
On the Support of a Similarity-enabled Relational Database
Management System in Civilian Crisis Situations

Paulo H. Oliveira, Antonio C. Fraideinberze, Natan A. Laverde, Hugo Gualdron,
Andre S. Gonzaga, Lucas D. Ferreira, Willian D. Oliveira, Jose F. Rodrigues-Jr.,

Robson L. F. Cordeiro, Caetano Traina Jr., Agma J. M. Traina and Elaine P. M. Sousa
Institute of Mathematics and Computer Sciences, University of Sao Paulo,

Av. Trabalhador Sancarlense, 400, Sao Carlos, SP, Brazil

Keywords: Crisis Situation, Crisis Management, Relational Database Management System, Similarity Query.

Abstract: Crowdsourcing solutions can be helpful to extract information from disaster-related data during crisis man-
agement. However, certain information can only be obtained through similarity operations. Some of them
also depend on additional data stored in a Relational Database Management System (RDBMS). In this con-
text, several works focus on crisis management supported by data. Nevertheless, none of them provide a
methodology for employing a similarity-enabled RDBMS in disaster-relief tasks. To fill this gap, we intro-
duce a methodology together with the Data-Centric Crisis Management (DCCM) architecture, which employs
our methods over a similarity-enabled RDBMS. We evaluate our proposal through three tasks: classification
of incoming data regarding current events, identifying relevant information to guide rescue teams; filtering
of incoming data, enhancing the decision support by removing near-duplicate data; and similarity retrieval of
historical data, supporting analytical comprehension of the crisis context. To make it possible, similarity-based
operations were implemented within one popular, open-source RDBMS. Results using real data from Flickr
show that our proposal is feasible for real-time applications. In addition to high performance, accurate results
were obtained with a proper combination of techniques for each task. Hence, we expect our work to provide a
framework for further developments on crisis management solutions.

1 INTRODUCTION

Crisis situations, such as conflagrations, disasters in
crowded events, and workplace accidents in industrial
plants, may endanger human life and lead to finan-
cial losses. A fast response to this kind of situation
is essential to reduce or prevent damage. In this con-
text, software systems aimed at supporting experts in
decision-making can be used to better understand and
manage crises. A promising line of research is the use
of social networks or crowdsourcing (Kudyba, 2014)
to gather information from the crisis site.

Several desirable tasks can be performed by soft-
ware systems designed for aiding in decision-making
during crises. One of such tasks is to detect the evi-
dences that best depict the crisis situation, so that res-
cue teams can be aware of it and prepare themselves
properly. For instance, identifying fire or smoke on
multimedia data, such as images, videos or textual re-
ports, usually points to conflagration. Some relevant

proposals in this direction comprehend fire and smoke
detection based on image processing approaches (Ce-
lik et al., 2007) and techniques for fire detection de-
signed over image descriptors that focus on detecting
fire from social media images (Bedo et al., 2015).

Another important task is to filter the information
received from crowdsourcing solutions dedicated to
collecting data from crises. When reporting incidents,
users might end up sending too much similar informa-
tion, such as pictures from the same angle of the same
object. Such excess of similar data demands a longer
time to be processed. Moreover, it turns the decision-
making process more time-consuming. Therefore, re-
moving duplicates is an essential task in this context.

The task of searching for similar data in historical
databases can support decision-making as well. Take
for instance a database that contains images and tex-
tual descriptions regarding past crisis situations. If the
crowdsourcing system gets, for instance, images de-
picting fire, a query might be posed on the database to
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retrieve similar images and the corresponding textual
descriptions. Then, based on these results, specialists
would potentially infer the kind of material burning in
the crisis, by analyzing the color tone of the smoke in
the retrieved images and their textual descriptions.

For all those tasks, it is desirable that a commodity
system provide functionalities over existing software
infrastructure. Commodity systems that can play this
role are the Relational Database Management Sys-
tems (RDBMS). They are largely available in the cur-
rent computing technology and are able to bring new
functionalities without the need of redesigning the ex-
isting software. Moreover, RDBMS provide efficient
data storage and retrieval. However, they do not read-
ily support similarity operations, which are needed to
address the aforementioned tasks.

