
Automated Analysis and Evaluation of Web Applications Design:
 The CMS-based Web Applications Case Study

Vassiliki Gkantouna1, Athanasios Tsakalidis1 and Giannis Tzimas2
1Department of Computer Engineering and Informatics, University of Patras, Rio Patras, 26500, Greece

2Department of Computer and Informatics Engineering, Technological Educational Institute of Western Greece,
 M. Alexandrou 1, Koukouli Patras 26334, Greece

Keywords: Design Reuse, Design Pattern, Design Evaluation, CMS, WebML, Web Application, Web Mining.

Abstract: This paper addresses the automated design quality evaluation of Web applications built on a CMS platform
by inspecting their conceptual model under the viewpoint of consistent design reuse. We have utilized
WebML as the design platform of the proposed methodology and we attempt to capture design reuse by
detecting all the recurrent patterns within the WebML hypertext model of an application. A pattern consists
of a core specification, i.e., an invariant composition of WebML elements that characterizes the pattern and
by a number of pattern variants which extend the core specification with all the valid modalities in which the
pattern composition can start (starting variants) or terminate (termination variants). We have developed a
methodology that automatically extracts the hypertext model of a web application which is subsequently
submitted to a pattern-based analysis in order to identify the occurrences of all the incorporated recurrent
patterns implying design reuse. Then, we calculate evaluation metrics revealing whether the identified
patterns variants are used consistently throughout the application. By using the methodology, designers can
detect either effective reusable design solutions consistently used throughout the application model for
obtaining certain functionality within the application’s context or recurrent design constructs causing design
inconsistencies and lowering the quality of the final application.

1 INTRODUCTION

Nowadays, the ever increasing complexity of modern
web applications has led to serious problems of
usability and has raised the need for new methods
enhancing the quality of both the web development
process and the final application.

In response to this need, a plethora of Model-
Driven Web Engineering approaches (Aragón et al,
2013) has been proposed in the literature along with
a number of web design patterns (Bernstein, 1998).
They rely on conceptual models and provide
developers with formal techniques for an effective
design and development process. In an effort to
promote design reuse, design patterns support
developers with proven solutions that can be reused
in different contexts where the correspondence
problem arise. This way, reuse based on design
patterns allows facing the complexity of Web
application development and improving the
development process. At the same time, the adoption
of design patterns can also increase the application’s

quality since the use of successful solutions implies a
major reliability of the final application. In addition,
if design patterns are used consistently in the design
of an application, they enhance its usability, on the
grounds that it is easier for users to identify reliable
expectations about the application’s structure and
behavior.

Despite the fact that there are catalogues of design
patterns ready for use (Welie, 2008; Website patterns,
2015), developers have found it difficult to properly
use them. The main reason is due to the fact that there
is only a very limited number of experienced web
designers who can distinguish which is the
appropriate design pattern for solving effectively a
particular instantiation of a design problem (Díaz et
al, 2009). Another reason is the difficulties that
developers encounter to apply the patterns
consistently throughout the design model of an
application. Especially when they try to apply past
experiences and reuse a previously successful design
pattern, it is common, due to lack of time, that they
do not properly adapt it to the requirements of the new

130
Gkantouna, V., Tsakalidis, A. and Tzimas, G.
Automated Analysis and Evaluation of Web Applications Design: The CMS-based Web Applications Case Study.
In Proceedings of the 12th International Conference on Web Information Systems and Technologies (WEBIST 2016) - Volume 1, pages 130-139
ISBN: 978-989-758-186-1
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

project at hand, resulting in pattern variants which
cause serious design inconsistencies. All the above
highlight the need for tools supporting developers
inspect and evaluate the consistency of web
applications design, even at the conceptual level, in
order to discover potential design problems at the
early stages of development and facilitate the fast
recovery with the less possible effort.

This paper therefore addresses the automated
analysis and evaluation of web applications design by
inspecting their conceptual model under the
viewpoint of consistent design reuse. At the
conceptual level, we attempt to capture reuse by
detecting the recurrent patterns lying within the
model of an application. We have utilized WebML
(Ceri et al, 2000) as the design platform of our
methodology mainly due to the fact that it supports a
concrete framework for the formal definition of data-
intensive web applications. We consider that a pattern
consists of a core specification, i.e., an invariant
composition of WebML elements that characterizes
the pattern and by a number of pattern variants which
extend the core specification with all the valid
modalities in which the pattern composition can start
(starting variants) or terminate (termination variants).
We have developed a methodology that automatically
extracts the hypertext model of a web application and
subsequently performs a pattern-based analysis of the
model in order to identify the occurrences of all the
incorporated recurrent patterns implying design
reuse. Then, we calculate evaluation metrics
revealing whether the identified patterns are used
consistently throughout the application design.

