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Abstract: Identification of attack-prone entities is a crucial step toward improving the state of information security in
modern software based systems. Recent work in the fields of empirical software engineering and defect predic-
tion show promise toward identifying and prioritizing attack prone entities using information extracted from
software version control repositories. Equipped with knowledge of the most vulnerable entities, organizations
can efficiently allocate resources to more effectively leverage secure software development practices, isolating
and expunging vulnerabilities before they are released in production products. Such practices include security
reviews, automated static analysis, and penetration testing, among others. Efficiently focusing secure devel-
opment practices on entities of greatest need can help identify and eliminate vulnerabilities in a more cost
effective manner when compared to wholesale application for large products.

1 INTRODUCTION

Current trends toward an increasingly connected
world highlight the need for improved security and
privacy. In the commercial sector, the cost of improv-
ing security competes directly with the cost of feature
development. Therefore, cost effective approaches
for vulnerability identification, prioritization, and re-
moval are needed in order to improve software secu-
rity.

Our research looks to prediction models to help
identify attack-prone software components and selec-
tively prioritize the application of secure development
practices for vulnerability removal. Our goal is to bet-
ter facilitate the adoption and application of secure de-
velopment practices(e.g., review, static analysis, and
penetration testing) in industry by improving the ef-
ficiency and effectiveness of their application. First,
we seek to reduce the vulnerability search space in a
given software product by correctly predicting mod-
ules and files containing exploitable vulnerabilities.
Second, we further consider the practical question of
how to rank prediction results. Inspired by existing
research from defect and vulnerability prediction, we
are researching the feasibility of using historical and
architectural metrics from maintainability literature
for both identification and prioritization.

Key intuitions guiding our research are based
on the reality that modern software based products

evolve over time and are composed of different sub-
components of varying maturity. In addition, each of
those sub-components may be modified by multiple
developers with varying knowledge of the system as
a complete product. As a consequence, we might
expect that unintended side effects are more likely
to result when modifying modules already exhibiting
poor maintainability. For example, we might expect a
higher probability of introducing unintended side ef-
fects when several scattered changes are rapidly made
to tightly coupled modules with poor encapsulation.

2 BACKGROUND

The majority of attacks on modern connected sys-
tems can be traced in one way or another to soft-
ware defects, and in particular, residual vulnerabil-
ities. Residual vulnerabilities are by definition de-
fects that escape detection and persist in released soft-
ware. Such vulnerabilities range, in both complexity
and severity, from a simple coding error of varying
impact, all the way to some fundamental design flaw
with far reaching implications (e.g., complete lack of
authentication). Because residual vulnerabilities es-
cape detection during development, several experts
have suggested integrating additional secure software
development practices into the software life cycle to
excise these vulnerabilities prior to production re-
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lease. Popular secure development practices include,
but are not limited to, scanning code with automated
static analysis tools, performing security reviews (for
designs and code), adding additional security-focused
tests, as well as carrying out penetration tests.

The sheer size of many modern systems means
that finding a single defect among thousands, or even
millions, of lines of code is like trying to find the
proverbial “needle in a haystack”. For example, static
analysis tools have shown promise toward identifying
commonly repeated coding errors, but the sheer size
of many systems result in thousands of tool warnings.
The ensuing task of verifying (or “triaging”) these
tool warnings, separating actual defects from false
positives, can be overwhelming in itself–especially if
there is no strategy defined for eliminating the most
critical issues first.

One of the most expensive and limited resources
in modern software development is developer time.
Additional review and testing of various software ar-
tifacts (e.g. architectural designs, drivers, libraries,
modules, and application code) is only warranted if
there is reason to believe those artifacts may be attack
prone. Moreover, the supply of time and expertise
from security-competent developers and testers is ar-
guably more restricted due to the specialized knowl-
edge required to unearth security vulnerabilities.