Several works in the literature aim at embedding
similarity support in RDBMS. Nevertheless, the liter-
ature lacks a methodology for employing a similarity-
enabled RDBMS in the context of crisis management.
This work aims at filling that gap. Our hypothesis is
that providing similarity support on an RDBMS helps
the decision support in crisis situations.

We contribute with a data-centric architecture for
decision-making during crisis situations by means of
a similarity-enabled RDBMS. Our proposal is evalu-
ated using an image dataset of real crises from Flickr
in performing three tasks:

• Task 1. Classification of incoming data regarding
current events, detecting the most relevant infor-
mation to guide rescue teams in the crisis site;

• Task 2. Filtering of incoming data, enhancing the
decision support of rescue command centers by
removing near-duplicate data;

• Task 3. Similarity retrieval from past crisis situa-
tions, supporting analytical comprehension of the
crisis context.

This work has been conducted to cater to demands
of the project RESCUER: Reliable and Smart Crowd-
sourcing Solution for Emergency and Crisis Manage-
ment1, supported by the European Union’s Research
and Innovation Funding Program FP7.

The results of our experimentation show that the
proposed architecture is effective over crisis scenarios
which rely on multimedia data. In addition to the high
performance achieved, accurate results are obtained
when using a proper combination of techniques.

The rest of the paper is structured as follows. Sec-
tion 2 presents the related work and Section 3 presents
the main concepts for similarity support on RDBMS.

1http://www.rescuer-project.org/

Section 4 describes the new Data-Centric Crisis Man-
agement architecture, on which the proposed method-
ology is based. Section 5 presents our methodology,
describes the experiments and discusses the results.
Finally, the conclusions are presented in Section 6.

2 RELATED WORK

Existing research on crisis management highlights the
importance of computer-assisted systems to support
this task. The approaches may be categorized into dif-
ferent types according to their purpose.

One type refers to localization, whose purpose is
to determine where victims are located during a disas-
ter. There are works that accomplish this task by em-
ploying cell phone localization techniques, such as In-
ternational Mobile Subscriber Identity (IMSI) catch-
ers (Reznik et al., 2015).

Another type regards logistics. Examples compre-
hend an integer programming technique for modeling
multiple-resource emergency responses (Zhang et al.,
2012) and a methodology for routing rescue teams to
multiple communities (Huang et al., 2013).

A different line of work refers to decision-making
based on social media (Gibson et al., 2014). Most of
the work focus on textual data, specially from services
like Twitter (Ghahremanlou et al., 2015).

Although all the aforementioned approaches have
been conceived to cater to different requirements, all
of them share the characteristic of using Information
Communication Technology (ICT) in response to cri-
sis situations. The decision-making systems based on
incoming data have one more characteristic: the par-
ticipation of people somehow involved in the disaster.

Existing work have focused on the importance of
crowdsourcing data for crisis management in the post-
2015 world (Halder, 2014). Therefore, to describe
our methodology, we assume the existence of crowd-
sourcing as a subsystem dedicated to gathering input
data. Additionally, we assume the existence of a com-
mand center, where analysts evaluate the input data in
order to guide the efforts of a rescue team at the crisis
site.

The work of Mehrotra (Mehrotra et al., 2004) is
the closest approach with respect to our methodology.
That work presents an interesting approach, but it fo-
cuses mostly on textual data and spatial-temporal in-
formation, rather than on more kinds of complex data,
such as images. Furthermore, it lacks a methodology
for employing content-based operations. We fill those
gaps by providing a methodology to perform such op-
erations over disaster-related data and provide useful
information to rescue teams.
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3 BACKGROUND

3.1 Content-based Retrieval

Complex data is a common term associated with ob-
jects such as images, audio, time series, geographical
data and large texts. Such data do not present order
relation and, therefore, are unable to be compared by
relational operators (<, ≤, ≥, >). Equality operators
(=, 6=) could be used, but they have little or no mean-
ing when employed on such data. Nevertheless, com-
plex data can be compared according to their content
by using similarity concepts (Barioni et al., 2011).

