
A Scalable Architecture for Distributed OSGi in the Cloud

Hendrik Kuijs1, Christoph Reich1, Martin Knahl1 and Nathan Clarke2

1Institute for Cloud Computing and IT Security, Furtwangen University, Furtwangen, Germany
2Centre for Security, Communications and Network Research, Plymouth University, Plymouth, U.K.

Keywords: OSGi Service Architecture, Load Balancing, Distributed OSGi, PaaS Management, SaaS.

Abstract: Elasticity is one of the essential characteristics for cloud computing. The presented use case is a Software as
a Service for Ambient Assisted Living that is configurable and extensible by the user. By adding or deleting
functionality to the application, the environment has to support the increase or decrease of computational
demand by scaling. This is achieved by customizing the auto scaling components of a PaaS management
platform and introducing new components to scale a distributed OSGi environment across virtual machines.
We present different scaling and load balancing scenarios to show the mechanics of the involved components.

1 INTRODUCTION

The average life expectancy in developed coun-
tries world-wide is increasing continuously while the
birth-rate at the same time is declining (United Na-
tions, 2001). This leads to a decreasing proportion
of the young working population: Families are get-
ting smaller in general and are no longer able to care
for their elderly relatives, like extended families once
used to do. On the other hand, the traditional concept
of extended families gets replaced by welfare models
and pension systems. Politics try to support this trend
by introducing programs for new nursing or day-care
facilities, but there is a still a lack of trained personnel
and the progress of expansion is still slow.

With the goal to reduce the workload upon profes-
sional care personnel and facilities, Ambient Assisted
Living (AAL) is seen as a possible solution. AAL
is defined as transformation of the known living en-
vironment of the elderly people and people in need
of help by new technological concepts to assist both
the caring person and the person needing care. This
means that people are enabled to live at home longer,
which is an often desired effect (Grauel and Speller-
berg, 2007).

Existing AAL platforms extend the concepts of
smart-home environments combining input-devices
like sensors, user-interfaces or cameras and output-
devices like alarms, emergency call functionality,
databases or graphical user interfaces. All devices
are connected by a configurable middleware and all
components including the compute-power have to be

installed in the user’s living environment. This ex-
isting computing equipment has to be renewed or ex-
tended, if new demanding services are introduced into
the AAL environment.

Therefore we are focusing on delivering cloud
based services for AAL. Service providers (e.g., care
givers or day care facilities) should be able to deliver
services without the need for investing in expensive
technical equipment in advance. With cloud com-
puting, the high start-up costs can be reduced signifi-
cantly for service providers and it will be feasible for
users to try out new or innovative services without
the need of a high investment. Giving AAL service
providers a dynamic load balanced, managed, easy
provisioned and easy to use AAL service platform
hosted in the cloud to be deployed on demand is a
highly desirable goal.

This flexibility can be provided by a customizable
Platform as a Service (PaaS) that is run by the AAL
platform provider for the AAL service provider and
used as Software as a Service (SaaS) by the end user.

The security and privacy enhanced cloud infras-
tructure for AAL (speciAAL) focuses on deliver-
ing personalised and adapted services for informa-
tion, communication and learning. It is based on the
project Person Centered Environment for Information
Communication and Learning (PCEICL) (Kuijs et al.,
2015) which is developed in the Collaborative Cen-
tre for Applied Research on Ambient Assisted Living
(ZAFH-AAL, 2014). The PaaS is considered to run
in a private cloud, as adaptation of the system to the
user’s need is heavily based on personal user data.

Kuijs, H., Reich, C., Knahl, M. and Clarke, N.
A Scalable Architecture for Distributed OSGi in the Cloud.
In Proceedings of the 6th International Conference on Cloud Computing and Services Science (CLOSER 2016) - Volume 2, pages 109-117
ISBN: 978-989-758-182-3
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

109

SpeciAAL is based on OSGi (OSGi Alliance, b):
OSGi supports installing, starting and stopping soft-
ware bundles during runtime. By introducing tools
for managing and resolving of dependencies between
bundles, the application can be extended or updated
during runtime without the need to restart the whole
environment. OSGi has also been chosen, since it is a
seen as a standard technology for Smart Home envi-
ronments and AAL platforms (OSGi Alliance, a).

With this paper we are focusing on the scaling and
load balancing process in the PaaS layer for speci-
AAL. As speciAAL is a customizable and extensible
application, we present a way of horizontal scaling
of an OSGi environment based on distributed OSGi
(DOSGi). New mechanics and modules in the PaaS
layer are introduced to support the scaling process for
the SaaS layer.

