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Abstract: The hepatocellular carcinoma (HCC) is a frequent malignant liver tumour and one of the main causes of death. 
Detecting the HCC evolution phases is an important issue, aiming the early diagnosis of this tumour and 
patient monitoring with maximum accuracy. Our objective is to discover the evolution stages of HCC, through 
unsupervised classification techniques, using advanced texture analysis methods. In this work, we assessed 
the role that the Haralick features derived from the Complex Extended Textural Microstructure Co-occurrence 
Matrices (CETMCM) have in the unsupervised detection of the HCC evolution stages. A textural model for 
these phases was also generated. The obtained results were validated by supervised classifiers, well known 
for their performance, such as the Multilayer Perceptron (MLP), Support Vector Machines (SVM), 
respectively decision trees and they were also compared with the previously obtained results in this domain. 
The final classification accuracy was about 90%.  

1 INTRODUCTION 

The hepatocellular carcinoma (HCC) is the most 
frequent malignant liver tumour, present in 75% of 
the liver cancer cases. It evolves from cirrhosis, after 
a liver parenchyma restructuring phase, towards the 
end of which dysplastic nodules that can turn into 
HCC result. Detecting HCC in early evolution stages 
presents a major importance. Also, accurately 
identifying the evolution stage is essential, in order to 
adopt the appropriate treatment (Sherman, 2005).  
Ultrasonography (US) is a safe method for patient 
examination, non-invasive, inexpensive, easy to 
apply and, thus, repeatable. Other medical imaging 
based examination methods, such as the computer 
tomography (CT), the magnetic resonance imaging 
(MRI), or the contrast enhanced ultrasonography 
(CEUS) are irradiating or expensive.  In ultrasound 
images, HCC appears, in incipient phases, as a small 
lesion, having 3-4 cm in size. In more advanced 
stages, the most relevant characteristic of HCC is the 
heterogeneity, due to the co-existence of fibrosis, 
regeneration nodules, hepatocitar necrosis and fat 

cells. Advanced HCC is also featured by a very 
complex structure of vessels. Thus, HCC is usually 
hypoechogenic and homogeneous in the incipient 
phase and during its evolution, it usually becomes 
inhomogeneous and hyperechogenic. The most 
frequent form of HCC is the focal, encephalic form. 
There are, however, multiple variants observed for 
the encephalic form of HCC, within the ultrasound 
images, most of them being associated to a certain 
evolution phase (American Liver Foundation, 2015). 
These forms are depicted in the figure below (Figure 
1). The Edmondson and Steiner staging system stated 
the existence of four evolution stages for the HCC 
tumour (Atupelage, 2013). In our research, we aim to 
perform the detection of the HCC evolution phases 
based on textural features determined from 
ultrasound images. Thus, we analyse the capability 
that the ultrasound images have in order to reveal the 
HCC evolution phases and we study the properties of 
each phase through textural parameters. In order to 
derive new, subtle information, concerning the HCC 
evolution phases, we applied unsupervised 
classification techniques for the automatic staging of 
HCC, based on ultrasound images. 
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(a.) (b.) 

 

(c.) (d.) 

 
 (e.) (f.) 

Figure 1: Visual forms of the HCC tumor, in US images: 
(a.) Incipient form, hypoechogenic aspect; (b.) Incipient 
form, hyperechogenic aspect; (c.) Encephalic form, 
hyperechogenic, inhomogeneous aspect; (d.) Encephalic 
form, isoechogenic, homogeneous aspect; (e.) Encephalic 
form, hyperechogenic, fibrolamelar aspect; (f.) Encephalic 
form, hypoechogenic aspect. 

Concerning the computerized detection of the 
HCC evolution phases, several approaches exist, 
involving texture-based features and supervised 
classification methods (Atupelage, 2013), 
respectively histological features and a combination 
between supervised and unsupervised classification 
techniques (Ciocchetta, 2000), but no significant 
research exists regarding the automatic grading of the 
HCC severity, based on ultrasound images, in an 
unsupervised manner. Thus, in (Atupelage, 2013), the 
authors determined the evolution stages of HCC, in 
supervised manner, from histological images, using 
newly defined textural features, derived through 
multifractal analysis. A bag-of-features based 
supervised classifier was employed in order to 
identify one of the five evolution stages of HCC (four 
that conformed to the Edmondson and Steiner grading 
system, together with an additional stage, which 
preceded the malignity). The final resulted accuracy 
was 95%. Another approach combined the supervised 
and unsupervised classification techniques, in order 
to detect the HCC tumour in incipient phase, using 