The interaction with a content-based retrieval sys-
tem starts as the user enters a query, providing a com-
plex object as the query example. This complex ob-
ject is submitted to a feature extractor, which extracts
representative characteristics from it and generates a
feature vector. The feature vector is sent to an evalua-
tion function, which compares another feature vector
stored in the database and returns a value representing
the dissimilarity degree (also known as the distance)
between both feature vectors. This comparison is re-
peated over the database, generating the results at the
end of the process and sending them to the user.

Two of the most common queries used in content-
based retrieval are the Range Query and the k Nearest
Neighbor (kNN) Query (Barioni et al., 2011). Range
Query is defined by the function Rq(sq,ξ), where sq
represents an object from data domain S and ξ is the
radius used as distance constraint. The query returns
all objects within a distance ξ from sq. kNN Query
is defined by the function kNNq(sq,k), where sq rep-
resents an object from the data domain S and k is the
number of elements to be returned. The query returns
the k most similar objects to sq. The kNN Queries are
employed in the context of Instance-Based Learning
(IBL) algorithms, such as the kNN Classifier, which is
used in our proposal and thus discussed in Section 3.2.

The feature extraction is usually required because
the original representation of a given complex object
is not prone to useful and efficient computation. Eval-
uation functions are able to compute the dissimilarity
degree of a pair of feature vectors. These subjects are
discussed in Sections 3.3 and 3.4.

The similarity retrieval process can be performed
outside an RDBMS. However, enabling an RDBMS
with similarity is a promising approach and there are
several ways for doing so, as discussed in Section 3.5.

3.2 kNN Classifier

The concept of Instance-Based Learning (IBL) (Aha
et al., 1991) comprehends supervised learning algo-

rithms that make predictions based solely on the in-
stances previously stored in the database. In these al-
gorithms, no model is built. The knowledge is repre-
sented by the data instances already stored and classi-
fied. Then, new instances are classified in relation to
the existing stored instances, according to their sim-
ilarity. One of the main IBL algorithms is the well-
known kNN Classifier (Fix and Hodges Jr., 1951).

For a given unlabeled instance, the kNN Classi-
fier retrieves from the database the k most similar in-
stances. Following, it predicts the label based on the
retrieved instances, according to some predefined cri-
terion. A simple one is to assign the label of the pre-
vailing class in the k nearest neighbors. Another one
is to weigh the retrieved instances by distance, so the
closest ones have a higher influence.

3.3 Feature Extractors

One of the main tasks for retrieving complex data by
content is the feature extraction process, which maps
a high-dimensional input data into a low-dimensional
feature space, extracting useful information from raw
data while reducing their content. Using proper fea-
ture extractors for a complex data domain leads to re-
sults closer to what the users expect (Sikora, 2001).

Several feature extractors have been developed for
different application domains. The main characteris-
tics investigated in the context of images are color,
texture and shape. There are several feature extractors
for such characteristics, some of which are part of the
MPEG-7 standard (MultiMedia, 2002). In this work,
we employ a color-based and a hash-based extractors.

Color-based Extractors. Color-based extractors
are commonly used as a basis for other extractors. For
this reason, they are the most used visual descriptors
in content-based image retrieval. The color-based fea-
ture extractors in the MPEG-7 standard are commonly
employed in the literature. One of them is the Color
Structure Descriptor, which builds a color histogram
based on the local features of the image.

Perceptual Hash. An extractor suitable for near-
duplicate detection is the Perceptual Hash2. It gener-
ates a “fingerprint” of a multimedia file derived from
various features from its content. These “fingerprints”
present the characteristic of being close to one another
if the extracted features are similar.