In order to automate the process of evaluating the
design of a Web application, we have narrowed down
the methodology’s scope to the domain of CMS-
based Web applications. The main reason for this is
that CMSs (Content Management Systems) provide a
common base of source code which can be
systematically processed for obtaining the automated
extraction of the application’s hypertext model. The
proposed methodology is accompanied by a tool
support available in (CMS Modeling, 2015), allowing
developers to apply the methodology on websites
developed by using the Joomla! (Joomla! CMS,
2015) and Drupal (Drupal CMS, 2015) CMS
platforms. Due to space limitations, in this work we
present the methodology for the case of Joomla!.

The remaining of this paper is organized as
follows: Section 2 provides an overview of the related
work and discusses the contibution of this work.
Section 3 describes a brief overview of WebML.
Section 4 presents in detail the proposed

methodology, while section 5 discusses conclusions
and future work.

2 RELATED WORK AND
CONTRIBUTION

Our primary goal is to address the design quality of
web applications by focusing on design reuse within
their conceptual model. We consider two main types
of reuse: (i) the one which is due to the application of
well-known design patterns empirically devised by
experienced web designers and (ii) the other which
has emerged as a result of the design decisions made
by developers for adopting specific reusable design
structures to meet the particular needs of an
application. The latter type can result in either
effective reusable solutions consistently used into the
application model for implementing a certain task, or
in problematic cases of reuse causing inconsistencies
and lowering the application’s usability and quality.

To the best of our knowledge, the proposed
approach has no counterpart in the field of conceptual
modeling. Only the work in (Rigou et al, 2006) can
be considered to have a similar point of view, as it
examines both of the aforementioned types of reuse
in the conceptual schemas of web applications. The
authors propose a methodology for detecting and
evaluating model clones implying design reuse in the
application model. However, this methodology
cannot be applied to any web application, since it
does not support the automated creation of their
model, which is a key point of the methodology.

The other studies in the literature when referring
to design reuse in the conceptual model of an
application, they consider merely the first type of
reuse. These studies are divided into two main
categories: (i) the first one focuses on patterns
specification after analyzing and reviewing a large
number of successful web applications and (ii) the
second one focuses on the detection and evaluation of
the instances of predefined design patterns within the
conceptual model of an application. Regarding the
first category, in (Ivory, 2005) the author has
examined the characteristics of the design of highly
rated websites and present a study about the evolution
of web design patterns. In (Fraternali et al, 2008)
authors address the design of community-based Web
applications by proposing a set of WebML design
patterns, identified by reviewing a number of top-
rank Web 2.0 applications. Regarding the second
category, although the research on detecting software
design patterns is mature, the research on the

Automated Analysis and Evaluation of Web Applications Design: The CMS-based Web Applications Case Study

131

automated detection of web design patterns in the
application model is very limited. In (Fraternali et al,
2002) authors present the Web Quality Analyzer
(WQA) which automatically analyzes the conceptual
schemas of Web applications and identifies the
occurrences of a predefined set of WebML design
patterns. By calculating metrics about their coherent
use throughout the application schema, the WQA
allows designers to automatically monitor the design
consistency of WebML-based applications. In
(Aminzadeh et al; 2010), the authors propose a
method for detecting the occurrences of Human-
Computer Interaction (HCI) design patterns within
the design of a web application and visualize them by
using UML class diagrams.

The key difference of our approach is that there is
not any limitation to focus strictly on the detection of
predefined design patterns (known a priori) in the
conceptual model of an application. On the contrary,
we provide a methodology for supporting the
automated detection of all the recurrent design
structures occurring within the conceptual model due
to design reuse. Such structures may be a well-known
design pattern or they can also be reusable design
compositions (effective or not) used by the
developers to accomplish certain behavior in a
specific application context. These patterns can
probably lead to: (i) the identification of new design
patterns for handling common design problems in the
CMS domain which can be used as building blocks in
future designs, or (ii) they can even stand as anti-
patterns in case they are evaluated to cause serious
design inconsistencies. This is a promising initiative
for a mechanism supporting the automated
identification of design patterns and anti-patterns for
the CMS domain and promoting the pattern-based
CMS design and development.

