They are graphical representations of a
classification procedure aiming to derive a result
from a test of attributes (internal nodes of the tree).
A node represents a class, an arc represents a
partitioning predicate of the source class and the
leaves of the tree are the classes we want to predict
or explain their statements. CART (Breiman et al.,
1984) and C4.5 are among the best known
algorithms for generating decision tree. These
algorithms generate classification rules easy to
interpret by the user. The generated rules can be
used to build predictive models. A decision tree is

CLOSER 2016 - 6th International Conference on Cloud Computing and Services Science

188

used to classify records by hierarchical division into
subclasses.

4.2 Association Rules

Objective: associating what events are likely to
occur together.

Association models aim to discover relationships
or correlations in a set of items. Association rules is
a data mining technique intending to find associated
values in a given dataset and serving decision
making. It has the following form: A->B (S %), (C
%). This rule means that tuples satisfying conditions
in A also satisfy conditions in B.

A rule is always given with two measures (the
support (S) and the confidence (C)) describing its
strength and its interestingness. The support
(equation (1)) is the percentage of transactions that
satisfy A and B among all the transactions of the
transactions base. The confidence (equation (2)) is
the percentage of transactions that verify the
consequent of a rule among those that satisfy the
antecedent (premise) data.A rule is always given
with two measures (the support (S) and the
confidence (C)) describing its strength and its
interestingness. The support (equation (1)) is the
percentage of transactions that satisfy A and B
among all the transactions of the transactions base.
The confidence (equation (2)) is the percentage of
transactions that verify the consequent of a rule
among those that satisfy the antecedent (premise)
data.

ܣ	ݐݎݑܵ → ܲሺܣ ∪ (1) (ܤ

Confidence A → B = P (B/A) = Support
AUB/Support (A)

(2)

The extraction of association rules is the generation
of the interesting rules with support and confidence
greater than minimum thresholds of support and
confidence. The process of extracting association
rules involves two distinct phases. Firstly, the items
having a support level that exceeds a certain
threshold are segregated. Secondly, the most
frequent items are combined in order to generate
associations (Chelghoum, 2004).

5 A FRAMEWORK FOR
PROACTIVE LEARNING
FROM SLA VIOLATIONS

Figure 3 portrays a high-level architectural view of
the proposed cross-layer self-adaptation framework.

The framework is based on MAPE-K adaptation
loop, introduced by IBM as an efficient and novel
approach for self-adaptation in autonomic
computing. As shown in Figure 3, the MAPE-K
adaptation loop comprises of five main components
corresponding to its acronym, which will be
discussed in the following. The main focus of this
paper is on the Analysis component of the MAPE-K
loop, where a proactive learning approach is
proposed (cf. Section 5) to predict potential QoS
violations based on historical execution logs and
react accordingly to avoid/prevent the predicted
violation. Therefore, the upcoming sections will
focus on presenting the details of these two main
components.

Figure 3: High-level architectural view of the proposed
proactive monitoring framework.

Knowledge: SLA is a predominant entity in cloud
service based systems (CSBS). In CSBS, clients rent
services from providers instead of buying services.
This means that a CSBS is a composition of a list of
rented services. Thus, SLA becomes critical to both
service clients and providers and it needs to be
monitored constantly while a CSBS is running with
the aim to not only detect violations but also prevent
them. As in CSBS a number of providers are
involved, detecting and resisting violations (of
multiple SLAs that engage different providers form
different locations) are enormously challenging.
Therefore, an efficient and effective approach is of a
paramount importance for CSBS. As CSBS rely on
third party cloud service providers, an SLA involves
a ‘consumer’ and one to many ‘providers’.

Monitoring: Monitoring of SLA compliance is of
crucial importance to the proposed framework.
Monitoring is intended to be in a near real-time
fashion in order to take corrective actions before it is
too late (Yehia et al. 2014). Our intention also is to

Proactive Learning from SLA Violation in Cloud Service based Application

189

predict possible SLA violation and avoid them
before they occur. To tackle the monitoring task, we
will depend on complex event processing (CEP)
technology.

Analysis: Analysis is based on the monitoring
results; the analysis component is responsible for
performing complex data analysis and reasoning, by
the continuous interaction with the knowledge
component. Based on information extracted from the
historical traces, predictions and recommendations
are provided for running instances. Such predictions
and recommendation rely on data mining techniques,
more specifically, decision trees.