For all of these reasons, and especially because
developer time is limited, it is essential to prioritize
the application of secure software development prac-
tices, focusing efforts on the most attack prone areas
of code that are likely to result in the greatest impact
when exploited. The analogy to resource utilization is
much the same as the surgical laser analogy used jus-
tifying lightweight formal methods: “A surgical laser
has less power and coverage than a traditional light
bulb, but makes the most efficient use of the energy
it uses, with often more impressive results.” (Jackson
and Wing, 1996)

A perquisite is that such attack-prone components
can be identified. Therefore, identification of attack-
prone components is a crucial step toward preventing
vulnerabilities from entering the field. Superior pre-
diction models may significantly help augment and
complement existing practices for these purposes.

3 MOTIVATION

Change-based fault and vulnerability prediction met-
rics have recently shown promising results for iden-
tifying vulnerable components. Our work builds on
this background, further evaluating whether or not ad-
ditional architectural metrics can be used to prioritize

change-based vulnerability predictions.We hypoth-
esize that changes, already indicative of a vulnera-
ble file, made to a module of poor maintainability (or
modularity) will be more likely than its peers to posi-
tively correlate with residual vulnerabilities.

Our focus on prediction complements existing
tools and predictive approaches utilizing code-based
metrics as predictors. However, our work more
closely examines evolutionary and architectural as-
pects of the software by:

1. investigating how change metrics correlate with
residual vulnerabilities, and

2. examining how the software module structure ei-
ther exposes or masks residual vulnerabilities.

This work approaches attack-prone prediction
from a contextual and practical perspective. As such,
when compared with other work in vulnerability pre-
diction, the predictors proposed by this work have
the potential to reveal relationships between a prod-
uct’s security (measured by residual vulnerabilities)
and how the product’s code was developed. For ex-
ample, the following questions characterize the types
of questions we might reason about:

• Do rapid and scattered code changes possibly in-
dicate increased development activity under time-
to-market or competitive pressure?

• Do atypically frequent and repeated changes to
a module or file possibly indicate a poor under-
standing of requirements, or a challenging tech-
nical issue, such that the module or file requires
ongoing rework?

• Do the environmental conditions implied by the
above factors also correspond to a large number
of security failures?

• Do security failures seem either more severe or
more prevalent for components of poor maintain-
ability?

Additionally, we aspire to relate prediction models
to the attack surface of a system along its boundaries
with the surrounding environment after (Manadhata
and Wing, 2011) and (Younis et al., 2014). That is, re-
alizing that attacker-crafted data often enters a system
along it’s attack surface, we reason that modules ex-
hibiting poor maintainability and that are also reach-
able from said entry-points would be more likely the
targets of a 0-day exploit. Because the modules are
reachable, it is possible for them to process attacker-
crafted data. Because the same modules exhibit poor
maintainability, we reason that they are more likely to
contain exploitable vulnerabilities.
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4 RELATED WORK

Our study is informed by similar empirical vulnera-
bility and fault prediction studies by Shin(Shin et al.,
2011), Gimothy et. al. (Gyimothy et al., 2005), and
Bozorgi et. al. (Bozorgi et al., 2010). Our work
is most closely related to that of Shin, as she inves-
tigated coupling metrics as vulnerability predictors.
Shin’s work builds on a long tradition of complexity
metrics used to predict faults. Vulnerability ranking
approaches are informed by the work of Bozorgi et.
al. The following sections more completely describe
related work in the area of metrics based fault predic-
tion, and in particular, predictors based on code met-
rics, as well as predictors based on change metrics.

4.1 Code Metrics

Several studies (Munson and Khoshgoftaar, 1992),
(Nagappan and Ball, 2005), (Chidamber and Ke-
merer, 1994) have examined the relationship between
residual defects and static metrics extracted from
source code. For example, sheer size of a file in lines
of code (LOC), or more commonly in thousands of
lines of code (KLOC), has been studied as having
a bearing on residual defects based on the premise
that larger more complex code is more difficult to
understand and comprehend. By extension, reviews
of difficult to understand and comprehend code are
less likely to unearth defects. Another popular metric
is McCabe’s Cyclomatic complexity (MCC) which
measures the number of paths through a program. The
premise behind McCabe’s cyclomatic complexity re-
lates to the difficulty in achieving adequate branch
and path coverage during testing.