3 WebML OVERVIEW

WebML (Ceri et al, 2000) is a language for modeling
data-intensive Web applications by providing a set of
visual primitives for defining the conceptual models
that represent the organization of their contents and
hypertext interfaces. The organization of the
hypertext interfaces is specified by exploiting the
Hypertext model which allow designers to describe
the application’s hypertexts for publishing and
managing content as siteviews. A siteview is a
specific hypertext which can be browsed by a
particular group of users. Siteviews are composed of
pages, which in turn include containers of elementary

Figure 1: The WebML content units.

pieces of content called content units. The data
published by a content unit are retrieved from a table
of the database, which is specified by the source
entity property of the unit. WebML offers a set of
predefined content units such as the DataUnit,
IndexUnit, MultidataUnit, ScrollerUnit,
MultichoiceIndexUnit, and HierarchicalIndexUnit
(some of them are presented in Figure 1) that express
different ways of selecting entity instances and
publishing them in a hypertext interface. Pages and
units are connected with links having a twofold aim:
permitting navigation and enabling the passing of
parameters from the source to the destination
page/unit.

By default, every WebML element has both a
visual representation and an XML-based textual
specification which allows specifying additional
detailed properties that cannot be conveniently
expressed in terms of visual notation.

4 THE METHODOLOGY

In this section, we present the methodology for
automatically extracting the WebML hypertext
model of a Web application (in the form of its XML
specification) and its subsequent analysis with the
aim of (i) identifying and evaluating by using
semantic similarity techniques the occurrences of all
the recurrent patterns lying within it and (ii)
calculating evaluation metrics to assess if they are
used consistently throughout the application model.

In order to explain the concepts of our
methodology, we refer to various instances of a real
web application, called the AtticaBank, which has
been developed on the Joomla! platform and can be
accessed at http://www.atticabank.gr/en/. This
website provides information for the activities of the
Attica bank which is a financial service company. In
what follows, the AtticaBank website will be used to
illustrate the potential of the proposed methodology.

WEBIST 2016 - 12th International Conference on Web Information Systems and Technologies

132

4.1 Hypertext Model Extractor

The WebML Hypertext Model specifies the
organisation of the front-end interfaces of a Web
application as a set of WebML elements i.e. siteview,
pages, units and links. Based on this, there are two
main tasks for automatically extracting the hypertext
model of a Joomla! website: (i) identify the
organization of the Joomla! design elements that
compose the hypertext of its HTML pages and (ii)
translate them in WebML notation by producing their
appropriate WebML representations.

In the context of a Joomla! website, the
organization of its front-end interfaces is specified by
a set of predefined structural and navigational design
elements which are the components and modules. A
page is composed by one component specifying the
organization of its main part, and by a set of modules
specifying the organization of its peripheral positions.
There is a variety of components and modules
categories, each one containing various types for
supporting different ways of content delivery to users.
In the HTML code of a page, components and
modules can be found as <div> elements. The HTML
class attribute value of such a <div> element (i.e. <div
class="value">) specifies its style i.e. characterizes
the exact type of component-module it represents.
Thus, by parsing the HTML code of a page and
locating the occurrences of these characteristic values
within it, we can recover the page’s organization as a
set of Joomla! design elements. Then, the next step is
to translate these design elements in WebML
notation. We represent the entire website as a
siteview, containing a set of WebML pages, each one
corresponding to the HTML pages of the website. For
the translation of the Joomla! design elements into
WebML elements, we have defined appropriate
WebML representations (combination of units and
links) for all the types of components and modules.
The complete list of the charasteristic values and
WebML representations for each type of components
and modules is available in (CMS Modeling, 2015).
By mapping every type of components and modules
found within the HTML code of a page to its
corresponding WebML representation, we manage to
represent the organization of the website’s pages as a
set of WebML elements i.e. to extract its hypertext
model. The hypertext model extraction process
described above is supported by a set of tools as
depicted in Figure 2.

By given the URL of a website as an input, the
Web Crawler crawls all the pages of the website
which are then passed as an input to the Hypertext
Model Extractor which parses them one-by-one in

Figure 2: The hypertext model extraction process.

order to identify their organization as a set of
components and modules. As we mentioned earlier,
this is achieved by parsing the HTML code of a page
and locating the occurrences of all the characteristic
values for the components and modules. For example,
Figure 3(a) presents the Joomla! design elements that
have been identified for the "Deposits" page of the
AtticaBank website. As we can see, the page consists
of the "Article Category List" component which
displays a list of the articles of the "Deposits"
category and a set of modules such as menus,
breadcrumbs etc. Once this is done for all the pages
of the website, the tool translates the identified
Joomla! design elements of every page into the XML
textual specification of their corresponding WebML
representations. Figure 3(b) presents the
corresponding WebML translation of the Joomla!
elements found in Figure 3(a). Finally, the tool
produces an XML file as an output, containing the
XML textual representations of the Joomla! elements
found in all the pages of the website. This way, we
can obtain the XML specification of the application’s
hypertext model.