Planning: Once a violation is predicted, the planning
component takes the hand over. To deal with such a
predicted violation, the planning component starts by
searching for alternative solutions in order to avoid
the occurrence of the predicted violation. The
planning component will attempt to adapt the smallest
possible set of services without directly targeting a re-
engineering process of the whole system.

Execution: Based on the results of the prediction
models constructed in the previous planning
component, the execution component is responsible
for selecting the adaptation plan (in the form of
recommendations as passed from the planning
component) with the highest probability of success.
This evaluation will iteratively enhance the quality
of the predication models by better learning (the
feedback loop in Figure 3).Our work in this
component is ongoing.

6 THE PROPOSED LEARNING
APPROACH IN CLOUD
ENVIRONMENTS

In this section, we present the details of the proposed
learning approach, which combines different existing
techniques ranging from learning approaches to
decision tree learning, to provide predictions, at
runtime, about the achievement of business goals in a
Business Process (BP) execution trace. In the
following sections, we provide an overview of the
approach. Section 7 discusses the implementation of
the proposed approach as a Proof-Of-Concept (POC)
of the realization of the proposed approach.

6.1 The Proposed Learning Approach

The process of learning from SLA violation and
making dependencies precedence between different

SLAs violations in CSBAs have been identified as
major research challenges in Cloud environments.

Figure 4: Proposed SLA Violation Learning approach:
Architecture overview.

SLA does not contain information about the
dynamicity of the system. In other words, it is
independent of the context of the business process,
and it contains information about the service
behavior or quality provided by the service which
we aim to exploit. SLAs are not mathematically
defined. That means that the semantics of the SLA
elements and metrics are defined in natural
languages, which makes it harder to understand the
semantic of QoS, and it is usually dependent on the
client and provider contract. Thus, being precise and
formal about SLA semantic is necessary. SLAs
violations come from different kind of failures,
determining the appropriate type of actions to be
taken when predicting an SLA violation is equally
important.
First Phase: Learning phase: It is a continuous
evolving process. The association rules extraction is
explained as follows:
Given: a set of historical BP event logs of SLA
violations.
Find: Association rules

Figure 5: Learning Phase.

Our method of Association Rules (AR)
determination goes through three steps:

CLOSER 2016 - 6th International Conference on Cloud Computing and Services Science

190

 The first step is to discover frequent itemsets.
 The second step is dedicated to find out ARs on

the basis of the first step outputs.
 The third step is the refinement of the extracted

ARs.

These steps are depicted in the diagram shown in
Figure 5. Two steps are combined in order to carry
out ARs. They are respectively the generation of
frequent itemsets and the extraction of association
rules. The frequent itemsets are extracted as defined
in Algorithm 1.

Algorithm 1: Extraction and refinement of AR.

Inputs: Execution logs
Outputs: ARs
 Reject-rule: = Boolean
Begin
 Reject-rule: =False
Do
(1) Find all the frequent itemsets

by C4.5 execution (execution
logs)

(2) Find all the possible ARs by
C4.5 execution

(3) Save the obtained ARs

End
(4) Save the rules set containing

only correct rules

End

The input corresponds to the set of historical data
generated by the previous SLA violation of CSBA.
The AR contains QoS property of SLA in the
antecedent and the violated SLA as consequent of
the rule. The proposed formula of the AR is given in
equation:

 ሺperformሻactionܖ܍ܐܜconditioneventܑܖ۽

The next phase is the prediction phase (described
below), in that phase some historical executions of
CSBA are necessary to bootstrap the prediction. The
concrete amount of instances that are necessary,
depend both on the expected quality of prediction
and on the size and complexity of the service
composition.

Second Phase: SLA Prediction
The objective of this phase is to (i) predict potential
violation, and to (ii) construct/build the best
configuration as the recommendation from what
have been detected and learned based on the
previous learning phase.The set of such entries is
presented in the Decision Tree of the Figurewhere
the output is the frequent set of dependencies.The
Prediction algorithm gives precise predictions and

avoids unnecessary adaptations. Generally, the
approach that predicts SLA violations is based on
the idea of predicting concrete SLO values based on
whatever monitoring information is already
available. In order to identify which data should be
used to train which model, some domain knowledge
is necessary. However, dependency analysis can be
used to identify the factors that have the biggest
influence on the respective SLOs.

