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Abstract: Android malware is increasing more and more in complexity. Current signature based antimalware mecha-
nisms are not able to detect zero-day attacks, also trivial code transformations may evade detection. Malware
writers usually add functionality to existing malware or merge different pieces of malware code: this is the
reason why Android malware is grouped into families, i.e., every family has in common the malicious be-
havior. In this paper we present a model checking based approach in detecting Android malware families by
means of analysing and verifying the Java Bytecode that is produced when the source code is compiled. A
preliminary investigation has been also conducted to assess the validity of the proposed approach.

1 INTRODUCTION

Malware, as well as, any other software evolves. Ev-
idence exists that the majority of newly detected mal-
ware are tweaked variants of well-known malware
(Bailey et al., 2009; Hu et al., 2009; Jang et al., 2011).

As a matter of fact, attackers use to modify ex-
isting malware, by adding new behaviors or merging
together parts of different existing malware’s codes.
Existing malware can be embedded in apparently be-
nign programs (usually popular apps) with repackag-
ing (Zhou and Jiang, 2012): malware authors locate
and download popular apps, disassemble them, en-
close malicious payloads, re-assemble and then sub-
mit the new apps to official and/or alternative Android
markets. This scenario leads to group malware in
families, where a family defines a set of behaviors
common to all its members. Identifying the family
a malware belongs to is of primary importance as it
helps to discover new malware families (Khoo and
Lio, 2011; Ma et al., 2006), create models of prove-
nance and lineage (Dumitras and Neamtiu, 2011), and
generate phylogeny models (Karim et al., 2005). Rec-
ognizing a malware family is at the basis of a variety
of security tasks, from malware characterization to
threat detection and cyber-attack prevention. In mal-
ware triage (Bailey et al., 2009; Hu et al., 2009; Jang
et al., 2011), lineage can be used by malware analysts
to understand trends over time and make informed de-
cisions about the dissection strategies to dissect the
malware samples. This is particularly important since

the order in which the variants of a malware are cap-
tured does not necessarily mirror its evolution. In
software security, lineage can help to find vulnerabili-
ties in software when the source code is not available.
For example, if we know that a vulnerability is present
in an earlier version of an application, then it may also
reside in applications that are derived from it.

Although literature provides several proposals to
detect Android malware (Canfora et al., 2013; Arp
et al., 2014), the proposed techniques are not able to
isolate the payload responsible for malicious action,
and this impedes the recognisance of the family.

Moreover, in mobile malware landscape, malware
is becoming aggressive and hundreds of families are
spread at a very fast pace (Zhou and Jiang, 2012):
simple forms of polymorphic attacks (i.e., malware
that mutates at each infection) targeting Android plat-
form have already been seen1. An example of poly-
morphic behaviour is represented by Opfake family.
The authors demonstrated that by using simple code
transformations (Canfora et al., 2015) to existing mal-
ware that is well recognized by malware detectors
turns it in a version that is anymore recognized by the
most malware detectors.

DroidKungFu is a widespread malware family. Its
payload is able to install a backdoor that allows at-
tackers to access the smartphone when they want and
use the device as they please. Since DroidKungFu
contains root exploits, this family represents one of

1http://www.symantec.com/connect/blogs/server-side-
polymorphic-android-applications
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the most serious threats to mobile users2.
Starting from these considerations, it urges to

study new techniques which are able to effectively
recognize the family a malware belongs to.

In this paper we investigate whether model check-
ing could detect payloads properly and resist against
common obfuscation used by attackers to generate
malware variants belonging to same family.

Thus, we pose the following research questions:

• RQ1: is our method able to correctly identify the
malware family?

• RQ2: is our method able to correctly identify mor-
phed versions of known malware?

The paper proceeds as follows: comparisons with
related work are made in Section 2. Section 3 is a
review of the basic concepts of formal methods, while
Section 4 describes our methodology. In Section 5
the experimental results we obtained are reported and
discussed; and, finally, conclusions are drawn in the
last section.