In Section 2 we describe different concepts of
scaling in cloud environments and the basis of dis-
tributed OSGi. Related Work in the field of AAL and
scaling OSGi applications in cloud environments is
presented in Section 3. Section 4 gives an overview
of the architecture for speciAAL and its main con-
cepts. Components that have to be adopted to sup-
port the load balancing approach for speciAAL are
described in Section 5. To show the main function-
ality of load balancing in speciAAL we present four
common scenarios in Section 6, followed by the con-
clusion in Section 7.

2 SCALING AT IaaS, PaaS AND
SaaS

The main idea of the presented architectural approach
is to provide a platform for OSGi applications in the
cloud. When leveraging services to the cloud it is of-
ten required to have the ability to scale resources ac-
cording to the computational demand.

At an Infrastructure as a Service (IaaS) provider
scaling can be achieved by providing bigger or
smaller virtual machines (VMs) in terms of computa-
tional power or memory resources, by providing big-
ger or smaller storage nodes or by load balancing net-
work traffic among different VMs or with different
priority.

At the SaaS level scaling is often achieved by load
balancing requests between more or fewer nodes of
the same application. For this the application has to
be either stateless, has to provide synchronized states
among all instances of the application or has to store
its current state on client side (which is often done in
web-application sessions).

PaaS management organizes scaling on the IaaS

(vertically) and SaaS level (horizontally) and is often
used to automate the scaling process. The AAL ser-
vice developer wants to use the scaling service from
the PaaS to develop and provide an AAL service to
the customer.

Strictly speaking PaaS just provides platforms for
development or deployment (Mell and Grance, 2011).
One scaling scenario would be to request a bigger
platform to test or run an application. This would
translate to a bigger VM on the IaaS level. To ad-
dress user load, a scaling scenario would be to start
new nodes of the same application behind a load bal-
ancing infrastructure on high demand or to stop the
nodes when there is a decline of demand for the ap-
plication. This would trigger the SaaS scaling like
explained before and also be coordinated by the PaaS
management environment.

The focus of this approach lies on the demand
of a growing modular application on the computa-
tional resources itself. By adding more functionality
to the modular application, the provided environment
on one platform node can get too small with respect
to memory or CPU power. The presented research
supports this scenario by scaling out horizontally to
being able to put the new module on a new node in a
distributed OSGi platform (see Fig. 1).

Figure 1: Horizontal Scaling with Distributed OSGi.

In a distributed OSGi environment, different
OSGi VMs and their running bundles are connected
to each other to compose one big OSGi environment
by imports and exports of endpoints. Communication
between the different nodes is usually done by call-
ing HTTP interfaces. The OSGi Core Specification
4.3 (OSGI Alliance, 2011) introduces the main con-
cept of distributed OSGi but does not recommend a
specific way of implementation for the required com-
ponents and functionality.

As shown in figure 2, a Provider Bundle in Node
1 exports an OSGi service as an interface by us-
ing additional service properties (e.g., which interface
is accessible remotely). This interface is registered
at the Distribution Provider within the node and an
Endpoint for a remote call of the service is created.
Through a Discovery Service this existing Endpoint
is announced at the Distribution Provider of the re-
mote node, where the Distribution Provider creates a

CLOSER 2016 - 6th International Conference on Cloud Computing and Services Science

110

Figure 2: Basic Functionality of Distributed OSGi (based
on (Apache Software Foundation, 2015b)).

Proxy for the remote service. This Proxy can be im-
ported by a Consumer Bundle like a locally deployed
bundle. The Proxy and Endpoint provide the imple-
mentation for remote message exchange.

The OSGi Compendium Specification 4.3 (OSGi
Alliance, 2012) splits the Distribution Provider into
several modules, to make it possible to enhance or ex-
change parts of the Distribution Provider. The Dis-
covery module notifies Endpoint Listeners upon de-
tection of available Remote Endpoints. The Topology
Manager uses also an Endpoint Listener to monitor
remote OSGi services and is able to monitor locally
available OSGi services. The creation and destruction
of Endpoints and Proxies is delegated to the Remote
Service Admin module.

The project Apache CXF (Apache Software Foun-
dation, 2015b) has implemented these components
in a framework to support distributed OSGi in sev-
eral specification compliant OSGi platforms (e.g.,
Equinox, FELIX or Knopflerfish). The Discovery
module is implemented with an Apache Zookeeper
server (Apache Software Foundation, 2015), to dis-
cover and announce endpoints in a highly dynamic
environment.