The association rules prediction is explained as
follows:
Given: ARs extracted.
Find: Predictive ARs.
The process of this phase is shown in Algorithm 2:

Algorithm 2: Prediction of predictive AR.

Inputs: ARs
Outputs: Predicted ARs
 Reject-rule: = Boolean
Begin
 Reject-rule: =False
Do
(5) Compare all the obtained ARs in

different time intervals
(6) Suggest predicted Rules

End
(7) Save the predicted rules set

containing only correct rules

End

6.2 Exemplifying on the Running
Scenario

In this section, the prediction of violations is applied
on the Travel agency CSBA scenario (described in
section 3). The rules below are an outcome of the
Decision Tree mining the data sets sent as inputs
from an Excel file of the Travel-Agency scenarios is
described in (section 3).
Example of rule
IF sum RT2+RT3 ≤ 10 = no And RT3≤ 6AndRT2 ≤
11 And RT1≥ 5 Then Violation = Viol (P1, P6), the
configuration will be: {Response time ≤ 20, 1CPU,
2GB RAM}.

As presented in Figure 2, IaaS is an
infrastructure as a service that is a rented service
from amazon service provider with 1 CPU and 2 GB
Ram and it promises PaaS is a platform as a service
that presents a rented IIS (internet information
services), with 1 CPU and 2 GB Ram and it
promises to satisfy response time <20 sec. The
Global SLA service promises to satisfy response
time <20 sec, giving 10 sec as a response time for

Proactive Learning from SLA Violation in Cloud Service based Application

191

Table 2: Proactive Actions.

Violation ID Violation Type Action Type Action

Viol1 Violation Qos Reparation Raise the RAM capacity to 2GB

Viol 2 Availability Substitution Change violated service

Viol 3 Security Reparation Adapt the service to security police

each of ‘Reserve Hotel’ and 5 sec for ‘Reserve
Flight’, and 5 sec for ‘Payment Application’ service.
The response time for example could be violated
when any of these application services has an
internal violation in response time at the level of
SaaS, PaaS or IaaS. In order to avoid such situation,
the SLA manager acts proactively based on history
of completed activities. At the same time, another
monitoring component detects that there is an I/O
failure at the SaaS layer as S1 has produced a wrong
output. A specific rule is triggered that derives the
best strategy which consists of executing another
instance of the web service on a more powerful
server with a better memory and CPU allocation.
(Amazon (3cpu, 3GB RAM)). Assume that a
Monitoring Component, running at the server where
the web service is executed, detects that the available
main memory is not sufficient (IaaS layer) for the
web service. At this stage, proactive actions are
suggestions to be taken based on some predefined
suitable actions for each type of violation the system
may encounter. In Table 2, we can see that each
violation has a violation type that could be
availability or security depending on the type of
violation. The actions taken are of two types, namely
surgery and elastic actions.

7 IMPLEMENTATION

To demonstrate the applicability and feasibility of
our approach, we developed a prototype2using
JAVA. We trigger the execution of 100 process
instances using a test client. For each of these
instances we select the concrete supplier service and
shipper service randomly in order to ensure that
history data used for learning contains metrics data
on each of these services. During process instance
execution, the previously specified metrics are
measured and saved in the knowledge database.
Then, for each checkpoint a decision tree is learned

2 A video demonstration is available at: https://www.youtube.

com/watch?v=oDEFYGBPdH0

using the J48 algorithm. For the implementation of
the Predictor, we rely on the WeKa J48
implementation of the C4.5 algorithm, which takes
as input a‘.arff’ file and builds a decision tree as
shown in Figure 6: Text files of real data. The ‘.arff’
file contains a list of typed variables (including the
target variable) and, for each trace prefix (e.g., for
each data snapshot), the corresponding values are
also maintained. The resulting Decision Tree is then
analyzed to generate predictions and
recommendations as shown in Figure 6. The
configuration manager is responsible for configuring
the CSBA. The proactive actions suggested by the
proactive engine are mapped into the configuration
manager to take the action. The action taken is then
stored in the knowledgebase. The algorithm searches
in the database (as shown in (Figure 7) for suitable
actions that can be used. Below in figure 8 is a part
of the Excel file that we used for our decision. For
example, as shown in the Table 3 since the violation
is Response Time, then the suitable action is to add 1
CPU to the violating service.

Figure 6: Text files of real data.