2 RELATED WORK

In this section, coherently with the research questions
we stated in the introduction, we review related litera-
ture about malware detection with particular emphasis
on studies using formal methods. As our method per-
forms a static analysis, we discuss related works that
do not require to run applications, i.e. static ones.

Authors in (Kinder et al., 2005) introduce the
specification language CTPL (Computation Tree
Predicate Logic) which extends the well-known logic
CTL, and describes an efficient model checking algo-
rithm. They confirm the malicious behavior of thir-
teen Windows malware variants using as dataset a set
of worms dating from the years 2002-2004.

Song et al. (Song and Touili, 2001) present an ap-
proach to model Microsoft Windows XP binary pro-
grams as a PushDown System (PDS). They evalu-
ate 200 malware variants (generated by NGVCK and
VCL32 engines) and 8 benign programs.

The tool PoMMaDe (Song and Touili, 2013) is
able to detect 600 real malware, 200 malware gen-
erated by two malware generators (NGVCK and
VCL32), and proves the reliability of benign pro-
grams: a Microsoft Windows binary program is mod-
eled as a PDS which allows to track the stack of the
program.

Song et al. (Song and Touili, 2014) model mobile
applications using a PDS in order to discovery private

2https://www.csc.ncsu.edu/faculty/jiang/DroidKungFu3/

data leaking. They identify information leak working
at Smali code level.

Jacob and colleagues (Jacob et al., 2010) pro-
vide a basis for a malware model, founded on the
Join-Calculus: the process-based model supports the
fundamental notion of self-replication but also inter-
actions, concurrency and non-termination to cover
evolved malware. They consider the system call se-
quences to build the model.

As emerges from this discussion and at the best
knowledge of the authors, the payload identification
in Android environment proposed in this paper was
never used in any of the works on mobile malware
detection in literature.

3 PRELIMINARIES ON FORMAL
METHODS

In this section we introduce the basic concepts of for-
mal methods. For applying formal methods, we need:
1. A Precise Notation for Defining Systems: Spec-
ification is the process of describing a system. We
assume that the system behaviour is represented as
an automaton. It basically consists of a set of nodes
together with a set of labelled edges between these
nodes. A node represents a system state, while a la-
belled edge represents a transition from one system
state to the next. That is, if the automaton contains an
edge s a−→s′, then the system can evolve from state s
into state s′ by the execution of action a. One state is
selected to be the root state (initial state). However,
for the purpose of mathematical reasoning it is often
convenient to represent the automaton algebraically in
the form of processes. For this aim, we use Milner’s
Calculus of Communicating Systems (CCS) (Milner,
1989), one one of the most well known process alge-
bras. CCS contains basic operators to build finite pro-
cesses, communication operators to express concur-
rency, and some notion of recursion to capture infinite
behaviour. The syntax of processes is the following:

p ::= nil | α.p | p+ p | p|p | p\L | p[ f ] | x
where α ranges over a finite set of actions
A = {τ,a,a,b,b, ...}. Input actions are labeled with
“non-barred” names, i.e., a, while output actions are
“barred”, i.e., a. The action τ ∈ A is called internal
action. The set L ranges over sets of visible actions
(A−{τ}), f ranges over functions from actions to ac-
tions, while x ranges over a set of constant names:
each constant x is defined by a constant definition
x def
= p.

We give the semantics for CCS by induction over
the structure of processes.
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• The process nil can perform no actions.

• The process α.p can perform the action α and
thereby become the process p.

• The process p+q can behave either as p or as q.

• The operator | expresses parallel composition: if
the process p can perform α and become p′, then
p|q can perform α and become p′|q, and similarly
for q. Furthermore, if p can perform a visible ac-
tion l and become p′, and q can perform l and
become q′, then p|q can perform τ and become
p′|q′.

• The operator \ expresses the restriction of actions.
If p can perform α and become p′, then p\L can
perform α to become p′\L only if α,α 6∈ L.