4.2 Identification of the Recurrent
Patterns

After the extraction of the application’s model, the
next step is to inspect and analyze it in order to detect
the potential cases of design reuse. At the hypertext
level of an application, we consider as design reuse
the recurrent patterns (i.e. configuration of WebML
elements) within its hypertext model performing a
similar functionality. Therefore, we perform a
pattern-based analysis of the recovered model aiming
to identify the occurrences of all the incorporated
recurrent patterns and evaluate the possibility of
implying design reuse. Given that the WebML

Hypertext

Model

Automated Analysis and Evaluation of Web Applications Design: The CMS-based Web Applications Case Study

133

Figure 3: (a) The organization of a page in terms of Joomla!
design elements. (b) The organization of a page in terms of
WebML elements. HierarchicalIndexUnit is colored in red,
IndexUnit is colored in fuchsia and EntryUnit is colored in
orange.

elements constituting a pattern represent Joomla!
components and modules, the identified patterns
actually correspond to configurations of Joomla!
front-end design elements which when located in a
particular layout may serve a certain application
purpose.

The identification of patterns (their core
specifications along with their starting and
termination variants) within a large collection of
WebML elements, such as the application’s siteview,
can be reduced into the domain of graph mining and
particularly to the subgraph isomorphism problem.
The latter is synopsized in its general form to finding
whether the isomorphic image of a subgraph exists in
a larger graph, an example of which is depicted in
Figure 4 (the subgraph has WebML elements on its
nodes). The subgraph in Figure 4(b) is isomorphic to
the subgraph in Figure 4(a). Despite the different
configuration of the nodes in the two subgraphs, the
edges connecting the nodes of the same colour remain
the same. Table 1 contains some sequences of the
nodes that are connected in the subgraphs in Figure 4.

For example, a sequence can start from node M,
from which one can navigates to node I and then to
node E, and so on. By observing the node sequences,

Figure 4: An example of two isomorphic WebML
subgraphs. M stands for the MultidataUnit, I for the
IndexUnit, D for the DataUnit and E for the EntryUnit.

one can notice that they can reveal the recurrent
patterns within a graph, both their core specifications
and their variants. In Table 1, there are two patterns.
For example, the core specification of the first one
consists of a MultidataUnit (M) which is connected to
an IndexUnit (I) which in turn is connected to an
EntryUnit (E). There is also a starting variant
consisting of a DataUnit (D) passing content to the
core specification and a termination variant
consisting of a MultidataUnit (M) receiving content
from the core specification. Clearly, the identification
of the isomorphic subgraphs within a graph is an
alternative way to obtain the identification of the
incorporated recurrent patterns. Based on this, we can
consider the siteview of the previously extracted
hypertext model as a graph of WebML elements and
attempt to identify the recurrent patterns by locating
all the isomorphic subgraphs within the graph. To
achieve this, we first transform the XML
specification of the hypertext model into a directed
graph (WebML Hypertext graph). Then, by applying
a graph mining algorithm, we identify the
occurrences of all the recurrent isomorphic
subgraphs-patterns within this graph. The following
subsections present these two tasks in detail.

4.2.1 Hypertext Model Transformation into
Graph

We define the siteview of the hypertext model as a
directed graph of the form G (V, E, fV, fE), comprising
a set of nodes V, a set of edges E, a node labelling

Table 1: The sequences of the connected nodes.

Starting
Variant

Pattern’s Core
Specification

Termination
Variant

 M I E
 M I E M

D M I E
 I M D

E I M D
 I M D E

WEBIST 2016 - 12th International Conference on Web Information Systems and Technologies

134

Figure 5: Transformation of a WebML hypertext
composition to its graph equivalent.

function fV: V → ΣV and an edge labelling function
fE: E → ΣE. The function fV assigns labels to the nodes
in V from the alphabet ΣV = {Siteview (S), Page (P),
DataUnit (D), MultidataUnit (M), IndexUnit (I),
HierarchicalIndexUnit (H), MultichoiceIndexUnit
(MI), EntryUnit (E), ScrollerUnit (S)} which includes
all the different types of WebML elements. Similarly,
function fE assign labels to the edges in E from the
alphabet ΣE = {S_P, P_U, U_P, U_U}. The label S_P
denotes the containment of a page in a siteview, the
label P_U denotes the containment of a content unit
within a page, the label U_P denotes the link from a
content unit to a page and finally the label U_U
denotes the link between content units.