histological features (Ciocchetta, 2000). For 
performing supervised classification, a combination 
scheme based on the sum of the basic classifier 
outputs was implemented, while for unsupervised 
classification, a fuzzy-k-means clustering method 
was employed.  Regarding the unsupervised 
classification of the malignant diseases, the authors 
assessed the role of the dimensionality reduction 
methods, in the context of the differentiation among 
the glioma brain tumour evolution phases, based on 
spectroscopic image (Resmi, 2010). Two techniques, 
the Laplacian Eigenmaps, respectively the 
Independent Component Analysis (ICA) were 
compared, the first method resulting as superior. A 
hierarchical classifier that performed agglomerative 
clustering was also implemented, the final accuracy 
being 91%. In our work, we discovered the evolution 
phases of HCC from ultrasound images, through 
computerized methods, in unsupervised manner, by 
using textural features and clustering techniques. We 
previously employed, for this purpose, existing, 
classical methods for texture analysis, as well as 
advanced, newly defined techniques, based on 
generalized, superior order co-occurrence matrices 
(Mitrea D., 2015). The Complex Extended Textural 
Microstructure Co-occurrence Matrix (CETMCM), 
based on Laws’ and gradient features, was firstly 
defined in (Mitrea, D., 2014) and assessed in the 
context of the supervised classification of some 
abdominal tumours within ultrasound images. In this 
work, we highlighted the role that the CETMCM 
matrix had in the unsupervised detection of the HCC 
evolution phases. For the validation of the 
unsupervised classification results, appropriate 
supervised classification techniques were adopted 
(Witten, 2005). The results obtained in this work, due 
to the CETMCM parameters, were also compared 
with the previously obtained performances. The 
content of this paper is structured in the following 
manner: after the introduction, the state of the art is 
presented. Then, the proposed methods are described 
in details, followed by experiments and discussions. 
At the end, the conclusions are stated and some 
bibliographic references are proposed.  

2 THE PROPOSED SOLUTION 

The textural model of the HCC evolution stages 
consists of: (a) the relevant textural features for the 
differentiation among these stages and (b) the specific 
values associated to each relevant textural feature: 
arithmetic mean, standard deviation, and probability 
distribution. In order to build the textural model of the 
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HCC evolution stages a methodology consisting of 
the following steps was implemented: 1.) A 
preliminary step, when the appropriate images were 
gathered and regions of interest were marked inside 
the HCC tissue. 2.) The image analysis phase was 
performed then, consisting of feature computation, by 
applying specific methods for texture analysis. 3.) 
The learning phase, in order to discover the existing 
classes, to derive the set of the relevant textural 
features and their specific values.   4.) The validation 
phase, the purpose being to assess the model obtained 
during the previous phases, through supervised 
classification methods. The techniques corresponding 
to each step will be described in the next sections. 

2.1 The Image Analysis Phase 

The textural features were computed using both 
classical and newly defined texture analysis methods. 
Concerning the classical methods for texture analysis, 
we considered first order statistics of the grey levels, 
second order statistics of the grey levels such as the 
GLCM matrix and the autocorrelation index, edge-
based statistics and gradient based features, statistics 
of the textural microstructures obtained after the 
application of the Laws’ convolution filters, as well 
as the Shannon entropy computed after applying the 
wavelet transform recursively, twice (Meyer-Base, 
2009). Also, more advanced texture analysis 
methods, described in our previous works, (Mitrea D., 
2012) and (Mitrea D., 2015) were implemented, such 
as the following types of generalized co-occurrence 
matrices: the Grey Level Co-occurrence Matrix 
(GLCM), the Edge Orientation Co-occurrence Matrix 
(EOCM), the Complex Textural Microstructure Co-
occurrence Matrix (CTMCM) based on Laws’ 
features. In this work, we analysed the role that the 
Complex Extended Textural Microstructure Co-
occurrence Matrix (CETMCM) had in the detection 
and characterization of the HCC evolution phases. 
The CETMCM matrix was defined as follows: 

)}sgn()))(sgn((,

),..sgn()))(sgn((

|,||||,..,||||,|||

|,||||,..,|||,|||

,),(,..,),(,),(

:)),(),..,,(),,(),,{((#),..,,(

1111

111212

11213112

11213112

222111

33221121

−−

−

−

⋅=−−

⋅=−−

=−=−=−

=−=−=−

===
=

nnnn

nn

nn

nnn

nnnD

ydxdyyxx

ydxdyyxx

ydyyydyyydyy

xdxxxdxxxdxx

tyxAtyxAtyxA

yxyxyxyxtttC









 

(1) 

In (1), #S is the number of elements of the set S, 
while n is the matrix dimension. Thus, each element 
of this matrix, CD(t1, t2,..., tn), is equal with the 
number of n-tuples of pixels, with the spatial 
coordinates (xi, yi), having the values ti for the 

attribute A(xi, yi). „A” stands for the attribute 
associated to each pixel, corresponding to the textons 
(cluster labels) resulted after the application of the 
improved k-means clustering algorithm, while t1, 
t2,..., tn are the values of these attributes. The 
improved k-means clustering algorithm was applied 
upon the combined feature vectors resulted after the 
convolution with the Laws’ filters, respectively with 
some representative edge detection techniques. In the 
case of the Laws’ convolution filters, the 5x5 kernels 
(Laws’, 1980) were taken into account: L5L5, E5E5, 
S5S5, W5W5, R5R5, together with the combined 
kernels, S5R5, R5S5, which provided good results in 
our experiments (Mitrea D., 2012).  Concerning the 
edge detection techniques, we considered the Sobel 
filters for detecting horizontal and vertical edges, the 
Kirsch Compass filters in order to detect edges with 
different orientations (multiples of 45o), as well as the 
Laplacian convolution filter (Meyer-Base, 2009). In 
practice, the probability matrix was employed (Davis, 
1981). The spatial relation between the pixels (xi, yi) 
was defined by the set of the displacement vectors 
provided in (2) 