In the area of fault prediction, Gimothy et
al.(Gyimothy et al., 2005) set several precedents for
fault prediction studies: use of large, real-world open
source software, applying linear and logistic analy-
sis, independent evaluation of univariate predictors,
as well as applying machine learning techniques,
and 10-fold cross validation for training and testing.
These staple analysis patterns appear regularly across
fault prediction studies, and by extension, recent vul-
nerability investigation works as well. Gimothy et
al. applied the CK (Chidamber and Kemerer, 1994)
metrics suite for objected oriented (OO) software to
seven versions of Mozilla Firefox, covering 3,192 ex-
tracted classes. They found high correlation between
the CK coupling between objects (CBO) metric and
fault proneness of modules. Their predictive models
based on CBO demonstrated precision and recall val-
ues over 69%.

A related work by Janzen and Saiedian (Janzen

and Saiedian, 2007) considered a large number of
software architecture metrics to examine the impact
of test-driven development (TDD) on software archi-
tecture. Their objective was to provide a comprehen-
sive and empirically sound evidence and evaluation
of the TDD impact on software architecture and in-
ternal design quality. Their research result demon-
strated that software developers applying a TDD ap-
proach are likely to improve some software quality
aspects at minimal cost over a comparable test-last
approach. In particular, their research shows statisti-
cally significant differences in the areas of code com-
plexity, size, and testing. These differences can sub-
stantially improve external software quality (defects),
software maintainability, software understandability,
and software reusability. By extension, we reason that
security may also be impacted by software architec-
ture and seek to examine relationships between archi-
tectural metrics and residual vulnerabilities.

4.2 Change Metrics

In the last decade, a large number of studies have gone
past direct code-based attributes to examine how these
attributes change over time as the code is developed.
The difference in these more recent studies is that
they are one level removed, extracting metrics from
the version control system rather than from individ-
ual files. We refer to such metrics aschange metrics
or historical metricsto distinguish them from more
traditional staticcode metrics, that do not require a
VCS for calculation, being directly obtainable from a
version archive of the source code. Two such change
metrics are churn, introduced by Munson and Elbaum
(Munson and Elbaum, 1998), and change bursts.

Note that churn and change burst metrics each can
be decomposed into various metric suites; that is, the
terms churn and change burst do not themselves de-
fine concrete measures, but apply as a moniker to the
historical traits common to such measures. Below, we
summarize related work in fault prediction and defect
estimation inspires our efforts in the context of vul-
nerability prediction.

Khoshgoftaar et al. (Khoshgoftaar et al., 1996)
used churn relative to bug changes, as the number of
lines added or changed to fix the bug. Khoshgoftaar
used the amount of code changed along with 16 other
static code metrics to build a module fault-proness
predictor. Their case study on two successive releases
of a telecommunications system containing 171 mod-
ules with over 38,000 functions yielded precision and
recall values over 78%.

Nagappan and Ball (Nagappan and Ball, 2005)
demonstrated how to use relative code churn as an es-
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timator for system defect density. Their case study on
Windows Server 2003 showed that various churn re-
lated metrics were able to discriminate between fault-
prone and not fault-prone binaries with an accuracy
of 89%.

Moser et al. (Moser et al., 2008) compared 18
change metrics (called process metrics in their work)
to 31 traditional code complexity metrics in Java
source for the Eclipse project. They used a cost-
sensitive prediction model to allow for different costs
in prediction errors. They found that change metrics
outperformed the traditional complexity metrics by a
margin of about 10 percentage points for both true
positive rate and recall when using their cost based
model. In addition, the models based on change met-
rics had nearly half the rate of false positives when
compared to the models based on static code metrics.