To transform the XML specification of the
hypertext model into a directed graph, we parse the
previously created XML file and create the graph as
follows: we assign a node to every page and content
unit of the siteview. Starting from the root node, the
S node representing the siteview, we introduce edges
labeled as S_P to the nodes corresponding to its
WebML pages. Then, we locate edges labeled as P_U
from the P (Page) nodes to the nodes corresponding
to the WebML units they contain. Similarly, we
locate edges with the labels U_P and U_U. An
example of transforming an instance of a siteview
consisting of two pages into its graph equivalent is
depicted in Figure 5.

4.2.2 Mining the Recurrent Patterns

In order to identify the recurrent patterns lying within
the WebML Hypertext graph, based on the approach
of the subgraph isomorphic problem, we need to
apply a graph mining algorithm for detecting the
isomorphic subgraphs images. This problem has
proven to be NP-complete. However, quite a few
heuristics have been proposed to solve it, among
which we have selected the most prominent one, the

gSpan algorithm (Yan et al, 2002). More specifically,
gSpan addresses the problem of frequent subgraph
mining. Intuitively, gSpan traverses the WebML
Hypertext graph G and finds all the smaller subgraphs
g in G that occur frequently. A subgraph g is frequent,
if its occurrence frequency in G, denoted as
support(g), is no less than a minimum support
threshold (minSup). In a more formal definition, the
problem of frequent subgraph mining is to find any
subgraph g into G so that support(g) ≥ minSup. When
looking for the occurrences of a subgraph in G, the
algorithm encounters except for its identical
occurrences, its isomorphic images too. In this way,
the graph G is analyzed in terms of its frequent
subgraphs (representing recurrent patterns). To apply
the gSpan on the graph, we use the Parsemis project
(Philippsen, 2011) which supports an implementation
of the gSpan algorithm within a graphical
environment for visualizing the identified frequent
subgraphs. An example can be found in Figure 6
which presents a case in which gSpan has identified a
set of frequent subgraphs within the hypertext model
of the AtticaBank website.

The Parsemis tool provides the identified
subgraphs in a TXT file containing the configuration
of the WebML elements that compose each subgraph
as well as their occurrences in the graph. Then, we
process this file in a way similar with the one
presented in the example of Table 1 (based on the
sequences of the connected nodes in the subgraphs)
and identify the core specifications and the starting
and ending variants of each identified pattern.

In order to examine whether the identified
recurrent patterns perform similar functionality (so
that we can consider them as design reuse), it is
necessary to additionally inspect them by means of
the content displayed by their constituent WebML
units and particularly their semantic closeness. This
means that if we have identified a pattern of Joomla!

Figure 6: An instance of the Parsemis Project while
detecting the frequent subgraphs in the WebML hypertext
graph of the AtticaBank website.

Automated Analysis and Evaluation of Web Applications Design: The CMS-based Web Applications Case Study

135

Table 2: Average semantic similarity computation for the
occurrences of an identified pattern.

P
A

T
T

E
R

N

Module Component Component Component
Occ.1 Individu

als
Top
Menu

Individuals
Deposits
Categories
Page

Individuals
Deposits
Time
Accounts
Category
Page

Individu
als
Single
Term
Deposits
Details

Occ.2 Business
Top
Menu

Business
Deposits
Categories
Page

Business
Deposits
Time
Accounts
Category
Page

Business
Single
Term
Deposits
Details

Sem
Sim
Score
Occ1.
-
Occ.2

80% 90% 100%

AverageSemSimScore Occ1.-Occ.2 90%
Occ.
3

Individua
ls
Top
Menu

Individuals
Loans
Categories
Page

Individuals
Mortgage
Loans
Category
Page

Individu
als
Attica
Housing
Mortgag
e Loan
Details

Sem
Sim
Score
Occ1.
-
Occ.3

30% 30% 20%

AverageSemSimScore Occ1.-Occ.3 27%

front-end elements, we also have to examine the
content displayed by them, for every occurrence of
the pattern, in order to verify if there is any kind of
common functionality performed by them. An
example would be to capture a pattern used for
displaying information about products of a specific
product category in an e-commerce website.

The content displayed by a WebML unit is
specified by its source entity property which refers to
the table of the underlying database that provides
content to it. In this work, we assume that we do not
have access to the database of the website under
study, due to the fact that this is the common scenario
in real-life websites. To capture the semantic
closeness of the content displayed by the pattern’s
WebML units (i.e. the Joomla component-module
they represent) among the occurrences of the
identified patterns, we have defined two metrics, the
"SemSimScore" and the "AverageSemSimScore".

