
Flexible Job-shop Scheduling Problem with Sequence-dependent Setup
Times using Genetic Algorithm

Ameni Azzouz, Meriem Ennigrou and Lamjed Ben Said
Lab. SOIE., Stratégies d’Optimisation et Informatique IntelligentE, ISG,

Institut Supérieur de Gestion, Université de Tunis, Tunis, Tunisie

Keywords: Job-shop Scheduling Problem, Flexible Manufacturing Systems, Sequence-dependent Setup Times, Genetic
Algorithms.

Abstract: Job shop scheduling problems (JSSP) are among the most intensive combinatorial problems studied in liter-
ature. The flexible job shop problem (FJSP) is a generalization of the classical JSSP where each operation
can be processed by more than one resource. The FJSP problems cover two difficulties, namely, machine as-
signment problem and operation sequencing problem. This paper investigates the flexible job-shop scheduling
problem with sequence-dependent setup times to minimize two kinds of objectives function: makespan and
bi-criteria objective function. For that, we propose a genetic algorithm (GA) to solve this problem. To evaluate
the performance of our algorithm, we compare our results with other methods existing in literature. All the
results show the superiority of our GA against the available ones in terms of solution quality.

1 INTRODUCTION

Job-shop scheduling problem is one of the most im-
portant fields in manufacturing optimization where a
set of n jobs must be processed on a set of m speci-
fied machines. Each job consists of a specific set of
operations, which have to be processed according to
a given order. This problem falls into the category of
NP-hard problems (Garey et al., 1976). The Flexible
Job Shop problem (FJSP), first introduced by (Nui-
jten and Aarts, 1996), is a generalization of the above-
mentioned problem, where each operation can be pro-
cessed by a set of resources and has a processing time
depending on the resource used. Then, FJSP is more
difficult than the classical JSP. Recently, many stud-
ies have been made to find the near optimal solution
of FJSP using a varied range of tools and techniques
such as (Zhang et al., 2011; Azzouz et al., 2012; Zi-
aee, 2014; Turkyllmaz and Bulkan, 2014; Azzouz
et al., 2015). Most job-shop scheduling researches re-
ported in the literature ignore the setup times or con-
sider them as a part of the processing time. However,
in many real-life situations such as chemical, printing,
pharmaceutical and automobile manufacturing (Kim
and Bobrowski, 1994), the setup times are not only
often required between jobs but they are also strongly
dependent on job itself (sequence independent) and
the previous job that ran on the same machine (se-
quence dependent). Hence, reducing setup times is

an important task to improve shop performance. The
FJSP has been widely studied. However, few papers
have considered this problem with setup times. In this
paper, we propose a genetic algorithm for the FJSP
with sequence-dependent setup times (SDST). Then,
we show that our algorithm can be very effective with
respect to the state of the art. The remainder of this
paper is organized as follows. In section 2, we formu-
late the problem and we give an illustrative example.
Section 3 contains some related works of the problem
studied. Section 4 presents the proposed algorithm to
solve the SDST-FJSP. Section 5 describes the perfor-
mance of our algorithm on a set of benchmark prob-
lems and explains the most interesting results. Con-
clusions and some future works are presented in sec-
tion 6.

2 PROBLEM DEFINITION

The SDST-FJSP can be defined as follows: this prob-
lem consists in performing n jobs on m machines. The
set machines is noted M, M = {M1, ...,Mk}. Each
job i consists of a sequence of ni operations (routing).
Each routing has to be performed to complete a job.
The execution of each operation j of a job i (noted
Oi j) requires one machine out of a set of given ma-
chines Mi, j (i.e. Mi, j is the set of machines available

Azzouz, A., Ennigrou, M. and Said, L.
Flexible Job-shop Scheduling Problem with Sequence-dependent Setup Times using Genetic Algorithm.
In Proceedings of the 18th International Conference on Enterprise Information Systems (ICEIS 2016) - Volume 2, pages 47-53
ISBN: 978-989-758-187-8
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

47

to execute Oi j). The problem is to define a sequence
of operations together with assignment of start times
and machines for each operation. Assumptions con-
sidered in this paper are the following:

• jobs are independent of each other;

• machines are independent of each other;

• one machine can process at most one operation at
a time;

• no preemption is allowed;

• all jobs are available at time zero;

• Setup times are dependent on the sequence of
jobs. When one of the operations of a job t is
processed before one of those of job i (t 6= i) on
machine Mk, the sequence dependent setup time
is St,i,k > 0.