Bell, Ostrand, and Weyuker (Ostrand et al., 2010)
studied change metrics related to individual program-
mers. They analyzed change reports filed by 107 pro-
grammers for 16 releases of a system with 1,400,000
LOC and 3100 files. A “bug ratio” was defined for
programmers, measuring the proportion of faulty files
in release R out of all files modified by the program-
mer in release R-1. The study compared the bug ratios
of individual programmers to the average bug ratio,
and assessed the consistency of the bug ratio across
releases for individual programmers. Their results
found that counts of the cumulative number of dif-
ferent developers changing a file over its lifetime can
help to improve fault predictions, while other devel-
oper counts were not helpful. They concluded that
information related to particular developers were not
good predictors.

In another study, Bell, Ostrand, and Weyuker (Bell
et al., 2011) examined several churn metrics, such as
lines added, deleted, and modified, wherechurn=
added+ deleted+ changed. They evaluated the in-
dependent predictive capability of several different
types of both relative and absolute churn, using 18
successive releases of a large software system. They
also studied the extent to which faults can be pre-
dicted by the degree of churn alone, as well as in
combination with other code characteristics. Their
findings indicate that various churn measures have
roughly the same predictive capability. Bell, Ostrand,
and Weyuker conclude that includingsomechange
measure from a prior release,Ri−1, is a critical fac-
tor in fault prediction models for releaseRi .

Change bursts refer to consecutive changes over
a period of time (Nagappan et al., 2010). Change
bursts are described by gap and burst size. The gap is
the minimum distance (e.g., in days) between succes-
sive changes, such that those changes are considered

within the same burst. The burst size is the minimum
number of successive changes required to be consid-
ered a burst. Different change bursts are shown in
Figure 1, taken from Nagappan et al.(Nagappan et al.,
2010).

Figure 1: Example change bursts with varying gap and burst
size parameters (Nagappan et al., 2010).

Recent studies (Nagappan and Ball, 2005),
(Moser et al., 2008) consistently find relative code
churn outperforming other more traditional metrics
such as MCC and KLOC. The study on change bursts
in Windows Vista by Nagappan et al. (Nagappan
et al., 2010) was particularly impressive as they found
that change burst metrics outperformed all previous
predictors, such as code complexity, code churn, and
organizational structure as predictors for Windows
Vista. For their study on Windows Vista, they found
that change burst metrics yielded precision and recall
values over 90% (Nagappan et al., 2010).

4.3 Entropy based Software Metrics

Entropy characterizes the average degree of uncer-
tainty in a discrete random variable,X, and this also
translates in different ways to a software project. In
this section, we review entropy metrics from other
works that we utilize as explanatory variables in our
prediction models.

Hassan (Hassan, 2009) presents several complex-
ity metrics based on historical changes, calculating
entropy for the file modifications within a change pe-
riod. A change period (or interval) is a period of time
over which files change as a result of development
progress. A fixed calendar time period (e.g., a week)
offers the most straightforward method to establish

Figure 2: Entropy,H(P), over a change period.
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the change period; however, Hassan presents several
different methods for defining the period. The differ-
ent period derivation methods result in the concept of
differing period types. That is, the period types differ
with respect to the method or technique used to define
the period. Hassan presents the following methods for
change period derivation:

1. Fixed Time: establishing the change period based
on a fixed calendar time (e.g., a week),

2. Number of Modifications: establishing the
change period over a fixed number of file modi-
fications, across all modified files, or

3. Burst Pattern: establishing the change period
based on the continuity of successive changes or
lack thereof

Hassan’s entropy based, historically derived mea-
sures were shown to out perform both prior faults
and prior modifications as a predictor of future faults
for the open source systems he studied(NetBSD,
FreeBSD, OpenBSD, Postgres, KDE, and KOffice).

In addition to his entropy based historical metrics,
Hassan found differences in the prediction capability
of prior faults versus the prediction capability of prior
modifications; again, the goal being prediction of fu-
ture faults. In particular, for his studied software sub-
jects, Hassan found that prior faults (as opposed to
prior modifications) were a better predictor of future
faults.