On the grounds that the main content of a page,
published by components, is indicative of the page’s
semantics, the "SemSimScore" metric addresses the

semantic similarity measurement of the content
published by the pattern’s WebML units which
represent Joomla! components. This is why there are
empty cells for the"SemSimScore" computations in
Table 2, when it comes to measure semantic
similarity among modules. Then, the
"AverageSemSimScore" computes the average value
of the individual "SemSimScore" values between the
pattern occurences. The rationale behind this is that
the content of the pages that derive from the same
database’s table usually has a very close semantic
relation. In Table 2, we can see an example of an
identified pattern performing the following behavior:
from a starting point e.g. a menu link
(HierarchicalIndexUnit), the user navigates to a page
displaying a list of the categories of a subject such as
a speficic information object type (IndexUnit), then
after selecting a category, he navigates to a page
displaying a list of the subcategories (IndexUnit) of
the selected category and finally after selecting a
subcategory, he navigates to a page displaying the
details of that subcategory (DataUnit). This pattern
occurs frequently in the AtticaBank website. In Table
2, we can see three occurrences of the pattern. In
Occ.1, all the categories and the subcategories of the
deposits for Individuals customers are displayed. In
Occ.2 the same happens except for the fact that it is
intended for Business customers. By comparing the
semantic similarity of the content displayed by the
pattern’s WebML units for these two occurrences,
they have an AverageSemSimScore of 90% which
means that they are semantically very close. Occ.3
refers to the case of displaying all the categories and
the subcategories of the loans for Individuals
customers. In the same way, we can compute the
AverageSemSimScore for Occ.1 and Occ.3 which is
27%, implying that these occurrences are not
semantically close. This is actually expected, since
their only common base is that they refer to the
customer of type Individuals. The rest of the content
displayed on them is irrelevant.

By using the AverageSemSimScore metric, we
can obtain a safe estimation of the content semantic
closeness among the occurrences of the identified
patterns. In Figure 7(b), we can see the real tables of
the AtticaBank database schema while in Figure 7(a),
we can see the source entities of the pattern’s WebML
units for the occurrences Occ.1 and Occ.2. Obviously,
the high semantic similarity score that we have
computed for Occ.1 and Occ.2 is justified by the fact
that supposing we have access to the database, the
WebML units for these occurrences would have
displayed content from the same database tables. We
consider that these two occurrences perform similar

WEBIST 2016 - 12th International Conference on Web Information Systems and Technologies

136

Figure 7: (a) The entities of the WebML units and (b) the
AtticaBank website’s database.

functionality which is to display the details of a
specific type of deposits.

We compute the AverageSemSimScore metric
for all the occurrences of the identified patterns (core
specification and variants) and we select and store in
a "Patterns Repository" only the ones having an
AverageSemSimScore over 70%. The reason for this
is to detect cases having a high possibility of
performing a kind of similar functionality. To
compute the "SemSimScore" metric, we have used
the methodology proposed in (Simpson et al, 2010)
for WordNet-based semantic similarity measurement.
Detailed information can be found in (Simpson et al,
2010).

4.3 Evaluation of Pattern Variants
Consistent Use

In this final step, we focus on evaluating the
consistent design reuse. More specifically, we
calculate some metrics to evaluate whether the
patterns stored in the "Patterns Repository" are used
consistently throughout the hypertext model.
Fraternali et al. (2002) have introduced a
methodology for the evaluation of the consistent
application of predefined WebML design patterns
within the conceptual schema of an application. We
utilize this methodology and extend it in order to
introduce metrics computing the consistent
application of a pattern’s variants throughout the
hypertext model of the application. Assuming that a
pattern can have N starting and M termination
variants, we have defined two metrics that compute
the statistical variance of the occurrences of the N
starting and the M termination variants of the pattern,
normalized according to the best-case variance. These
metrics are called Start-Point Metric (SPM) and End-
Point Metric (EPM) respectively. SPM is defined as
(EPM is defined in an analogous way)

ܯܲܵ ൌ ଶߪ ߪ
ଶ⁄ 	 (1)

 ଶ is the statistical variance of the N starting variantsߪ
occurrences which is calculated according to the
formula (2):

ଶߪ ൌ
1
ܰ

൬ െ	
1
ܰ
൰
ଶ

						

ே

ୀ

 (2)

where is the percentage of occurrences for the i-th
pattern variant. ߪ

ଶ is instead the best case variance
and it is calculated by the formula (2) assuming that
only one variant has been coherently used throughout
the application.

The last step in the metrics definition is the
creation of a measurement scale to define a mapping
between the numerical results obtained through the
calculus method and a set of (predefined) meaningful
and discrete values. According to the scale types
defined in the measurement theory, the SPM metric
adopts an ordinal nominal scale; each no minal value
in the scale expresses a consistency level,

Table 3: The measurement scale for the SPM metric.