The current SDST-FJSP based on these assumptions
is aimed to minimize two kinds of objective functions:

• Minimize the makespan (i.e. the time required to
complete all jobs)

• Minimize Aggregate objective function (AOF)
where AOF = αF1+(1−α)F2 and de-note the
weight given respectively to makespan (F1) and
mean tardiness (F2).

FJSP is classified as Total FJSP and Partial FJSP
(Kacem and Borne, 2002). In Total FJSP (T-FJSP),
each operation can be processes by all machines.
However, in Partial FJSP (P-FJSP), at least one oper-
ation may not be processed on all machines. Several
researches pointed out that the P-FJSP is more com-
plex as compared to T-FJSP on the same scale. In this
paper, we consider the P-FJSP.

Table 1: Processing times.

Job Operation M1 M2 M3

J1
O11 4 - 5
O12 - 3 4
O13 6 5 -

J2
O21 3 - 4
O22 4 5 -
O23 - 4 7

J3
O31 5 3 -
O32 - 4 -
O33 4 5 3

Table 2: Sequence-dependent setup times.
Machine1 Machine2 Machine3

Job1 Job2 Job3 Job1 Job2 Job3 Job1 Job2 Job3
Dummy 3 2 1 2 4 1 4 3 2

Job1 0 1 3 0 2 4 0 2 3
Job2 1 0 2 4 0 3 2 0 4
Job3 1 3 0 2 1 0 3 2 0

Figure 1: Gantt Chart of solution.

To illustrate this problem, we consider an instance
with three jobs and three machines. In table1, we
show the processing time of each operation. The
symbol ”-” means that the machine can not execute
the corresponding operation. Table2 presents the se-
quence dependent setup times of each job. For in-
stance, the setup time for job3 after job2 on machine
M1 is S2,3,1 = 2 and the setup time for job2 after job1
on machine M3 is S1,2,3 = 2. Dummy job signifies the
starting of a job on each machine. When one of the
operations of a jobi is the first operation executed on
machine Mk, the dummy job is Di,k. For example, if
O3,1 is the first operation executed on machine M2,
then, dummy job value would be D3,1 = 1. In order
to explain better this problem, we represent a Gantt
Chart of solution on figure 1.

3 RELATED WORK

The majority of researches in scheduling problem
with SDST are restricted to the flowshop problem.
Due to the complexity of this problem, most of the lit-
erature based on meta-heuristic methods like genetic
algorithms (Kaweegitbundit, 2011; Li and Zhang,
2012; Mirabi, 2014) tabu search (Varmazyar and
Salmasi, 2012; Santos et al., 2014) and ant colony op-
timization (Gajpal and Ziegler, 2006; Mirabi, 2011).
Despite the relevance of the job shop in real man-
ufacturing systems, not many papers consider both
sequence-dependent setup times and job shop envi-
ronments. Among these, (Cheung and Zhou, 2001)
propose a hybrid algorithm based on genetic algo-
rithm and heuristic rules to solve SDST-JSP with min-
imizing the makespan. For the same problem, (Zhou
et al., 2006) propose an immune algorithm which
certifies the diversity of the antibody. (Moghaddas
and Houshmand, 2008) develop a mathematical and
heuristic model based on priority rules. (Naderi and
Ghomi, 2009) consider the job shop scheduling with
sequence-dependent setup times and preventive main-
tenance policies using four meta-heuristics based on
simulated annealing and genetic algorithms.
Considering the flexibility constraints, flexible job-