3.4 Evaluation Functions

The dissimilarity between two objects is usually de-
termined by a numerical value obtained from an eval-

2http://www.phash.org/
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uation function. Objects with smaller values are con-
sidered to be more alike.

The Minkowski Family comprehends evaluation
functions known as Lp metrics that are widely used in
content-based retrieval (Wilson and Martinez, 1997).
The L1 metric corresponds to the Manhattan Distance,
also noted as City-Block Distance. The L2 metric is
the well-known Euclidean Distance. Finally, there is
the L∞ metric, also noted as the Chebyshev Distance.

The Hamming Distance (Hamming, 1950), which
is another well-known evaluation function, counts the
substitutions needed to transform one of the input data
into the other. It can be employed in near-duplicate
detection tasks, since combining it with the Percep-
tual Hash leads to accurate results.

3.5 Similarity Support on RDBMS

SimDB (Silva et al., 2010) is a similarity-enabled
RDBMS, based on PostgreSQL. The similarity oper-
ations and keywords were included in its core. Equiv-
alence rules were also included, which allows alterna-
tive query plans. However, similarity queries are only
available for numerical data, and traditional queries
over other data types are not supported.

SIREN (Barioni et al., 2011) is a middleware be-
tween a client application and the RDBMS. The client
sends SQL commands extended with similarity key-
words, which are checked by SIREN to identify sim-
ilarity predicates. First, SIREN evaluates the similar-
ity predicates, accessing an index of feature vectors,
then uses the RDBMS for traditional predicates.

FMI-SiR (Kaster et al., 2011) is a framework that
operates over the RDBMS Oracle, employing user-
defined functions to extract features and to index data.
MedFMI-SiR is an extension of FMI-SiR for medical
images in the Digital Imaging and Communications
in Medicine (DICOM) format.

SimbA (Bedo et al., 2014) is a framework that ex-
tends the middleware SIREN. SimbA supports the in-
clusion and combination of feature extractors, evalu-
ation functions and indexes on demand. The queries
are processed just like on SIREN.

4 PROPOSED ARCHITECTURE

This section presents our architecture for crisis man-
agement, named as Data-Centric Crisis Management
(DCCM). Section 4.1 describes the scenario of a typ-
ical crisis situation managed by DCCM. Then, Sec-
tion 4.2 describes our architecture.

4.1 Crisis Management Scenario

Figure 1 shows the scenario of a crisis situation sup-
ported by DCCM.

Figure 1: Scenario of a typical crisis situation considering
our architecture for crisis management.

In a Crisis Situation, eyewitnesses can collect data
regarding the event. For instance, they can take pic-
tures, record videos and make textual reports, which
are sent to the Crowdsourcing System. In Figure 1, the
pictures taken by the eyewitnesses are redirected as an
Image Stream to DCCM. Then, the command center
can query DCCM for the Decision-Making process.

Additionally, the crowdsourcing system could re-
ceive other data, such as metadata (e.g. time and GPS
localization) or other data types (e.g. video and text).

4.2 Data-centric Crisis Management

The Data-Centric Crisis Management (DCCM) archi-
tecture is represented in Figure 2. The whole mech-
anism has three processes, each of them depicted in
the figure by arrows marked with the letters A, B and
C, which represent the tasks introduced in Section 1.

In a crisis situation, we consider the existence of
a crowdsourcing system that receives disaster-related
complex objects (A1) and submits them to DCCM.

Each object of the data stream is placed in a Buffer
and analyzed by the Filtering Engine. First, the en-
gine checks whether the object is a near duplicate of
some other object currently within the Buffer. For the
near-duplicate checking, the Filtering Engine uses the
Similarity Engine (A2) to extract a feature vector from
the object and compare it to the feature vectors of the
other objects within the Buffer. The object is marked
as a near duplicate when its distance from at least an-
other object is at most ξ, which is a threshold defined
by specialists according to the application domain.
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Figure 2: The DCCM architecture, consisting of the tasks:
classification (A), filtering (B) and historical retrieval (C).