These findings are notable since Chowdhury
and Zulkernine (Chowdhury and Zulkernine, 2011)
specifically found that prior vulnerabilitiesdid not
perform well in estimating residual vulnerabilities;
that is, although Hassan found that prior faultswerea
good predictor offuture faults, Chowdhury and Zulk-
ernine found that prior vulnerabilitieswere nota good
predictor offuture vulnerabilities. Said another way,
accurate and precise fault prediction models do not
always translate to accurate and precise vulnerabil-
ity prediction models. However, Hassan’s historical
complexity metrics have not specifically been evalu-
ated for vulnerability prediction.

We feel that entropy based metrics may be espe-
cially well suited for vulnerability prediction since:

• entropy based historical change metrics outper-
formed prior faults as a predictor of future faults–
in experiments to date, the notion of prior faults
predicting future faults hasn’t been empirically
supported for vulnerabilities (i.e., past vulnerabil-
ities have not been shown to be predictors of fu-
ture vulnerabilities),

• the level of entropy will increase as changes be-
come more scattered across files and modules,

• the change period can be determined automati-
cally using change bursts, and

• the presence of said change bursts may them-
selves be indicative of a large development push
or refactoring effort where vulnerabilities may
likely be introduced.

Sarkar et al. (Sarkar et al., 2007) describe a
number of information theoretic metrics that repre-
sent module interactions in a system, or modular-
ity. We submit that the modularity principles out-
lined by Sarkar et al. such as similarity of purpose,
acyclic dependencies, and encapsulation also charac-
terize the classic security design principles of Saltzer
and Schroeder (Saltzer and Schroeder, 1975). The as-
sociations between security design principles and de-
tailed modularity principles enumerated by Sarkar et
al. (Sarkar et al., 2007) are shown in Table 1. For
example, Saltzer and Schroeder’s design principle of
complete mediation, where every object access must
be checked for proper authority, is enabled by a de-
sign that routes all inter-module call traffic through
a well defined API. Sarkar et al.’s Module Interac-
tion Index, (MII ), is a modularity metric characteriz-
ing the modularity principle ofmaximization of API-
based inter-module call traffic–an underlying princi-
ple of encapsulation.MII is the ratio of external calls
made to a module’s API functions relative to the total
number of external calls made to the module. Low
MII could indicate direct usage of shared memory or
direct global memory references. We might expect
MII to inversely correlate with security vulnerabili-
ties manifesting from unmediated changes to global
variables, ultimately characteristic of poor encapsula-
tion.

Table 1: Related security and modularity principles.

Security Design Principle Modularity Principle
Economy of Mechanism Size
Economy of Mechanism Acyclic Dependencies
Economy of Mechanism Unidirectionality

in Layers
Complete Mediation API-based

Inter-Module Calls
Complete Mediation Purpose Dispersion
Complete Mediation Similarity of Purpose

Anan et al. (Anan et al., 2009) discuss how
entropy calculations on software data flow relation-
ships can be used to derive a maintainability pro-
file for a given software architecture. In their work,
the maintainability profile quantifies the effort needed
to modify a module given a particular architecture.
Code modification is modeled uniformly and ran-
domly across modules, with the probability of mod-
ification for any given module as1n, wheren is the
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number of modules in the system; however, unin-
tended side effects of that modification are estimated
using the probability of information flow by using the
number of incident edges linking the given module
to other modules in the system. This research in-
vestigates if the maintainability of a module can be
used to rank predictions powered by change based
metrics. The intuition is that change based metrics
might generate a number of predictions, based on
frequently changed files. It seems reasonable that
changes to files inside of a module, where said mod-
ule already high maintainability score (relative to its
peers), would be more likely to cause unintended side
affects, simply because there are larger data flows di-
rected from it to other modules.

Entropy surfaces again in Abdelmoez et al. (Ab-
delmoez et al., 2004) during analytical derivation
measures for quantifying error propagation probabil-
ity in a given architecture. Assuming an error injected
into a given module, their measure characterizes the
likelihood of it reaching other modules. This is sim-
ilar in spirit to the maintainability metric, but seems
to hold promise for mirroring propagation of attacker
crafted data.

5 VULNERABILITY PREDICTION

We seek to investigate architectural modularity met-
rics that characterize economy of mechanism and
Complete Mediation. We are also interested in infor-
mation flow and entropy metrics, based on the idea
that attacks are often executed by manipulating input
data.