ICEIS 2016 - 18th International Conference on Enterprise Information Systems

48

shop problem presents additional difficulty than the
classical JSP and requires more effective algorithms.
In recent decades, many attempts have been made to
find the near optimal solution of SDST-FJSP using
a varied range of tools and techniques. (Imanipour,
2006) was the first one who investigates the SDST-
FJSP. The author modeled the problem as a non lin-
ear mixed integer programming model and proposes
a tabu search for the same problem. (Saidi-Mehrabad
and Fattahi, 2007) presented a Tabu Search for solv-
ing the SDST-FJSP to minimize makespan. They as-
sumed in their research that each operation can be per-
formed by two machine alternatives. They compared
their obtained results with the results of the lingo soft-
ware. (Bagheri and Zandieh, 2011) propose a variable
neighborhood search (VNS) based on integrated ap-
proach to minimize an aggregate objective function
(AOF) where AOF = αF1 + (1− α)F2 and α de-
note the weight given respectively to makespan (F1)
and mean tardiness (F2). To evaluate this model,
the authors generate randomly 20 problem instances
under four different classes. Using the same AOF ,
(Sadrzadeh, 2013) present an artificial immune sys-
tem algorithm (AIS) and a particle swarm optimiza-
tion algorithm (PSO) and prove that both algorithms
works better than VNS of (Bagheri and Zandieh,
2011). (Mousakhani, 2013) formulate the SDST-
FJSP as a mixed integer linear programming model to
minimize total tardiness and present a meta-heuristic
based on iterated local search for the same problem.
(Oddi et al., 2011) considers the SDST-FJSP to mini-
mize the makespan using the iterative flattering search
(IFS) and propose a new benchmark which is denoted
SDST-HUdata. It consists of 20 instances produced
as an extension of the existing well-known bench-
marks of FJSP of (Hurink et al., 1994). (González
and Varela, 2013) develop memetic algorithm to min-
imize the makespan which the tabu search was ap-
plied to every chromosome generated by the genetic
algorithm. In order to evaluate their model, they used
the same benchmark as in (Oddi et al., 2011) and
prove that the memetic algorithm has obtained a bet-
ter result than the IFS. Recently, (Rossi, 2014) inves-
tigate the SDST-FJSP with transportation times us-
ing ant-colony algorithm with reinforced pheromone.
The most recent comprehensive survey of schedul-
ing problem with setup times is given by (Allahverdi,
2015).

4 GENETIC ALGORITHM FOR
SDST-FJSP

Since the discovery of the genetic algorithms by

(Holland, 1975), they have been recognized as a pow-
erful methods for solving combinatorial optimization
problems such as scheduling problems. In our algo-
rithm, we generate the initial population according
several dispatching rules. After evaluating each solu-
tion in the population, if the stop criterion is not met,
there are two choices. According to the probability
Pcrossover and Pmutation, the current individual executes
crossover operator or the mutation one respectively.
The stop criterion is that a certain number of iteration
is reached or the best solution has not been improved
for a certain number of iteration. Next, we present the
details of the implementation of our GA components.

4.1 Encoding Problem

For solving SDST-FJSP by GA, the first step is to
represent a solution of a problem as a chromosome.
We try to design an efficient coding of the individu-
als which respects the most important constraints of
our problem in order to increase the number of fea-
sible solutions produced after genetic recombination.
Then, our chromosome is designed as a binary matrix,
where:

• The rows correspond to all operations of jobs.
Furthermore, the order in which they appear in the
chromosome describes the sequence of operations
present in the solution.

• The columns correspond to all machines.

Moreover, in our representation, we present a con-
straint described as follows:

m

∑
k=1

Xi jk = 1 (1)

Xi jk = 1 when Oi j is assigned to resource Mk
Xi jk = 0 otherwise.
The sum of each row must be equal to one, to

guarantee that each operation is assigned to only one
machine. The order, in which the operations appear
in this representation, is found according to the start
times of the operations. When we have more than one
operation executed in the same time, we choose the
one which has the smallest number of jobs.

Figure2 illustrate our encoding scheme and repre-
sent the solution figured in the Gantt chart in Figure1.