If the object is not a near duplicate, then it is sub-
mitted to the Classification Engine (A3). The classi-
fication process uses Historical Records in a database
to train classifier methods (A4). Based on such train-
ing, the Classification Engine labels the object regard-
ing the event it represents. For instance, it can be la-
beled as “fire” or “smoke”. Finally, the Classification
Engine notifies the specialists with the now-classified
object for the Decision-Making process (A5).

If the object is a near duplicate, then it is not sub-
mitted to the Classification Engine. Instead, it stays
in the Buffer to be compared to others that come later.
Moreover, it is associated with the event of the object
of which it is a near duplicate. In Figure 2, the objects
from the same event have the same color. The white
objects marked with “?” have not been analyzed yet.

The Buffer may be determined either by a physical
size, such as the number of elements it holds, or by a
time window. In Figure 2, it is delimited by a time
window of length k, beginning at time t and ending
at time t− k. The Buffer is flushed at every k-th time
instant. Before flushing, the Representative Selector
selects the object of each group that best represents its
event (B1) according to a predefined criterion.

If a near-duplicate object is selected as the repre-
sentative, then it gets the label of the classified object
of its group. The already-classified object, in turn, is
marked as near duplicate. On the other hand, if the se-
lected representative is already the classified object of
its group, then no changes are made. Lastly, the clas-
sified objects are stored in the database and the near
duplicates are discarded, flushing the Buffer (B2).

There is another use case for DCCM, which refers
to the historical analyses. The Decision-Making team
may want to provide complex data samples to retrieve

similar events from the past. For this purpose, DCCM
provides the Historical Retrieval Engine (C1). First,
the engine extracts the features from each provided
sample (C2). Then, it compares the extracted features
against the Historical Records and provides its find-
ings to the Decision-Making team (C3).

5 CASE STUDY

In this section, we present the case study for evaluat-
ing the DCCM architecture over the three tasks dis-
cussed earlier. The experiments were carried out over
a real crisis dataset known as Flickr-Fire (Bedo et al.,
2015) containing 2,000 images extracted from Flickr,
1,000 labeled as “fire” and 1,000 as “not fire”.

5.1 Implementation of DCCM

To implement DCCM, we extended the open-source
RDBMS PostgreSQL. Our implementation, named as
Kiara, supports an SQL extension for building simi-
larity queries over complex data (Barioni et al., 2011).
Also through the SQL extension, Kiara allows manag-
ing feature extractors and evaluation functions, which
are dynamically (no recompilation) inserted and up-
dated by user-defined functions written in C++. Kiara
makes use of metatables to keep track of feature ex-
tractors and evaluation functions associated with the
attributes of complex data that a user instantiates.

To support the SQL extension, we built a parser
that works like a proxy in the core of Kiara. It receives
a query and rewrites only the similarity predicates, ex-
pressing them through standard SQL operators. Then,
it sends the rewritten queries to the core of Kiara.

After inserting a new extractor, the features are au-
tomatically extracted from the complex data (e.g. im-
age, video or text) and then stored in user-defined at-
tributes dedicated to representing such data. Similar-
ity queries can be included through PL/pgSQL func-
tions and new indexes can be included through the in-
terface known as Generalized Search Tree (GiST), al-
ready present in PostgreSQL. Moreover, Kiara allows
exploring alternative query plans involving traditional
and similarity predicates.

5.2 Classification of Incoming Data

5.2.1 Methodology

Classifying disaster-related incoming data is helpful
because of two reasons. One of them is to identify the
characteristic that best depicts the crisis situation. The
other is to store data properly labeled, which improves
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further queries on a historical database. To do so, the
DCCM architecture employs the kNN Classifier.

The parameter k can be selected arbitrarily. How-
ever, too small values can be noise-sensitive, whereas
too large values allow including more instances from
other classes, leading to misclassified instances.

5.2.2 Experimentation and Results

In this task, we classified the elements of the Flickr-
Fire dataset. For a robust experimentation, we used
the procedure 10-fold cross-validation for a kNN clas-
sifier using k = 10. We used the Manhattan Distance
and the extractor Color Structure Descriptor because
existing work showed that they allow accurate results
for fire detection (Bedo et al., 2015).