3 RELATED WORK

Existing platforms in the field of AAL are mainly
focused on delivering customizable middleware for
smart home environments and the whole comput-
ing power has to be installed in the living environ-
ment of the end-user himself. Example projects are
SOPRANO (Balfanz et al., 2008), AMIGO (Janse,
2008), ProSyst (Petzold et al., 2013) and universAAL
(Sadat et al., 2013) that are providing middleware
based on OSGi. They introduce techniques (e.g., soft-
ware agent platforms) to gather user data, do reason-
ing based on ontologies and recognize events or inci-
dents that lead to corresponding system reactions.

The projects that introduce cloud functionality are

few and use the cloud-services for specific problems:
A platform approach to share health data in the cloud
in a secure way is presented by Kim et al. (Kim et al.,
2012). The patient-centric solution is entirely gov-
erned by the patient and provides strong security and
privacy characteristics. Health data can be shared be-
tween hospitals, trained care-personnel or relatives to
indicate changes in the health conditions amongst the
different support groups of the user.

The extensible OSGi-based architecture of
Ekonomou et al. (Ekonomou et al., 2011) is fo-
cused on the integration of new devices by using a
cloud-based service for discovering drivers for highly
heterogeneous smart home systems in a manual,
semi-automatic and automatic way.

The project Cloud-oriented Context-aware Mid-
dleware in Ambient Assisted Living (CoCaMAAL)
(Forkana et al., 2014) uses cloud services for the con-
text generation and classification of incidents. Data of
installed sensors and devices in the smart living envi-
ronment is gathered by a Data Collector on-site and
transferred to a context aggregator in the cloud that
sends back appropriate actions which are performed
inside the users environment.

AIOLOS (Verbelen et al., 2012), a framework
for scalable component-based cloud applications, fo-
cuses on offloading demanding tasks from mobile de-
vices to remote VMs. The middleware based on OSGi
uses Remote Endpoints to achieve this functionality.
However, automatic scaling of the provided environ-
ment is so far not discussed in this approach.

Paul Bakker and Bert Ertman describe a way how
to build a modular cloud app with OSGi (Bakker and
Ertman, 2013). They use Amdatu (Amdatu, 2015) as
a tool to provide the needed functionality for enabling
OSGi applications to work on the SaaS layer (e.g.,
RESTful webservices, support for NoSQL-DBs) by
being able to scale horizontally across nodes. To man-
age this scalability they use Apache ACE (Apache
Software Foundation, 2015a) as a deployment-tool
in conjunction with the auto scaling (Amazon Web
Services, 2015a) and elastic load balancing (Amazon
Web Services, 2015c) provided by Amazon AWS in
the IaaS layer. This setup is used by PulseOn (Lumi-
nis, 2015), an e-learning application that is deployed
with different compositions of functionality to differ-
ent schools in the Netherlands and worldwide. The
scaling is done by adding more nodes of the same
application during periods where there is higher load
(e.g., during school hours).

Although many concepts for OSGi applications in
the cloud and programming guidelines of Bakker and
Ertman can be applied to the SaaS layer of speciAAL,
their concept differs from the presented approach of

A Scalable Architecture for Distributed OSGi in the Cloud

111

scaling the environment by adding nodes to a single
combined distributed environment.

4 ARCHITECTURE OF speciAAL

Figure 3 shows an overview of the speciAAL archi-
tecture. The architecture is divided into three lay-
ers: The IaaS layer, the PaaS layer including the Paas
Manager and the SaaS layer. To explain the details of
each layer, the different components are described in
the following subsections.

4.1 IaaS Layer

The IaaS layer is considered to be an Private Cloud
infrastructure provider (e.g., an OpenStack installa-
tion hosted at the institution) or a Public Cloud infras-
tructure provider (e.g., Amazon AWS, Rackspace).
IaaS providers support starting and stopping virtual
machines based on specified VM templates (com-
pute power and storage services), network routing ser-
vices, database and persistent datastore services, ac-
counting services and monitoring.

The IaaS layer is controllable through command
line tools (Amazon Web Services, 2015b) or API
calls (The OpenStack project, 2015) to manage nodes
based on decisions made in the PaaS layer. To be able
to control different APIs of different IaaS providers
there are tools, that wrap the system specific or ven-
dor specific API for being able to exchange the IaaS
infrastructure based on different service requirements.
jClouds (Apache Software Foundation, 2015d) or
BOSH (Cloud Foundry, 2015) try to standardize the
usage of Cloud infrastructure APIs.