As mentioned previously, a closely related study
for vulnerability prediction was provided by Yonghee
Shin. The results from Shin’s study indicate that cer-
tain change and developer oriented metrics are able
to discriminate between vulnerabilities and the larger
class of standard issue defects. Shin (Shin et al.,
2011), (Shin, 2011) examined churn in addition to
several other change metrics mined from software
projects’ version control systems. Shin’s study was
likewise focused on security and vulnerability predic-
tion. Shin sought to answer whether or not these met-
rics could also be used to identifyvulnerablefiles.
Shin also examined developer oriented graph metrics.
Shin’s results showed developer oriented metrics and
change metrics yielding the best performance on the
projects she studied.

5.1 Vulnerability Scoring and Ranking

Scoring and ranking vulnerabilities requires expert

knowledge about both the severity and likelihood of
exploitation. Various vulnerability rating systems ex-
ist to distill expert knowledge concerning accessi-
bility, ease of exploitation, and severity into a nu-
meric score or a qualitative classification such as
high, medium, or low. Systems administrators use
these scoring systems and advisory services to prior-
itize patches to operational systems. Although var-
ious criticisms exist with respect to using these rat-
ing systems for prioritizing the application of oper-
ational patches to running systems, we consider that
the Common Vulnerability Scoring System (CVSS)
(Mell et al., 2007), despite said criticisms, offers a
metric usable for the purposes of evaluating our rank-
ing approaches.

CVSS scores are often included on security ad-
visories from organizations such as US-CERT, Mi-
crosoft, Cisco, and Secunia. These scores are also
listed in on-line vulnerability databases such as the
National Vulnerability Database (NVD (NIST, )) and
the Open Source Vulnerability Database (OSVDB
(osv, )). Such scores encapsulate expert vulnerabil-
ity knowledge and provide a basis for ranking vulner-
abilities. In particular, the base metric from CVSS
represents intrinsic characteristics of a vulnerability
as six components: access vector, access complex-
ity, authentication, and impact to confidentiality, in-
tegrity, and availability.

We intend to evaluate our vulnerability ranking
techniques based on architectural metrics against the
order imposed by CVSS base scores. We are aware
of the criticisms of CVSS base scores by Bozorgi et.
al. (Bozorgi et al., 2010) as a standard against which
to evaluate ranking, but we submit that our usage is
different in the context of ranking the predictions of
residual vulnerabilities. The following paragraphs re-
capitulate Bozorgi et al.’s critique and then compares
the differences in the context of our application and
intent.

Bozorgi et. al.’s work also provides a critique of
CVSS scores, noting that CVSS is subject to “cate-
gorical magic numbers” and that the score aliases too
many details of the security advisory (from the per-
spective of prioritizing patch application based on ex-
ploitation likelihood). Further, Bozorgi e.t al. note
that derivation of factors in the CVSS base score is
not clear and that there are no empirical investigations
of whether or not CVSS base scores are truly repre-
sentative of exploitation likelihood.

The following are important differences between
our work and that of Bozorgi et.al. (Bozorgi et al.,
2010), considering that their work is concerned with
prioritizing patch selection and application to opera-
tional systems:
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Prediction Error: Our prediction models will have
some prediction error, such as a given false pos-
itive rate. This factor doesn’t impact Bozorgi et.
al. since their false positive rate with respect to
this dimension is 0; that is, they already know the
vulnerability exists, as well as the fix.

Time Independence: Bozorgi et. al. notes a signif-
icant difference on exploitation likelihood based
on time.

Bozorgi et. al. (Bozorgi et al., 2010) focus on
the classification of a vulnerability as exploited or not
exploited in order to train a support vector machine
(SVM) learner to predict likelihood of exploitation.
Their work is different than ours as their focus is not
on the software itself, but the vulnerability reports,
such as CVE-numbered advisories listed in OSVDB
(osv, ) and NVD (NIST, ). Their work recognizes
that although a vulnerability may be found, there may
be little interest from attackers in developing its ex-
ploit. The interest of their work is in prioritizing the
application of patches by software vendors. Our inter-
est, in contrast, is in prioritizing the creation of those
patches, from the perspective of a software vendor.
Rather than advisory reports, our inputs consist of ar-
chitectural features.