• The operator [ f ] expresses the relabeling of ac-
tions. If p can perform α and become p′, then
p[ f ] can perform f (α) and become p′[ f ].

• Each relabeling function f has the property that
f (τ) = τ.

• A constant x behaves as p if x def
= p.

The operational semantics of a process p is a la-
belled transition system, i.e., an automaton whose
states correspond to processes (the initial state cor-
responds to p) and whose transitions are labelled by
actions in A .
2. A Precise Notation for Defining Properties: This
need can be solved using a temporal logic. Tempo-
ral logics present constructs allowing to state in a for-
mal way that, for instance, all scenarios will respect
some property at every step, or that some particular
event will eventually happen, and so on. A model
checker then accepts two inputs, a system described,
for example, in process-algebraic notations and a tem-
poral formula, and returns “true” if the system sat-
isfies the formula and “false” otherwise. In this pa-
per we use the logic selective mu-calculus (Barbuti
et al., 1999; Santone and Vaglini, ). It was defined
with the goal of reducing the number of states of the
transition systems in such a way that the reduction is
driven by the formulae to be checked, and in partic-
ular by the syntactic structure of the formulae. The
selective mu-calculus is a variant of the mu-calculus
(Stirling, 1989), and differs from it in the definition of
the modal operators. The syntax of the selective mu-
calculus is the following, where K and R range over
sets of actions, while Z ranges over a set of variables:

φ ::= tt | ff | Z | φ∨φ | φ∧φ |
[K]R φ | 〈K〉R φ | νZ.φ | µZ.φ

The satisfaction of a formula φ by a state s of a tran-
sition system is defined as follows:

• each state satisfies tt and no state satisfies ff;

• a state satisfies φ1∨φ2 (φ1∧φ2) if it satisfies φ1 or
(and) φ2.

• [K]R φ and 〈K〉R φ are the selective modal opera-
tors. [K]R φ is satisfied by a state which, for every
performance of a sequence of actions not belong-
ing to R∪K, followed by an action in K, evolves
in a state obeying φ. 〈K〉R φ is satisfied by a state
which can evolve to a state obeying φ by perform-
ing a sequence of actions not belonging to R∪K
followed by an action in K.
One of the most popular environments for veri-

fying concurrent systems is the Concurrency Work-
bench of New Century (CWB-NC) (Cleaveland and
Sims, 1996), which supports several different specifi-
cation languages, among which CCS. In the CWB-
NC the verification of temporal logic formulae is
based on model checking (Clarke et al., 2001).

4 THE METHODOLOGY

In this section we present our methodology for the
detection of Android malware families using model
checking. It is based on two main steps:

Step 1: Java Bytecode-to-CCS Transform
Operator

The first step generates a CCS specification from
the Java Bytecode of the .class files derived by the
analysed apps. This is obtained by defining a Java
Bytecode-to-CCS transform operator T . The func-
tion T directly applies to the Java Bytecode and trans-
lates it into CCS process specifications. The function
T is defined for each instruction of the Java Bytecode.

In the following, a Java Bytecode program P is
a sequence c of instructions, numbered starting from
address 0; ∀i∈{0, . . . , ]c}, and c[i] is the instruction at
address i, where ]c denotes the length of c. All Java
Bytecode instructions have been translated in CCS;
below we will show only a few, just to give the reader
the flavor of the approach followed.

Instruction: c[i] = goto j

T (i) = xi
def
= gotoj.x j

The instruction c[i] = goto j is translated into a CCS
process xi that performs the action gotoj and then
jumps to the instruction j, corresponding to the CCS
process x j.

Instruction: c[i] = tstore x

T (i) = xi
def
= store.xi+1
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Each tstore x instruction is translated, regardless of
the type t and of the name of the variable x, as store
followed by the constant process xi+1 representing the
CCS translation of the successive instruction.