SPM range Measurement scale value
 0 ≤ SPM < 0.2 Insufficient
0.2 ≤ SPM < 0.4 Weak
0.4 ≤ SPM < 0.6 Discrete
0.6 ≤ SPM < 0.8 Good

 0.8 ≤ SPM ≤ 1 Optimum

Automated Analysis and Evaluation of Web Applications Design: The CMS-based Web Applications Case Study

137

corresponding to a range of numerical values of the
metrics as defined in Table 3. The same scale covers
the EPM metric as well.

We compute the SPM and EPM metrics for all the
occurrences of all the patterns variants and store the
results in the "Results Repository". This repository
contains the ranking of the pattern variants stored in
the "Patterns Repository" according to their SPM and
EPM values. The results are also provided in a TXT
file ("Results"). An example can be found in Table 4.
We consider that the core specification of the pattern
consists of an IndexUnit which navigates to another
IndexUnix which in turn results to a DataUnit. This is
a pattern for browsing a hierarchy of categories and
subcategories related to a specific information object
(i.e. the Deposit object type). In Table 4, there are two
starting variants of this pattern. The first one, Occ.1,
consists of an HierarchicalIndexUnit passing content
to the core specification, some occurrences of which
we have seen in Table 2 (Occ.1, Occ.2, Occ.3). The
second variant consists of a DataUnit instead of a
HierarchicalIndexUnit. One occurrence of this
variant can be found in Occ.4 (Table 4) in which from
a starting point e.g. a banner on the Home page of the
AtticaBank website, the user can have access to all
the categories and the subcategories of the deposits
for Individuals customers. In fact, the occurrence
Occ.4 of the second variant performs the same
functionality with the occurrence Occ.1 of the first
variant, except for the fact that they differ on the
starting point they provide to users for browsing the
hierarchy of categories and subcategories. The value
of the SPM metric for the first variant is about 0.68
(‘Good’) whereas the value for the second variant is
0.39 (‘Weak’). The ranking of the first variant as
‘Good’ is expected since it occurs frequently on the
AtticaBank website. On the other hand, the low value
of the second variant is due to the fact that it has a
very limited number of occurrences. By observing the
low value of the second variant on the "Results" file,
developers can inspect its identified occurrences on
the AtticaBank website in order to verify if it actually
a design inconsistency. It is worth noting that in some
cases it could happen that detected inconsistencies
can be caused by conscious design choices in order to
respond to specific application constraints. In the case
of the AtticaBank website, despite its low SPM value,
the second variant is indeed an explicit choice of the
designers in order to provide a quick link to the
Individuals Deposits Page for increasing its
popularity. In the case of another website though, it
could indicate a design mistake. Furthermore,
developers can consider adding similar banners for

direct navigation to other types of deposits pages, so
that to enhance the application’s usability.

Table 4: Pattern variants.

V
A

R
IA

N
T

 1

Module Component Component Component
Occ.1 Individ

uals
Top
Menu

Individuals
Deposits
Categories
Page

Individuals
Deposits
Time
Accounts
Category
Page

Individuals
Single Term
Deposits
Details

V
A

R
IA

N
T

 2

Module Component Component Component
Occ.4 Home

Page
Banner

Individuals
Deposits
Categories
Page

Individuals
Deposits
Time
Accounts
Category
Page

Individuals
Single Term
Deposits
Details

This is just a simple example showing how the
proposed methodology can work as a black box
analysis of the application’s model able to highlight
potential design problems to designers. We are now
developing a graphical environment for visualizing
the results for each pattern’s variants.

5 CONCLUSIONS AND FUTURE
WORK

In this paper, we have illustrated a model-driven
approach for the automated design analysis and
evaluation of CMS-based Web applications. To
achieve this, we focused on evaluating the
consistency of design reuse within the hypertext
model of a website. We provide an automated way for
extracting the hypertext model of a website which is
then submitted to a pattern-based analysis for the
identification of all the occurrences of the recurrent
patterns lying within it. Finally, the identified patterns
variants are evaluated towards their consistent use
throughout the application. Most of the work

WEBIST 2016 - 12th International Conference on Web Information Systems and Technologies

138

presented here can be generalized also to web
applications built on other CMS platforms with slight
straightforward modifications.

By applying the methodology on a website,
developers can gain important information regarding
its design quality. On one side, the methodology can
detect effective reusable design solutions which are
consistenlty used throughout an application model for
solving a frequently occuring problem. Such reusable
solutions can be used as building blocks for
implementing certain behavior in future designs.
They also facilitate the discovery of new design
patterns for the CMS domain. On the other side, the
methodology can also detect recurrent design
constructs indicating ad-hoc forms of reuse, causing
design inconsistencies and implying the need for
refactoring, in order to improve the application’s
consistency. Developers can inspect the occurrences
of such fragments on the website, as they are
highlighted by the proposed methodology.