After 10 rounds of evaluation, we took the average
accuracy and the average F1 score. The result was the
same for both measures, which was 0.86. Considering
a real event, this capability would be able to automati-
cally group data according to their content, indicating
the main characteristics of the crisis and thus saving
the command center crucial time for fast response.

5.3 Filtering of Incoming Data

5.3.1 Methodology

In the task of filtering, we are interested in preventing
duplicate information from being classified and sub-
sequently sent to the command center.

To determine whether the incoming data is a near
duplicate of existing data, they must be compared by
their content. For this purpose, we must employ sim-
ilarity queries. In this case, though, we are restricted
to Range Queries. If the new object is a near duplicate
of an object in the buffer, then the distance from each
other is at most ξ, which is supposed to be a small
threshold (range), since we want to detect pairs of ob-
jects that, in essence, represent the same information.
Range Queries allow restricting results based on their
similarity, differently from kNN Queries, which do it
by the number of objects retrieved.

Hence, the DCCM architecture prevents near du-
plicates by using Range Queries. Each object that ar-
rives in the buffer is submitted to a default feature ex-
tractor. Then, a Range Query is performed by using
the extracted features as the sq object. The range value
ξ must be predefined as well, according to the appli-
cation domain. If at least one object from the buffer
is retrieved by the Range Query, then the sq object is
marked as a near duplicate.

5.3.2 Experimentation and Results

For this experiment, we employed the Hamming Dis-
tance with the Perceptual Hash extractor and assumed
a buffer size of 80. We filled the buffer with 80 images
from Flickr, of which 37 depict “small fire” events and
43 depict “big fire” events. Each of the 80 images was
used as the sq to a Range Query with ξ = 10.

The ξ parameter was set to retrieve around half of
the images (40 images approximately), in order to be
able to return an entire class (“big fire” or “small fire”)
of images. This allows evaluating the precision of the
queries with the Precision-Recall method.

Figure 3 shows the Precision-Recall curve for this
set of queries. The curve falls off only after 80% of
retrieval. This late fall-off is characteristic of highly
effective retrieval methods. In this result, one can no-
tice a precision above 90% up to 50% of recall.
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Figure 3: Precision-Recall in the process of filtering incom-
ing data in the buffer.

The results show that DCCM is expected to filter
out 90% of near-duplicate data. This is a strong indi-
cation that such capability can significantly improve
both efficiency and efficacy of a command center. Fil-
tering is the most desirable functionality considered
in this work. This is because crowdsourcing is highly
prone to produce redundant data. Right after a crisis is
installed, if filtering is not possible, the flow of infor-
mation streamed by eyewitnesses may be too high for
the command center to make good use of them. How-
ever, a similarity-enabled RDBMS in DCCM is able
to handle such situation with basic similarity queries.

5.4 Retrieval of Historical Data

5.4.1 Methodology

In the context of crisis management, the experts from
the command center might be willing to analyze data
from past events that are similar to the current ones.
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Such data may lead to decisions about how to proceed
with the current crisis. In these situations, similarity
queries play an important role.

Considering the DCCM architecture, this task can
be performed whenever the Decision-Making experts
want information similar to the current data. For ev-
ery notified data at point A5 of Figure 2, they might
provide it as the sq element to the Historical Retrieval
Engine in order to get similar information.

5.4.2 Experimentation and Results

For this experiment, we combined the Color Structure
Descriptor and the Manhattan Distance.

We performed Range and kNN Queries using each
of the 2,000 elements from the Flickr-Fire dataset as
the sq element. We set the k parameter to 1,000 and
the ξ parameter to 7.2, retrieving an entire class.
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Figure 4: Precision-Recall for retrieving historical data.