4.2 PaaS Layer

Open PaaS management systems simplify the provi-
sioning of developed applications (Apache Software
Foundation, 2015c; Linux Foundation Collaborative
Projects, 2015). It reduces deployment time of a plat-
form or a framework needed to run an application.
For this the PaaS management systems can be config-
ured to certain environments (e.g., PHP, JVM, Ruby,
OSGi) that are ready to be started and used by appli-
cation developers. This can reduce deployment time
for the developer or the system operator and therefore
also cost for the company they work in. Open PaaS
management should be IaaS provider independent to
enable provisioning of platforms on different IaaS en-
vironments like OpenStack, Open Nebula or Ama-
zon AWS. The presented PaaS layer architecture is

based on Apache Stratos (Apache Software Founda-
tion, 2015c) and customized with components needed
to provide horizontal scaling of distributed OSGi.

The Manager (see Fig. 3) is the central compo-
nent for interacting with the PaaS environment. The
Manager provides a UI or console line interface (CLI)
for registered PaaS users. It holds information for
available platform environments, scaling and deploy-
ment policies and is the central component to deploy
environments or load balancers. The Manager pro-
vides tools for multi-tenancy: virtual computing re-
sources and platform environments can be adminis-
tered and shared among PaaS users, for deploying the
applications, but also divided to provide specialized
platforms or set different resource limits to various
developer groups.

The Cloud Controller component communicates
with the IaaS infrastructure and holds all the topol-
ogy information of the PaaS system. The communi-
cation with the IaaS layer is done through an imple-
mentation layer and can be provided by the aforemen-
tioned jClouds. This makes the API of the IaaS layer
accessible to the PaaS layer and allows management
of different VMs or other service functionality (e.g.,
network routing) of the IaaS provider. All informa-
tion retrieved from the IaaS is stored in the topology
configuration at the Cloud Controller and can be pub-
lished to other components that need to be aware of
changes in the topology of the PaaS system. Exam-
ples for components where topology data is crucial
information to work properly are the Load Balancer
or the Distribution Coordinator component.

The Distribution Coordinator holds a set of de-
ployable artifacts to update the deployed platforms.
This component can also be used to automate the de-
ployment process for the complete application on all
subscribed running nodes. The artifacts are usually
received from a connected repository service and de-
ployed based on deployment policies, by events trig-
gering the deployment or by manual commands to the
Manager component. The Distribution Coordinator
is triggered on start-up of a new node and is consid-
ered to hold all nodes of the same type at the same
deployment state by the concept of deployment syn-
chronization.

To take advantage of the possibility to add and re-
move computational resources to or from an applica-
tion or distributed environment, the Auto Scaler com-
ponent evaluates load and health information of the
Complex Event Processor based upon policies (e.g.,
deployment policies or scaling policies). This eval-
uation is executed by a rule engine and applied ac-
cording to the current topology retrieved from the
Cloud Controller component. The information ex-

CLOSER 2016 - 6th International Conference on Cloud Computing and Services Science

112

Figure 3: Distributed OSGi PaaS for speciAAL.

change between components is realized by a Mes-
sage Broker component and a message bus based on
a publish/subscribe pattern. This pattern enables the
PaaS system to add or remove components (e.g., load
balancers) dynamically by preserving the information
exchange between components.

The Nodes (or Cartridges) are the actual envi-
ronment in which the application is running. They
are started, stopped and registered by the Cloud Con-
troller module. In modern PaaS Management systems
the focus lies on fast deployment of a completed ap-
plication to a cloud node. For this purpose the Dis-
tribution Coordinator is able to provision the whole
application out of its repository into an new node and
to keep existing nodes up to date. In the presented
approach this task is reduced to deploying just the
environment and the minimum required components
for setting up the initial bundles of the application in
a distributed OSGi environment. The deployment of
new functionalities is later triggered by functionality
in the SaaS layer. This leads to a flexible and ex-
tendible application that is able to interact with the
PaaS layer.

The Service Discovery is integrated in the PaaS
layer but directly connected to the SaaS layer to trans-
late the currently active application topology to co-
ordinated actions in the PaaS layer. It is further de-
scribed in section 5.

The Installation Coordinator is a new concept for
the speciAAL architecture. It is able to receive in-
stallation requests out of the SaaS layer and evaluate
the best place for installing a new functionality in the
distributed environment of the application. Its main
characteristics are detailed in section 5 and the pro-

cess of installation is explained in section 6.
The Privacy Monitoring Module is able to collect

log-data of actions within the SaaS layer and gener-
ating reports according to privacy policies and data
access policies. The detailed architecture of this com-
ponent is still work in progress and at this point it is
shown for completeness.