In the future, we plan to apply the methodology to
a very large number of domain-specific websites for
two main reasons. The first one is to better refine the
methodology itself and fine-tune the currently used
evaluation metrics, or even explore new ones. The
second reason is to populate a central patterns
repository, containing all patterns that we can
possibly identify within the various websites designs.
In this way, it is possible to come up with useful
design guidelines for Joomla!-based websites. Our
vision is to create a knowledge base of navigation and
interface patterns for the CMS domain in order to
form a common vocabulary among designers for
solving common CMS design problems and
producing quality CMS designs.

REFERENCES

Aminzadeh, N., Salim, S.S., 2010. Detecting and
visualizing web design patterns, In the Proceedings of
the 2nd International Conference on Computer and
Automation Engineering (ICCAE), Vol. 2, pp. 100-103.

Aragón, G., Escalona, M. J., Lang, M., Hilera, J. R., 2013.
An Analysis of Model-Driven Web Engineering
Methodologies, In International Journal of Innovative
Computing, Information and Control, Vol. 9, no. 1, pp.
413-436.

Bernstein, M., 1998. Patterns of Hypertext. In Hypertext 98
- Proceedings of the Ninth ACM Conference on
Hypertext and Hypermedia, Pittsburgh, PA, USA, June
20-24, 1998, pp. 21-29.

Ceri S., Fraternali P., Bongio A., 2000. Web Modeling
Language (WebML): a Modeling Language for

Designing Web Sites. In the Proceedings of WWW
Conference. Amsterdam, NL, May 2000, pp. 137-157.

CMS Modeling, (2015) Available at: http://
alkistis.ceid.upatras.gr/research/modeling/CMSModel
Extractor/ (Accessed: 10 November 2015).

Díaz, P., Rosson, M.B., Aedo, I., Carroll, J.M., 2009. Web
design patterns: Investigating user goals and browsing
strategies. In: Pipek, V., Rosson, M.B., de Ruyter, B.,
Wulf, V. (eds.) IS-EUD 2009. LNCS, vol. 5435, pp.
186–204. Springer, Heidelberg.

Drupal CMS (2015). Available at: https://www.drupal.org/
(Accessed: 10 November 2015).

Fraternali, P., Matera, M., Maurino A., 2002. WQA: an
XSL Framework for Analyzing the Quality of Web
Applications. In the Proceedings of the 2nd
International Workshop on Web-Oriented Software
Technologies – IWWOST’02. Malaga, Spain, June 10–
14, 2002, pp. 46–61.

Fraternali, P., Tisi, M., 2008. Building community-based
Web applications with a Model-Driven approach and
design patterns. In Murugesan, S. (ed.) Handbook of
Research on Web 2.0, 3.0, and X.0: Technologies,
Business, and Social Applications, IGI Global.

Ivory, M. Y., Megraw, R., 2005. Evolution of web site
design patterns. In ACM Trans. Inf. Syst., 23(4):463–
497.

Joomla! CMS (2015). Available at: http://www.joomla.org/
(Accessed: 10 November 2015).

Philippsen, M., 2011. ParSeMiS - the Parallel and
Sequential Mining Suite. Available at:
https://www2.cs.fau.de/EN/research/zold/ParSeMiS/in
dex.html (Accessed: 10 November 2015).

Rigou, M., Sirmakessis, S., Tzimas G., 2006. Model
Cloning: A Push to Reuse or a Disaster? In Adaptive
and Personalized Semantic Web - Proceedings of the
16th ACM Hypertext, Springer, Studies in
Computational Intelligence (SCI) Vol. 14, pp. 37-55.

Simpson, T., Dao, T., 2010. WordNet-based semantic
similarity measurement. Available at: http://
www.codeproject.com/Articles/11835/WordNet-
based-semantic-similarity-measurement (Accessed: 10
November 2015).

Website patterns (2015). Available at: http://c2.com/cgi/
wiki?HypermediaDesignPatternsRepository
(Accessed: 10 November 2015).

Welie, M. v. (2008): Interaction Design Patterns. Available
at http://www.welie.com/patterns/ (Accessed: 10
November 2015).

Yan, X., Han, J., 2002. gSpan: Graph-based substructure
pattern mining. In ICDM '02, page 721,
Washington,DC, USA, 2002. IEEE Computer Society.

Automated Analysis and Evaluation of Web Applications Design: The CMS-based Web Applications Case Study

139