Step 2: Expressing Android Malware Families
into Temporal Logic

The second step aims at discovering android malware
families, expressed in temporal logic. The CCS pro-
cesses obtained in the first step are used to prove prop-
erties: using model checking we determine the detec-
tion of malware families. Codes described as CCS
processes are first mapped to labelled transition sys-
tems and the CWB-NC is used. Different properties
have been defined characterizing the behaviour of the
families.

Table 1 elicits the malicious behaviours for the
analysed families and the resulting translation into
logic rules. Logic rules model the malicious behav-
ior in order to find it in the model.

The distinctive features of this methodology are:
(i) the use of formal methods; (ii) the detection on
Java Bytecode and not on the source code; (iii) the
detection of malicious payloads; (iv) the use of static
analysis; (v) the capture of malicious payloads at a
finer granularity.

In practice, from the Java Bytecode we derive
CCS processes, which are successively used for
checking properties expressing the major character-
istics of a malware family. Moreover, our methodol-
ogy exploits the Bytecode representation of the anal-
ysed apps. Performing Android malware families
detection on the Bytecode and not directly on the
source code has several advantages: (i) independence
of the source programming language; (ii) detection of
malware families without decompilation even when
source code is lacking; (iii) ease of parsing a lower-
level code; (iv) independence from obfuscation.

5 RESULTS AND DISCUSSION

The malware samples used in the evaluation were col-
lected from Drebin project (Arp et al., 2014; Spre-
itzenbarth et al., 2013). Each malware sample is la-
belled according to the malware family: each fam-
ily contains samples which have in common the same
payload.

In the following preliminary study we consider the
DroidKungFu and the Opfake families, 100 samples
for each family. Furthermore, we develop a frame-
work able to inject several obfuscation levels in An-
droid applications: (i) changing package name; (ii)

identifier renaming; (iii) data encoding; (iv) call indi-
rections; (v) code reordering; (vi) junk code insertion.
The reader can refer to (Canfora et al., 2015) for fur-
ther details. We produce the morphed version of the
200 applications: the full dataset is composed by 400
different applications. To highlight the effectiveness
of the proposed solution, we submitted the dataset to
the top 5 ranked mobile antimalware from AVTEST3,
an independent Security Institute for IT.

Table 2 shows the results obtained with Droid-
KungFu and Opfake families and with morphed ver-
sion (DroidKungFuMorph and OpfakeMorph).

We consider only samples identified in the right
family (column ident in Table 2). We also report the
samples detected as malicious but not identified in the
right family and the samples not recognized as mal-
ware (column unident. in Table 2). According to the
research questions, the problem of identifying mali-
cious payload should be a further research direction in
malware analysis. Due to the novelty of the problem,
antimalware are not still specialized in family identi-
fication. For these reasons some antimalware are un-
skilled to detect families. To better understand this
lack see Table 2, in particular the unident. column.

Another problem is that current antimalware are
not able to detect malware when the signature mu-
tates: their performance decrease dramatically with
morphed samples. In order to try to circumvent the
above problems we introduce our methodology and
we discuss preliminary results.

5.1 Empirical Evaluation Procedure

To estimate the performance detection of our method-
ology we compute the metrics of precision and recall,
F-measure (Fm) and Accuracy (Acc), defined as fol-
lows:

PR =
T P

T P+FP
; RC =

T P
T P+FN

;

Fm =
2PR RC
PR+RC

; Acc =
T P+T N

T P+FN +FP+T N

where T P is the number of malware that are correctly
identified in the right family (True Positives), T N is
the number of malware correctly identified as not be-
longing to the family (True Negatives), FP is the
number of malware that are incorrectly identified in
the right family (False Positives), and FN is the num-
ber of malware that were not identified as belonging
to the right family (False Negatives).

3https://www.av-test.org/en/antivirus/mobile-devices/
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Table 1: Families Description and Corresponding Logic Rules.