4.3 SaaS Layer

In the presented approach the SaaS layer provides ser-
vices for the platform speciAAL in a distributed OSGi
environment. All running bundles are added up to one
adapted application for the user with the functionali-
ties configured to his needs. It consists of system bun-
dles, core bundles and configurable application bun-
dles.

The system bundles are part of the environment
and provide general services for distribution (e.g.,
DOSGi bundles for Apache CXF), discovery (e.g.,
bundles for communication with Apache Zookeeper)
and monitoring.

The core bundles are part of the application and
provide core functionalities, like an Web-Interface,
an Address Book, Communication bundles for Smart-
Home Control and Sensors or a Customizing bundle.

The configurable application bundles are individ-
ually chosen by the user and installed via a Bundle
Store. These bundles can be installed and configured
during runtime and also have the ability to adapt to
user behavior (Fredrich et al., 2014). They can be
compared to apps on a smart phone, that can be in-
stalled, tested and also deleted if they do not provide
a desired functionality.

A Scalable Architecture for Distributed OSGi in the Cloud

113

5 LOAD BALANCING IN
speciAAL

In figure 3 some components are marked as “speci-
AAL” components: The Cloud Controller, Distribu-
tion Coordinator, Auto Scaler, Installation Coordina-
tor and Service Discovery. These components have to
be adopted to provide the required functionality in or-
der to provide the distributed load balancing approach
for speciAAL as described in section 4.

Figure 4: Auto Scaling in Apache Stratos.

In Apache Stratos scaling is achieved by creating
or destroying instances (so called cartridge instances)
of an application (Fig. 4): A real time event pro-
cessor receives statistical information (e.g., requests
or failed requests) of the Load Balancer component
and the health status (e.g., load average, memory
consumption or request count) of the running car-
tridge instances. This data is evaluated, summarized
and published to a Health Stats topic in the Message
Broker. The Auto Scaler receives this information
and decides, backed by a Rule Engine, whether new
nodes are needed or existing nodes are expendable.
The Auto Scaler then sends a request to the Cloud
Controller to create or destroy instances. After the
performed action the altered topology information is
published to the Message Broker and the Load Bal-
ancer is updated with the new topology.

One simple solution to provide horizontal scaling
for a distributed OSGi environment would be, to work
with small nodes and put each new part of the ap-
plication on a single node. On installation of a new
functionality the environment would be extended by
a node and the corresponding bundles would be de-
ployed on the started node. It would then be easy
to delete the functionality by simply destroying the
node. However, this would lead to a fragmented en-
vironment and unbalanced resource use across the
application. The presented approach is focusing on
making use of the available computational resources
of one node before extending the environment by
adding another node.

For speciAAL the Distribution Coordinator, Ser-
vice Discovery and Installation Coordinator have to
be added to the work flow of auto scaling (see Fig. 5):

Analogous to the Cloud Controller holding the
topology of VMs and network interfaces on the PaaS
and IaaS layer, the Service Discovery holds the topol-
ogy for all of the distributed services in the SaaS layer.
On creation of a new node for the distributed OSGi
environment, it is getting contacted by a previously
configured startup script and the new node and fur-
ther installed services will be updated in the topology
and service registry.

Furthermore, the Service Discovery is also mon-
itoring the availability of the registered remote ser-
vices on the node: If the node is deleted it will also
de-register the node and all formerly running remote
services on this missing node.

Figure 5: Auto Scaling in speciAAL.

The Distribution Coordinator has to configure and
setup a new node after starting to provide the required
services to integrate the node in the distributed envi-
ronment. As described before it has the capability to
keep the nodes on the same patch-level (distribution
synchronization) and is able to push configuration up-
dates as well (e.g., on what address or port a node is
able to contact the Service Discovery). For speciAAL
the Distribution Coordinator is used to set up the ini-
tial environment with all services that are needed for
the application for configuration by the end user (e.g.
authentication bundle, database access agent bundle,
web interface bundle and a installation wizard bun-
dle). Later the Distribution Coordinator provides ad-
ditional nodes that are stripped down to only provide
the minimal configuration for extending the platform
as a distributed OSGi environment.