4.2 The Initial Population

Initial population plays a significant role in genetic
algorithms in order to get good result. Generally,
the initial population is generated randomly in order
to maintain the diversity of solutions. Therefore, to
increase the diversity of the first generation and to

Flexible Job-shop Scheduling Problem with Sequence-dependent Setup Times using Genetic Algorithm

49

M1 M2 M3
O11 0 0 1
O21 1 0 0
O22 0 1 0
O12 0 0 1
O13 1 0 0
O23 0 0 1
O31 0 1 0
O32 0 1 0
O33 1 0 0

Figure 2: A sample chromosome encoding by our represen-
tation.

maintain a certain quality, we propose an improved
function of initial population generation inspired from
(Pezzella et al., 2008) which is based on three tradi-
tional dispatching rules as following:

• 20% using shortest processing time (SPT): Jobs
are scheduled with this rule by sequencing them in
ascending order of job processing times per pro-
cess.

• 20% using longest processing time (LPT): Jobs
are scheduled with this rule by sequencing them
in descending order of job processing times per
process.

• 20% using heuristic rules based on local search
algorithm.

• The remaining with random solution.

4.3 Selection

The selection phase aims to choose the chromosomes
for reproduction to create the next generation. In this
study, we adopt our selection operator (Azzouz et al.,
2015). Four individuals are randomly chosen from
parent population and the fitness of each of them are
compared in order to select the best and the worst so-
lution for reproduction.

4.4 Crossover Operator

The goal of the crossover is to obtain better chromo-
somes to improve the result by exchanging informa-
tion contained in the current good ones. As in (Az-
zouz et al., 2015), we have adopted the crossover op-
erator ”order1” (Davis, 1985).
We adapted this crossover to our own coding de-
scribed earlier. The idea of this operator is as follows:
We randomly select two positions XP1 and XP2 in
Parent1. The middle part is copied to the offspring1.
The rest is filled from the parent2 starting with po-
sition XP2 + 1 and jumping elements that are already
present in the offspring 1. The same steps are repeated

Figure 3: Crossover operator.

for the second offspring by starting with the Parent2.
To more explain the crossover operator, we present
an example in Figure3. Note that in this example, we
take XP1 = 3 and XP2 =7.

4.5 Mutation

Mutation operator is used also to get a new individual
having only one value different from an already exist-
ing one. In our work, we adopt intelligent mutation
proposed by (Pezzella et al., 2008) in which we se-
lect an operation on the machine with the maximum
workload (i.e. the amount of work that a machine pro-
duces in a specified time period), and assign it to the
machine with the minimum workload if possible.

5 RESULTS AND EXPERIMENTS

This section evaluates the performance of our pro-
posed genetic algorithm for two kinds of objective
functions: makespan and Aggregate Objective Func-
tion (AOF).
For that, we compare our GA against the avail-
able algorithms in the literature including variable
neighourbood search (VNS) proposed by (Bagheri
and Zandieh, 2011), an adapted tabu search (TS) pro-
posed by (Ennigrou and Ghedira, 2008), Artificial Im-
mune System (AIS) and Particle swarm Optimization

ICEIS 2016 - 18th International Conference on Enterprise Information Systems

50

(PSO) from (Sadrzadeh, 2013). Our proposed algo-
rithm has been implemented using JAVA and run on
PC with core2Duo, 2,6GHZ and 2GB RAM. In our
experiment, we tested different values for our GA pa-
rameters, and computational experience proves that
the following values are more effective:
• Population size: 150

• Crossover probability: 0.8

• Mutation probability: 0.2

• Number of iterations (stopping condition): 150

• Number of iterations with no improvement (stop-
ping condition): 30.

For the makespan objective function, we consider the
same benchmark as in (Oddi et al., 2011; González
and Varela, 2013) which is denoted SDST-HUdata. It
consists of 20 instances derived from the first 20 in-
stances of the FJSP benchmark proposed in (Hurink
et al., 1994). Each instance was created by adding
to the original instance one setup time matrixSt,k for
each machine k. The same setup time matrix was
added for each machine in all benchmark instances.
Each matrix has size nn, and the value St,i,k indicates
the setup time needed to reconfigure the machine k
when switches from job t to job i. These setup times
are sequence dependent and they fulfill the triangle
inequality. The non-deterministic nature of our algo-
rithm makes it necessary to carry out multiple runs
on the same instance in order to obtain meaningful
results.
After ten runs of each generated instance by the
above-mentioned algorithms, the best solutions ob-
tained for each instance (which is namedSolmin) are
calculated. We use the relative percentage deviation
(RPD) measure to compare the performance of
algorithms. RPD is obtained as follows:

RPD =
Solalgo−Solmin

Solmin
×100 (2)

where SOLalgo is the makespan of each algorithm.
Table3 show the performance of the proposed GA
compared with others algorithms. The instance names
are listed in the first column, the second column show
the size (n×m) of each instance. The third, fourth
and fifth columns report the obtained results of VNS
algorithm (Bagheri and Zandieh, 2011), TS algorithm
(Ennigrou and Ghedira, 2008) and our GA.
The obtained results show that the proposed GA per-
forms better than the others algorithms in 16 in-
stances. Only in instance La02, La04 and La08 VNS
has gained better results. However, in instance La15,
TS obtained the better results. The proposed GA out-
performs the others algorithms with average RPD of
1.40 while the worst performing algorithm is TS with

average RPD of 4.15. Moreover, we notice that GA
obtained the best average RPD of 0.71 in the largest
number of machine against 4.58 and 6.48 for VNS
and TS respectively. To further evaluate the per-
formance of our algorithm, we study the interaction
between the performance of the algorithm and the
problem size in figure4. We remark that our algo-
rithm keeps its robust performance in different prob-
lem sizes.

Table 3: Summary of results in the SDST-FJSP to minimize
the makespan: SDST-HU data benchmark.

Instance Size n×m VNS TS GA
La01

10×5

2.54 7.36 0.00
La02 1.58 8.53 2.57
La03 2.66 5.33 0.13
La04 3.50 3.66 4.07
La05 1.11 3.58 0.16
La06

15×5

4.45 2.79 2.04
La07 2.92 2.99 1.97
La08 2.37 2.41 2.86
La09 3.82 3.21 0.41
La10 1.84 4.02 0.00
La11

20×5

3.32 2.08 1.61
La12 5.33 2.71 2.38
La13 3.30 3.14 3.02
La14 1.70 1.76 1.26
La15 2.37 1.18 1.97
La16

10×10

2.37 4.04 0.00
La17 4.34 2.39 0.07
La18 1.86 5.81 0.91
La19 6.37 6.67 0.11
La20 4.84 9.36 2.48

Average 3.12 4.15 1.40

Figure 4: The average RPD of the algorithms versus the
number of jobs.

Furthermore, for the AOF, we consider artificial
benchmarks according to the function proposed by
(Bagheri and Zandieh, 2011). We propose four
classes of instances. These classes are different in
number of jobs, n, number of operations for each jobi,
ni, and number of machines, m, that are denoted as
(n× ni ×m). The generated instances have partial
flexibility and the number of available machines for
each operation (AMO) is generated randomly accord-

Flexible Job-shop Scheduling Problem with Sequence-dependent Setup Times using Genetic Algorithm

51

Table 4: The characteristics of the instances.
n×ni×m AMO Processing SDST Dummy

time Jobs
Class1 10×5×5 U(1,5)

U(20,100) U(20,60) U(20,40)Class2 10×5×8 U(1,8)
Class3 10×10×5 U(1,5)
Class4 15×10×10 U(1,10)

ing to uniform distribution. Table 4 summarizes the
characteristics of the artificial benchmarks used in this
paper. In order to introduce due dates, we consider the
same formula as in (Bagheri and Zandieh, 2011).
Overall, compared to VNS, AIS and PSO, our GA
has a superiority result to minimize the AOF for all α
values. Moreover, from the results shown in figure 5,6

Figure 5: The average RPD of the algorithms of each type
of problem class for α = 0.25.

Figure 6: The average RPD of the algorithms of each type
of problem class for α = 0.5.

Figure 7: The average RPD of the algorithms of each type
of problem class for α = 0.75.

and 7, we remark that GA is more effective with α =
0.75 then α = 0.25. Otherwise, our algorithms have
the best results with makespan against mean tardiness
objective function.