DroidKungFu Rule (selective mu-calculus formulae)

device rooting
IMEI

OS type
device ID

network type
C&C server

ϕ = ϕ1∨ϕ2∨ϕ3
where:

ϕ1 =〈pushphone〉 /0 〈invokegetSystemService〉 /0
〈checkcastandroidtelephonyTelephonyManager〉 /0
〈invokegetDeviceId〉 /0 tt

ϕ2 =〈pushIMEI〉 /0 〈load〉 /0 〈invokeinit〉 /0 〈invokeadd〉 /0 tt
ϕ3 =〈pushchmod〉 /0 〈invokeinit〉 /0 〈store〉 /0 〈load〉 /0 tt

Opfake Rule (selective mu-calculus formulae)

SMS sending
SMS monitoring

download file
phonebook

ψ = ψ1∨ψ2∨ψ3
where:

ψ1 =〈load〉 /0 〈invokesendTextMessage〉 /0 tt
ψ2 =〈push〉 /0 〈anewarray〉 /0 〈invokegetMethod〉 /0 tt
ψ3 =〈pushsendTextMessage〉 /0 〈load〉 /0 〈invokegetMethod〉 /0 tt

Table 2: Antimalware Evaluation for DroidKungFu, Opfake DroidKungFuMorph and Opfake Morph Families.

AntiMalware DroidKungFu Opfake DroidKungFuMorph OpfakeMorph
ident. unident. ident. unident. ident. unident. ident. unident.

AhnLab 2 98 66 34 0 100 44 56
Alibaba 0 100 0 100 0 100 0 100
Antiy 93 7 96 4 38 62 49 51
Avast 89 11 0 100 24 76 0 100
AVG 4 96 0 100 0 100 0 100

Our Method 87 13 73 27 89 11 73 27

Table 3: Preliminary Performance Evaluation.

TP FP FN TN PR RC Fm Acc
DroidKungFu 87 6 13 94 0.93 0.87 0.90 0.91

Opfake 73 8 27 92 0.90 0.73 0.80 0.83
DroidKungFuMorph 89 1 11 99 0.98 0.89 0.93 0.94

OpfakeMorph 73 8 27 92 0.90 0.73 0.80 0.83

5.2 Preliminary Evaluation

We have implemented a prototype tool and we have
conducted experiments for a proof of concept of our
methodology. Table 3 shows the results obtained us-
ing our prototype tool: we obtain an accuracy ranging
from 0.83 to 0.94.

RQ1 response: Results in Table 2 show that our
method is promising to identify malware payload. We
obtain, when comparing not morphed malware, per-
formance quite in line with top 5 mobile antimal-
ware. Instead, the gap between our approach and the
signature-based detection is broader in the morphed
sample evaluation.

RQ2 response: We outperform the top 5 current
signature-based approach in detecting morphed sam-

ples as shown in Table 2. Instead, when evaluating
not-morphed samples, Antiy achieves better results.

It should be underlined that the method we pro-
pose is robust: Table 3 shows that Accuracy and F-
Measure values are not affected from code obfusca-
tion. It is worth noting that Accuracy and F-Measure
increase in detecting DroidKungFu morphed samples
than not-morphed ones, while they are the same in
evaluating Opfake and OpfakeMorphed samples: this
is the reason why our method is transparent respect
to obfuscation, differently from the antimalware that
dramatically decrease when evaluating morphed sam-
ples.
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6 CONCLUDING REMARKS AND
FUTURE WORK

Since previous works in mobile malware detection fo-
cus on the research in discriminating a malware appli-
cation from a trusted one, in this paper we propose an
approach to localize the malicious behaviour at a finer
grain, i.e., at payload level.

We use model checking in order to test our model
against two of most diffused malware family in An-
droid environment: the DroidKungFu and the Opfake
families. We test in addition the robustness of our
solution generating morphed malware and testing it
using the model. Results seem to be promising: we
identify malicious payloads with a very high accuracy
value and with a reasonable time. This implies that
our methodology is efficient and scalable.

As future work we are going to extend our prelimi-
nary evaluation to other widespread families. Further-
more, we plan to track the phylogenesis of malware to
characterize the payload family tree and to foresee the
possible payload evolution.
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