The Installation Coordinator plays a central role
in this setup as it enables for detailed decisions where
to install a new service. Before the bundle installa-
tion is performed, load information on the nodes is
evaluated and based on this different actions are ex-

CLOSER 2016 - 6th International Conference on Cloud Computing and Services Science

114

ecuted: If the nodes are able to run another service,
it receives the information where (on which node) to
install the new bundle in the distributed environment.
If the nodes are on a load limit, it triggers the exten-
sion of the environment by a new node and receives
the information to install the bundle on the newly pro-
visioned node.

To further broaden the basis for these decisions,
the Complex Event Processor has to be extended
to collect information from inside the distributed
OSGi environment (e.g., request/response time be-
tween servers and services) as well as from the Ser-
vice Discovery component (e.g., registration or de-
registration of services and nodes).

6 SCENARIO-BASED
EVALUATION

The auto scaling during operation is influenced by
two main aspects: User triggered events or monitor-
ing events. If a user adds a new functionality to the
platform or deletes an existing functionality from the
platform, the Auto Scaler component has to decide
whether a rebalancing of nodes has to be performed.
Besides this, monitoring events, like high load, low
load or health issues, are gathered at the Complex
Event Processor and can lead to a reevaluation at the
Auto Scaler component. In addition, there is load bal-
ancing during deployment time as well.

To show the systems flexibility, we describe the
starting situation, occurring events and the involved
components of the system.

6.1 Setting up the Application

If a new end-user wants to use speciAAL, a new PaaS
environment is created. This means, that the basis
template is deployed by the Deployment Coordinator
to a newly created VM by the Cloud Controller. This
action is triggered by the Manager and the node will
be already enabled for the distributed environment.
Although there is just one node in the beginning, the
Service Discovery has to be active and the node has
to be registered for being able to access remote ser-
vices later on. The new environment is created with
the goal to give each user (e.g., an elderly person) an
isolated, customizable and adoptable environment.

6.2 Installing a New Service

When the user wants to add a new service to the ap-
plication, the installation request is sent to the Instal-
lation Coordinator. The Installation Coordinator in-

forms the Complex Events Processor which combines
the request with the current health and load informa-
tion of the nodes and triggers the evaluation process
of the Auto Scaler. Based on the rules engine, the
decision-making can lead to one of the two results:
• There are still resources available on a specific

node. This information is sent back to the Instal-
lation Coordinator and the bundle installation is
performed on the specified node. On start of the
new bundle, exported services are registered by
the Service Discovery and can be used by other
services or the end-user.

• All nodes are exceeding a defined threshold and
the new functionality is likely to exceed the com-
putational resources of a node. The Auto Scaler
requests an additional node (VM) at the Cloud
Controller. After the node is started, the Deploy-
ment Coordinator gets an updated topology infor-
mation and deploys the extension template to the
new node. After the new node is registered at the
Service Discovery, the Installation Coordinator is
updated to install the requested bundle on the new
node. After deploying and starting the bundle,
the exported services are registered by the Service
Discovery and can be used by other services or the
end-user.

6.3 Removing an Existing Service

If an end-user decides to remove a certain functional-
ity out of his application, the associated bundles that
are no longer needed by other services are stopped
and removed. This triggers the de-registration in the
Service Discovery and the exported remote services
are no longer present in the system.

One special case to this scenario is when the last
exported remote service on a node is deleted. This
may indicate an orphaned node that might as well be
deleted. To verify this sufficient condition, the current
set of bundles on the node has to be compared to the
set of bundles of a node extension template with only
the vital services for distribution.
• If the set is the same, the node is removed from

the distributed environment by simply deleting the
VM on the IaaS level by the Cloud Controller.

• Otherwise, no further actions are required at this
phase and the node will be re-evaluated in the sce-
nario “Low Load” (see Section 6.5).

6.4 High Load

At first this scenario does not differ from the auto scal-
ing mechanism of Apache Stratos (see section speci-
aal). One node is monitored as having high cpu load,

A Scalable Architecture for Distributed OSGi in the Cloud

115

memory swapping or long running requests. The Auto
Scaler triggers the creation of a new node at the Cloud
Controller and it is deployed as extension node by
the Deployment Coordinator. As Apache CXF has
the ability to monitor request/response times on a ser-
vice level inside the OSGi environment, this is used in
a second step to get an estimation, what bundles are
causing the overload this time.

As the new node is started up and registered bun-
dles are “moved” to the new node. This is realized by
duplicating bundles at first on the new node and delet-
ing the bundles on the busy node afterwards to make
sure, that a remote service to handle the requests is
always available in the environment.