A key difference between our context and that of
Bozorgi et al. discussed above is that of time. In
their work, the age of a vulnerability was a signif-
icant factor in determining exploitation likelihood–
attackers may be less likely to exploit a vulnerabil-
ity the older it gets, since, it is reasonable that system
administrators may have already patched older vul-
nerabilities. In contrast, our context is one where any
vulnerability could potentially be a zero day exploit.
A residual vulnerability is by definition a vulnerabil-
ity that evades detection and persists in released soft-
ware. Despite the criticisms of CVSS, we submit that
our context is different and propose to use CVSS as
an evaluation of ranking we create utilizing modular-
ity and maintainability metrics.

We conclude this section by reiterating that CVSS
scores are already widely used and are available di-
rectly on, or directly cross-referenced from, various
vulnerability advisory systems. These advisory sys-
tems, along with vulnerability databases such as OS-
VDB and NVD constitute the source of our training
and evaluation data. Therefore, a natural extension
of classification (e.g., file or module is vulnerable)
for vulnerability prediction is to utilize these available
scores, encapsulating expert knowledge, for the pur-
pose of ranking vulnerability predictions generated by
our prediction models.

6 EXPECTED CONTRIBUTIONS

The key contributions anticipated by this research are
as follows:

• Aid security improvement by reducing the search
space for residual vulnerabilities,

• Evaluate the feasibility of using information theo-
retic architectural metrics to further prune and pri-
oritize predictions (i.e. vulnerability indicators),

• Contribute new knowledge to the field related to
the relationship among security, complexity, and
architectural quality attributes (modularity and
maintainability),

• Provide open source tools for measuring infor-
mation theoretic architectural metrics describing
modularity and maintainability, and

• Add change burst empirics to the growing body of
literature on defect and vulnerability prediction in
open source projects.

The overall goal of this research is to improve se-
curity of consumer software products by enabling or-
ganizations to more effectively find and remove vul-
nerabilities prior to release. This research expects to
make vulnerability identification and removal more
tractable and cost effective by reducing the number
of components suggested for extended security re-
view and penetration testing. This work speculates
that organizations developing consumer software will
be more motivated to expend additional effort on a
more feasible and narrowly focused objective. This
is in contrast to taking no action because either (1)
the probability of finding real vulnerabilities is near
infinitesimal (i.e. wasting time searching for the
proverbial needle in a haystack), or (2) because tool-
predicted vulnerabilities are so numerous that the de-
velopment team is simply overwhelmed. On the lat-
ter point, the sheer number of defects is an issue be-
cause false positive rates of modern tools necessitate
that development teams manually inspect, or “triage”,
each identified issue. On both points, triage efforts
typically lose out to other development activities such
as fixing observed bugs or developing new features.

The new and novel part of this work is the addition
of suspect prioritization enabled by architectural met-
rics. The re-application of architectural metrics (char-
acterizing modularization and maintainability) pro-
vide the foundation needed for prioritizing predicted
components. Such relative prioritization is largely ab-
sent from existing defect and vulnerability prediction
literature. Nevertheless, establishing priority is im-
portant because it recognizes that not all vulnerabil-
ities are created equal. Paraphrasing a common say-
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ing, “Nothing is top priority when everything is top
priority”.

Priority enables an organization to set customized
goals, such as “fix all severe, high-impact vulnera-
bilities”, that better align with near and long term
business strategies. In effect, the addition of priority
better recognizes the socioeconomic realities and hu-
man factors characterizing the environment in which
software is developed. For example, consider how a
start-up may cease to exist if they cannot release a
working product before their seed money expires. In
general, competitive time-to-market pressures, along
with modern companies’ need to rapidly innovate, im-
ply that companies will not release perfect software.
It is common practice to release a software product
with known issues, as long as those issues are minor.
This research’s addition of priority would enable such
priority-based go/no-go decisions.