We evaluated experimentally the model’s
performance and accuracy. The experiments were
performed on a machine with quad-core CPU 2.6
GHz, 8GB RAM and Mac OS X operating system.
This experiment evaluates the algorithm’s raw

CLOSER 2016 - 6th International Conference on Cloud Computing and Services Science

192

relevant and absolute accuracy. The static metrics
precision and recall is measured while fluctuating
the interval size from 4 to 20 events. Figure 8 shows
that relevant precision is 1 for small intervals and
falls while increasing the interval size, while
absolute precision fluctuates similarly at lower
levels (as more irrelevant sub-patterns are
discovered).

Figure 7: A screenshot of ARs Extraction.

Figure 8: Evaluation results.

8 CONCLUSION AND FUTURE
WORK

In this paper, we proposed a proactive framework
for learning from SLA violations in Cloud Service
Based application. We proposed a proactive
approach that uses business process execution logs
to learn from past violations and extracts knowledge
between violated SLA’s, This is based on building
predictions models that is capable of predicting
potential violations before their occurrence, as well
as recommending proactive response
recovery/preventive actions. As future work
directions, we plan to design and implement the
planning and Execution components of the
comprehensive framework for automatic cross-layer

self-adaptation of service-based business processes
running on cloud environments, proposed in this
paper. Future work will also focus on validating the
approach by applying it to large-scale case studies
from diverse problem domains.

REFERENCES

Boniface M., PhillipsS. C., A. Sanchez-Macian, and
Surridge M.. Dynamic service provisioning using
GRIA SLAs. In ICSOC’07 workshops, 2007.

Brandic, I.,Towards self-manageable cloud services. In
33rd Annual IEEE COMPSAC’09, 2009.

Breiman, L., Friedman, J.H., Olshen, R.A., Stone, and C.J.
(1984). Classification andRegression Trees. Edition
Wadsworth & Brooks.Montery, California, ISBN 0-
412-04841-8, 358 pages.

Chelghoum, N., (2004). Fouille de données spatiales, Un
problème de fouille de donnéesmulti-tables. Thèse de
doctorat présentée et soutenue publiquement à
l’université deVersailles Saint-Quentin-en-Yvelines
U.F.R de sciences Par Nadjim CHELGHOUM le16
décembre 2004.

Fugini,M., Siadat, H.,SLA contract for Cross-Layer
monitoring and adaptation. In S. Rinderle-Ma, S.
Sadiq, and F. Leymann, editors, BPM Workshops,
pages 412--423., 2010.

Han, J., Kamber, M., Pei, J., , Data Mining: Concepts and
Techniques. (3rd ed.)Morgan Kaufmann, USA (2011).

Leitner, P., Michlmayr, A., Rosenberg, F., Dustdar, S.,
Monitoring, Prediction and Prevention of SLA
Violations in Composite Services, icws, pp.369-376,
2010 IEEE SCC, 2010.

Peter, M., Timoth, y G., "The NIST definition of cloud
computing," 2011.

Schmieders, E., Micsik, A., Oriol, M.,Mahbub, K., and
KazhamiakinR., Combining SLA prediction and cross
layer adaptation for preventing SLA violations”. In
Proceedings of the 2nd Workshop on Software
Services: Cloud Computing and Applications based on
Software Services, Timisoara, Romania, June 2011.

Tao, C., Rami, B., Xin, Y., Online QoS Modeling in the
Cloud: A Hybrid and Adaptive Multi-Learners Approach,
the 7th IEEE/ACM UCC, London, UK, 2014.

Vaitheki, K.,Urmela, S., A SLA violation reduction
technique in Cloud by Resource Rescheduling
Algorithm (RRA), International Journal of Computer
Application and Engineering Technology Volume 3-
Issue 3, July 2014. Pp. 217-224.

Vincent, C.,Emeakaroha, Marco, A., S.,Netto,
IvonaBrandic, César, A., F., De Rose, Application-
Level Monitoring and SLA Violation Detection for
Multi-Tenant Cloud Services, Emerging Research in
Cloud Distributed Computing Systems, 2015.

Yehia, T., Rafiqul, H., Dinh Khoa, N., Béatrice, F.,
:PAEAN4CLOUD: A Framework for Monitoring and
Managing the SLA Violation of Cloud Service-based
Applications. CLOSER 2014: 361-371.

Proactive Learning from SLA Violation in Cloud Service based Application

193