There are two conceivable strategies to move ser-
vices from a node with high load:

• Moving the service that is detected as causing the
high load. This can mean that the long running
requests are prohibiting the service from stopping
and the moving scenario will take longer than ex-
pected.

• Freeing up resources on the node by moving other
services that are not causing the high load. This
will leave the problematic service untouched and
running but is not helpful if the service is crashed
and producing the high load (e.g., by continuously
looping).

6.5 Low Load

The opposite situation is too much idle time for one
node in the environment. The environment can then
be consolidated to fewer nodes. But before a node
is ready to be deleted we have to provide a way for
reassuring that all needed services are migrated: As
the Service Discovery knows what remote services are
running on a specific node, the according OSGi bun-
dles have to be started on a different node prior to
stopping the services on the node that is to be deleted.

The other information that is crucial is, from
which node to which other node the migration of ser-
vices is applied. There are different requirements that
have to be considered for the migration of services:

• For the migration scenario there have to be at
least two nodes with low load. If it is just one
node and the services are consolidated on another
node with medium load, this can lead to a higher
than expected load on the target. In this case, the
“High Load” scenario would be triggered, and this
would lead to another migration in the opposite
direction.

• The definition of threshold for low load should be
set low enough, that it is viable to consolidate the

two nodes into one.

If the Complex Event Processor gets notice of two
nodes with low load, it triggers the consolidation pro-
cess on the Installation Coordinator. This is applied
the same way like in the High Load scenario: The
corresponding bundles have to be started on the tar-
get node, before the bundles can be stopped and dein-
stalled on the source node. After the last remote ser-
vice is de-registered from the Service Discovery the
node is ready for deletion and can be shut down and
removed by the Cloud Coordinator.

7 CONCLUSIONS

We presented an architecture of a PaaS Management
platform for speciAAL, a SaaS scenario based on dis-
tributed OSGi. The main focus of the architecture
lies on simplified deployment of the application and
on elasticity of the distributed OSGi environment by
utilizing the IaaS layer functionalities and monitoring
the SaaS layer events.

These events and collected statistics can be used
to do load-balancing during deployment and opera-
tion of the application. This paper presented the main
functionality and the components that are involved in
the load-balancing and auto scaling process and de-
fined the differences that have to be considered when
scaling an application in a distributed environment.

In the scaling process, there are still particulari-
ties that have to be further examined: Should there
be a migration of services based on a mobility strat-
egy (e.g., are there sets of services that have to remain
on the same node?) or policy (e.g., some services are
not allowed to leave a node, because it is the primary
configuration node or the first/last of the application).

Another challenge will be if it is viable to com-
bine load balancing during deployment (applied to
the IaaS layer) with load balancing of requests by
multiplying the involved bundles on the platform and
redirecting requests between exported services. A
mechanism for failover-handling backed by the Ser-
vice Discovery and common OSGi mechanics is an-
other interesting topic for future research.

REFERENCES

Apache Software Foundation (2015). ZooKeeper: Be-
cause Coordinating Distributed Systems is a Zoo.
https://zookeeper.apache.org/doc/r3.5.1-alpha/.

Amazon Web Services (2015a). Auto Scaling.
https://aws.amazon.com/de/autoscaling/.

CLOSER 2016 - 6th International Conference on Cloud Computing and Services Science

116

Amazon Web Services (2015b). AWS Com-
mand Line Tools. http://docs.aws.amazon.
com/general/latest/gr/GetTheTools.html.

Amazon Web Services (2015c). Elastic Load Bal-
ancing - Cloud-Load Balancer. https://aws. ama-
zon.com/de/elasticloadbalancing/.

Amdatu (2015). Amdatu – Philosophy.
http://www.amdatu.org/philosophy.html.

Apache Software Foundation (2015a). Apache ACE.
https://ace.apache.org/.

Apache Software Foundation (2015b). Apache CXF –
Distributed OSGi. https://cxf.apache.org/distributed-
osgi.html.

Apache Software Foundation (2015c). Apache Stratos -
Open Enterprise PaaS. http://stratos.apache.org/.

Apache Software Foundation (2015d). jclouds - The Java
Multi-Cloud Toolkit. https://jclouds.apache.org/.

Bakker, P. and Ertman, B. (2013). Building Modular Cloud
Apps with OSGi. O’Reilly Media, 1 edition.

Balfanz, D., Klein, M., Schmidt, A., and Santi, M. (2008).
Partizipative Entwicklung einer Middleware für
AAL-Lösungen: Anforderungen und Konzept am
Beispiel SOPRANO. In GMS Medizinische Infor-
matik, Biometrie und Epidemiologie, volume 4(3),
http://www.egms.de/static/de/journals/mibe/2008-4/
mibe000078.shtml.