An additional benefit released by developing a rel-
ative ranking among modules, on the basis of their
attack-proneness, is that this ranking is complemen-
tary for use with other techniques. Arelative ranking
at the module level could be extended downward to
contained functions and lines. By extension, the rank-
ing could also be extended to tools that find defects at
the line level, such as existing static analysis tools.
A relative module ranking might be used to priori-
tize line level alerts output from a commercial static
analysis tool (e.g., identifying then top “actionable
alerts”).

Although techniques have been published for cal-
culating various information theoretic metrics from
the structural and development views of a software
architecture (Sarkar et al., 2007), there is currently
no publicly available tool support for doing the same.
Tool support is important for practical technique ap-
plication as well as comparing results via repeatable
and verifiable experiments (Gousios, 2012). Avail-
ability of a publicly obtainable tool reduces the bar-
rier to entry for researchers interested in evaluating
the sensitivity and discriminatory power of architec-
tural metrics. Since this work must have access to
such a tool, we intend on building this tool and subse-
quently making it available to others.

7 CONCLUSIONS

The current state of affairs is rather tenuous as soft-
ware continually grows larger and more complex, at
odds with classic security principles such as econ-
omy of mechanism, making software more difficult
to comprehend when making changes, and more dif-
ficult to test completely. Compounding these factors

are the forces vying for limited developer time. Es-
pecially in the commercial sector, security concerns
often take a back seat to the development of market-
differentiating features–the return on investment and
impact to the bottom line is more deterministic for
feature development (McGraw, 1999). It’s not that
the commercial sector doesn’t care about security, but
more about spending resources efficiently. Developer
time is a constrained, highly contended, and highly
demanded resource in software development organi-
zations. Management therefore wants to make effi-
cient and effective use of developer time. This is the
larger context and commercial motivations that just
so happen to be aligned against security improvement
rather than with it. That is, given that residual vulner-
abilities are already known to be difficult to detect,
what can be done to motivate commercial develop-
ment organizations to expend effort, appropriating de-
velopment resources to search for what is commonly
known as “a needle in a haystack”?

The answer, from the perspective of our research,
is to provide superior prediction models and estab-
lish what we refer to as suspect prioritization, such
that the “top 10”, or top suggested vulnerability pre-
dictions are likely to represent vulnerabilities that are
exploitable and have the potential to cause severe se-
curity violations, compromising confidentiality, in-
tegrity, or availability. Ideally, the prioritized “top 10”
should be free of false positives, thereby maximizing
the efficacy of any resulting triage and inspection ef-
forts when applied. We acknowledge that the notion
of ranking vulnerability predictions may be criticized,
since a single overlooked security vulnerability has
the potential for wide reaching impact.

We believe that advances in vulnerability predic-
tion are possible given the carefully selected metrics,
that mirror security considerations and are closely re-
lated to our underlying notions about software evo-
lution and development team dynamics. Moreover,
drawing on the existing body of work on defect pre-
diction, we believe the more specialized study of vul-
nerability prediction research offers the potential for
new discoveries.

With knowledge of the most vulnerable compo-
nents, organizations can more effectively prioritize
the application of secure development practices (e.g.,
security review, static analysis, and penetration test-
ing) where they will have the greatest benefit. The
added scrutiny from a well-focused effort can help to
identify and eliminate vulnerabilities prior to produc-
tion release in a tractable, efficient, and cost effective
manner. The alternative approach is wholesale adop-
tion of secure development practices without a prior-
itized perspective. Not only is such a wholesale alter-
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native likely to be less effective, but it is also likely
to be met with political opposition within commer-
cial organizations. A wholesale approach lacks cost-
benefit justification and, due to the aforementioned
needle in a haystack phenomenon, becomes progres-
sively more futile and psychologically daunting as a
product grows in size. We believe prediction models
based on change and entropy-based architectural met-
rics may offer a practical means for identifying and
prioritizing attack-prone components.
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