6 CONCLUSION

In this paper, we focus on solving the flexible job shop
scheduling problem where sequence dependent setup
times are also taken into account. We have proposed
genetic algorithm to minimize two kinds of objective
functions: makespan and aggregate objectives func-
tion. For that, we tested GA on two kinds of bench-
mark. Results showed that the present GA is better
than other algorithms. In future works, it will be inter-
esting to investigate the dynamic scheduling problem
to closely reflect the real flexible job shop schedul-
ing environment. For the same reason, we will con-
sider the multi-criteria scheduling problem and the
scheduling problems with learning effects consider-
ations.

ACKNOWLEDGEMENTS

The authors would like to say thanks to Miguel A.
González for providing us with the SDST-FJSP in-
stances.

REFERENCES

Allahverdi, A. (2015). The third comprehensive survey on
scheduling problems with setup times/costs. In Euro-
pean Journal of Operational Research.

Azzouz, A., Ennigrou, M., and Jlifi, B. (2015). Diversifying
ts using ga in multi-agent system for solving flexible
job shop problem. In Proceedings of the 12th Interna-
tional Conference on Informatics in Control, Automa-
tion and Robotics (ICINCO) vol1,pp 94-101.

Azzouz, A., Ennigrou, M., Jlifi, B., and Ghedira, K. (2012).
Combining tabu search and genetic algorithm in a
multi-agent system for solving flexible job shop prob-
lem. In In 11th Mexican International Conference on
ArtificialIntelligence (MICAI) pp. 83-88.

Bagheri, A. and Zandieh, M. (2011). Bi-criteria flexible
job-shop scheduling with sequence-dependent setup
times—variable neighborhood search approach. In
Journal of Manufacturing Systems, 30(1), 8-15.

Cheung, W. and Zhou, H. (2001). Using genetic algorithms
and heuristics for job shop scheduling with sequence-
dependent setup times. In Ann Oper Res 107:65.

Davis, L. D. (1985). Applying adaptive algorithms to
epistatic domains. In In Proc.InternationalJoint Con-
ference on Artificial Intelligence. 162-164.

ICEIS 2016 - 18th International Conference on Enterprise Information Systems

52

Ennigrou, M. and Ghedira, K. (2008). New local diver-
sification techniques for flexible job shop schedul-
ing problem with a multi-agent approach. In
In Autonomous Agents and Multi-Agent Systems,
vol.17(2),270-287.

Gajpal, Y.and Rajendran, C. and Ziegler, H. (2006). . an
ant colony algorithm for scheduling in flowshops with
sequence-dependent setup times of jobs. In Int J of
Advanced Manufacturing Technology 30 (5-6), 416-
424.

Garey, M. R., Johnson, D. S., and Stockmeyer, L. (1976).
Some simplified np-complete graph problems. In The-
oretical computer science, 1(3), 237-267.

González, M. Á.and Rodrı́guez Vela, C. and Varela, R.
(2013). An efficient memetic algorithm for the flex-
ible job shop with setup times. In InTwenty-Third In-
ternational Conference on Automated Planning and
Scheduling pp 91-99.

Holland, J. (1975). Adaptation in natural and artificial sys-
tem. In MIT University of Michigan Press, Ann Arbor.

Hurink, J., Jurisch, B., and Thole, M. (1994). Tabu search
for the job-shop scheduling problem with multi-
purpose machines. In Operations-Research-Spektrum,
15(4), 205-215.

Imanipour, N. (2006). Modeling & solving flexible job shop
problem with sequence dependent setup times. In In-
ternational Conference on Service Systems and Ser-
vice Management (Vol. 2, pp. 1205-1210). IEEE.

Kacem, I.and Hammadi, S. and Borne, P. (2002). Approach
by localization and multiobjective evolutionary opti-
mization for flexible job-shop scheduling problems. In
Syst IEEE Syst Man Cybern 32(1):1-13.

Kaweegitbundit, P. (2011). Comparison of heuristic for flow
shop scheduling problems with sequence dependent
setup time. In Advanced Materials Research 339 (1),
332-335.

Kim, S. C. and Bobrowski, P. M. (1994). Impact of
sequence-dependent setup time on job shop schedul-
ing performance. In The International Journal of Pro-
duction Research, 32(7), 1503-1520.