Cloud Foundry (2015). bosh. https://bosh.cloud
foundry.org/.

Ekonomou, E., Fan, L., Buchanan, W., and Thüemmler,
C. (2011). An Integrated Cloud-based Healthcare In-
frastructure. In Third IEEE International Conference
on Cloud Computing Technology and Science, pages
532–536. IEEE Computer Society.

Forkana, A., Khalil, I., and Tari, Z. (2014). CoCaMAAL:
A cloud-oriented context-aware middleware in ambi-
ent assisted living. In Fortino, G. and Pathan, M.,
editors, Future Generation Computer Systems, vol-
ume 35, pages 114–127.

Fredrich, C., Kuijs, H., and Reich, C. (2014). An ontol-
ogy for user profile modeling in the field of ambient
assisted living. In Koschel, A. and Zimmermann, A.,
editors, SERVICE COMPUTATION 2014, The Sixth
International Conferences on Advanced Service Com-
puting, volume 5, pages 24–31. IARIA.

Grauel, J. and Spellerberg, A. (2007). Akzeptanz neuer
Wohntechniken für ein selbstständiges Leben im Al-
ter. In Zeitschrift für Sozialreform, volume Heft 2 Jg.
53, pages 191–215.

Janse, M. D. (2008). AMIGO - Ambient Intelligence for the
networked home environment. Final activity report.

Kim, J. E., Boulos, G., Yackovich, J., Barth, T., Beckel,
C., and Mosse, D. (2012). Seamless Integration of
Heterogeneous Devices and Access Control in Smart
Homes. In Eighth International Conference on Intel-
ligent Environments.

Kuijs, H., Rosencrantz, C., and Reich, C. (2015). A
Context-aware, Intelligent and Flexible Ambient As-
sisted Living Platform Architecture. In Cloud Com-
puting 2015: The Sixth International Conference on
Cloud Computing, GRIDs and Virtualization. IARIA.

Linux Foundation Collaborative Projects (2015). Cloud
Foundry — The Industry Standard For Cloud Appli-
cations. https://www.cloudfoundry.org/.

Luminis (2015). PulseOn - Personalized Learning — Max-
imizing human potential through personalized learn-
ing. http://www.pulseon.nl/en/.

Mell, P. and Grance, T. (2011). The NIST Definition of
Cloud Computing. Special Publication 800-145, Na-
tional Institute of Standards and Technology.

OSGi Alliance. Smart home market. http://www.osgi.org/
Markets/SmartHome.

OSGi Alliance. The OSGi Architecture. http://www.
osgi.org/Technology/WhatIsOSGi.

OSGI Alliance (2011). OSGi Service Platform Core Speci-
fication. Technical Report Release 4, Version 4.3, The
OSGi Alliance.

OSGi Alliance (2012). OSGi Service Platform Service
Compendium. Technical Report Release 4, Version
4.3, The OSGi Alliance.

Petzold, M., Kersten, K., and Arnaudov, V.
(2013). OSGi-based E-Health / Assisted Liv-
ing. Whitepaper, ProSyst, http://www.prosyst.
com/fileadmin/ProSyst Uploads/pdf dateien/
ProSyst M2M Healthcare Whitepaper.pdf.

Sadat, R., Koster, P., Mosmondor, M., Salvi, D., Girolami,
M., Arnaudov, V., and Sala, P. (2013). Part III: The
universAAL Reference Architecture for AAL. In Sa-
dat, R., editor, Universal Open Architecture and Plat-
form for Ambient Assisted Living. SINTEF.

The OpenStack project (2015). Application Programming
Interfaces. http://developer.openstack.org/.

United Nations (2001). World Population Ageing:
1950-2050. Report, UN: Department of Eco-
nomics and Social Affairs - Population Division,
http://www.un.org/esa/population/publications/wolda
geing19502050/.

Verbelen, T., Simoens, P., Turck, F. D., and Dhoedt, B.
(2012). Aiolos: Middleware for improving mobile ap-
plication performance through cyber foraging. Jour-
nal of Systems and Software, 85(11):2629 – 2639.

ZAFH-AAL (2014). ZAFH-AAL - Zentrum für ange-
wandte Forschung an Hochschulen für Ambient As-
sisted Living. http://www.zafh-aal.de.

A Scalable Architecture for Distributed OSGi in the Cloud

117