We generated the Precision-Recall curve depicted
in Figure 4. From these results, one can observe the
high precision around 0.8 when fetching 10% of rele-
vant data, roughly 100 images, and around 0.9 when
fetching 5%, nearly 50 images — a more realistic sce-
nario. These results point to an effective retrieval of
images based on their class.

From the point of view of a command center user,
there would be an ample knowledge bank from which
initial considerations could be drawn from the current
crisis. This initial knowledge has the potential of sav-
ing time of rescue actions by preventing past mistakes
and fostering successful decisions.

5.5 Overall Performance

Concerning a computer system, it is important to re-
ceive the correct response in a timely manner. There-
fore, we analyzed the overall performance of DCCM.
For this purpose, we carried out one experiment re-
garding scalability and three regarding the tasks.

Overall Scalability. A solution based on DCCM
spends most of its time receiving, storing and index-
ing data for the sake of similarity retrieval. Therefore,
such processing must be efficient. We carried out an
experiment to evaluate the time spent extracting fea-
tures and inserting them into the database. The aver-
age time of five rounds is presented in Figure 5.

From the results presented in the figure, one can
calculate that the solution is able to process up to 3
images per second — sufficient for most scenarios.
These numbers refer to a machine with a hard disk of
5,400RPM; such results could be improved by using
SSD disks or RAID subsystems.
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Figure 5: Time to extract features from one image and insert
them into the database.

From Figure 5, one can also observe that the time
spent inserting images is mostly taken by the feature
extraction, while the time for inserting the features re-
mains constant. The extraction time varies according
to the image resolutions, which range from 300x214
to 3,240x4,290 pixels in the Flickr-Fire dataset.

Table 1: Overall performance of DCCM over Flickr-Fire.

Task Average time (sec)
Classification 0.851
Filtering 0.057
Retrieval — Range Query 1.147
Retrieval — kNN Query 0.849

Table 1 presents the performance of DCCM to per-
form the three tasks of our methodology. We ran the
classification and filtering tasks 10 times, whereas the
retrieval tasks were performed 2,000 times, once for
each element in the dataset. For the classification task,
we used the distanced-weighted kNN classifier, with
k = 10 and performing 10-fold cross-validation. For
the filtering task, we used the 80 aforementioned near-
duplicate images and the range value ξ was set to 10.
Finally, in the retrieval tasks, ξ was set to 2.8 for the
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Range Queries, retrieving around 50 tuples, and k was
set to 50 for the kNN Queries. The results, which rep-
resent the average time to perform each task once, in-
dicate that our proposal is feasible in a real-time crisis
management application.

6 CONCLUSIONS

Fast and precise responses are essential characteris-
tics of computational solutions. In this paper, we pro-
posed the architecture of a solution that can achieve
these characteristics in crisis management tasks. In
the course of our work, we described the use of a
similarity-enabled RDBMS in tasks that could assist a
command center in guiding rescue missions. To make
it possible, we implemented similarity-based opera-
tions within one popular, open-source RDBMS.

The core of our work is related to an innovation
project led by the European Union; accordingly, we
applied similarity retrieval concepts in an innovative
manner, putting together relational and retrieval tech-
nologies. To demonstrate our claims, we carried out
experiments to evaluate both the efficacy and the ef-
ficiency of our proposal. More specifically, we intro-
duced the following functionalities:

• Classification of Incoming Data. We proposed
to employ kNN classification to classify incoming
data, aiming at identifying and characterizing cri-
sis situations faster;

• Filtering of Incoming Data. We proposed to em-
ploy Range Queries to filter out redundant infor-
mation, aiming at reducing the data load over the
system and over a command center;

• Retrieval of Historical Data. We proposed to
employ Range and kNN Queries to retrieve data
from past crises that are similar to the current one.

The results we obtained for each of these tasks al-
lowed us to claim that a similarity-enabled RDBMS is
able to assist in the decision support of command cen-
ters when a crisis situation strikes. We conclude by
stating that our work demonstrated the use of cutting-
edge methods and technologies in a critical scenario,
paving the way for similar systems to flourish based
on the experiences that we reported.
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