Li, X. and Zhang, Y. (2012). Adaptive hybrid algorithms for
the sequence-dependent setup time permutation flow
shop scheduling problem. In IEEE Transactions on
Automation Science and Engineering 9(3), 578-595.

Mirabi, M. (2011). Ant colony optimization technique for
the sequence-dependent flowshop scheduling prob-
lem. In Int J of Advanced Manufacturing Technology
55 (1-4), 317-326.

Mirabi, M. (2014). A novel hybrid genetic algorithm to
solve the sequence-dependent permutation flow-shop
scheduling problem. In International Journal of Ad-
vanced Manufacturing Technology 74 (1-4), 429-437.

Moghaddas, R. and Houshmand, M. (2008). Job-shop
scheduling problem with sequence dependent setup
times. In Proceedings of the International MultiCon-
ference of Engineers and Computer Scientists, Vol II.

Mousakhani, M. (2013). Sequence-dependent setup time
flexible job shop scheduling problem to minimise to-
tal tardiness. In International Journal of Production
Research, 51(12), 3476-3487.

Naderi, B.and Zandieh, M. and Ghomi, S. F. (2009).
Scheduling sequence-dependent setup time job shops
with preventive maintenance. In The Interna-
tional Journal of Advanced Manufacturing Technol-
ogy, 43(1-2), 170-181.

Nuijten, W. P. and Aarts, E. H. (1996). A computational
study of constraint satisfaction for multiple capaci-
tated job shop scheduling. In European Journal of
Operational Research, 90(2), 269-284.

Oddi, A., Rasconi, R., Cesta, A., and Smith, S. (2011).
Applying iterative flattening search to the job shop
scheduling problem with alternative resources and se-
quence dependent setup times. In In COPLAS 2011
Proceedings of the Workshopon Constraint Satisfac-
tion Techniques for Planning and Scheduling Prob-
lems.

Pezzella, F., Morganti, G., and Ciaschetti, G. (2008). A
genetic algorithm for the flexible job-shop schedul-
ing problem. In Computers & Operations Re-
search,35(10), 3202-3212.

Rossi, A. (2014). Flexible job shop scheduling with
sequence-dependent setup and transportation times by
ant colony with reinforced pheromone relationships.
In International Journal of Pro-duction Economics,
153, 253-267.

Sadrzadeh, A. (2013). Development of both the ais and
pso for solving the flexible job shop scheduling prob-
lem. In Arabian Journal for Science and Engineering,
38(12), 3593-3604.

Saidi-Mehrabad, M. and Fattahi, P. (2007). Flexible job
shop scheduling with tabu search algorithms. In
The International Journal of Advanced Manufactur-
ing Technology, 32(5-6), 563-570.

Santos, N., Rebelo, R., and Pedroso, J. (2014). A tabu
search for the permutation flow shop problem with se-
quence dependent setup times. In International Jour-
nal of Data Analysis Tech-niques and Strategies 6 (3),
275-285.

Turkyllmaz, A. and Bulkan, S. (2014). A hybrid algorithm
for total tardiness minimisation in flexible job shop:
genetic algorithm with parallel vns execution. In In-
ternational Journal of Production Research, 53(6),
1832-1848.

Varmazyar, M. and Salmasi, N. (2012). Minimizing the
number of tardy jobs in flow shop sequence dependent
setup times scheduling problem. In Applied Mechan-
ics and Materials 110-116, 4063-4069.

Zhang, G., Gao, L., and Shi, Y. (2011). An effective genetic
algorithm for the flexible job-shop scheduling prob-
lem. In Expert Syst. Appl. 38(4)3563-3573.

Zhou, Y., Beizhi, L., and Yang, J. (2006). Study on job shop
scheduling with sequence-dependent setup times us-
ing biological immune algorithm. In Int J Adv Manuf
Technol 30:105-111.

Ziaee, M. (2014). A heuristic algorithm for solving flexi-
ble job shop scheduling problem. In Int Adv Manuf
Technol 71: 519.

Flexible Job-shop Scheduling Problem with Sequence-dependent Setup Times using Genetic Algorithm

53