 
(2)

We computed the second and third order 
CETMCM matrix (for n=2 and n=3) and we 
determined the Haralick features, as in (Mitrea D., 
2012). We also considered some features referring to 
the n-dimensional spatial representation of the 
CETMCM matrix which were not experimented 
before in our research: cluster shade (equivalent to the 
skewness of the histogram associated to the co-
occurrence matrix); cluster prominence (equivalent to 
the histogram kurtosis); the maximum area for the 
intersection of the co-occurrence matrix with a 
horizontal plan in the 3D case and the corresponding 
extension to the n-dimensional case. The 
mathematical expressions of these features are 
provided in (3), (4) and (5).  

),..,,(

*}......{...

21

31

0

1

0

1

0
2121

1 2

n

G

x

G

x

G

x
nn

xxxpCETMCM

xxxClShade
n

 
−

=

−

=

−

=

−−−−+++= μμμ

 

(3)

),..,,(

*}......{...Pr

21

41

0

1

0

1

0
2121

1 2

n

G

x

G

x

G

x
nn

xxxpCETMCM

xxxomCl
n

 
−

=

−

=

−

=

−−−−+++= μμμ  

(4)

}),...,,(|,),...,,({| 2121 NxxxCETMCMxxxMaxMaxAreaH nnN ==

 
(5)

     In the case of the second order CETMCM 
computation, the following directions were 
considered: 0°, 90°, 180°, and 270°.  For the third 

)),(),..,,(),,(( 112211 −−= nn ydxdydxdydxdd


ICPRAM 2016 - International Conference on Pattern Recognition Applications and Methods

700



order CETMCM, the current pixel was considered in 
the central position and together with the other two 
pixels, they were either collinear, or formed a right 
angle triangle, the current pixel being situated in the 
position of the right angle. The following 
combinations of orientations were taken into account  
for the two displacement vectors: (0°, 180°), (90°, 
270°), (45°, 225°), (135°, 315°) in the case of the 
collinear pixels; (0°, 90°), (90°, 180°), (180°, 270°), 
(0°, 270°), (45°, 135°), (135°, 225°), (225°, 315°), 
(45°, 315°), in the case of the right angle triangle. The 
displacement vectors had the absolute value 2, in both 
cases. We determined the CETMCM and the 
pCETMCM matrices for all the considered direction 
combinations, the final Haralick feature values 
resulting as an arithmetic mean between the values of 
the Haralick features of the individual matrices.      

2.2 The Learning Phase 

Each of the clustering methods described below was 
applied and assessed individually, before and after 
relevant feature selection. Then the number of the 
clusters in the data was decided, based on the 
combination of the results provided by the three 
methods (a majority voting procedure). The results 
were validated through supervised classification.   

2.2.1 Clustering Methods 

The method of Expectation Maximization (EM) is a 
powerful technique that iteratively estimates the 
desired parameters, by maximizing the log-likelihood 
of the model (Witten, 2005). The parameters 
estimated in our work through this technique were the 
number of clusters and the sample distributions 
within the clusters. The X-means clustering method 
was employed as well, being an improved version of 
k-means clustering (Pelleg, 2000). The method of X-
means clustering expects a maximum and a minimum 
value for the k parameter and performs the following 
steps:  (1.) Run conventional k-means (Witten, 2005) 
to convergence, for a certain value of k. (2.) Decide 
whether new cluster centroids should appear or not, 
by splitting the old centroids into two. (3.) If k>kmax, 
then stop and report the best model identified during 
the algorithm, according to the Bayesian Information 
Criterion – BIC (XMeans). The BIC criterion is used 
both for deciding which centroids to split, 
respectively in order to identify the best model. The 
overall algorithm performance is estimated by the 
distortion, computed as the average squared distance 
from the points to their centroids, for the best model. 
The method of Particle Swarm Optimization (PSO) 

aims to optimize the solution of a problem by 
simulating the movement of a particle swarm and by 
determining the best position for each particle (Das, 
2008). Each particle has associated a position and a 
velocity. The velocity of a particle k increases from 
an iteration to another. The speed is influenced by a 
cognitive component, which refers to the distance 
from the personal best position, as well as by a social 
component, referring to the distance from the best 
global position. The optimal particle positions are 
determined through an evaluation function, defined 
according to the specific of each problem. 
Considering our problem, of unsupervised 
classification through clustering (grouping), a particle 
is represented by a certain cluster configuration, 
respectively by the way the cluster labels are 
associated to the input data, for a given number of 
clusters. We combined the PSO technique with the k-
means clustering method.  The initial configuration of 
the swarm resulted after the application of the k-
means method upon the initial data. We defined the 
evaluation function using the specific metrics for 
assessing the unsupervised classification 
performance, in the case of the k-means clustering 
method, meaning, the Within Cluster Sum of Squares 
(WCSS). The maximum difference between the 
cluster proportions, as well as the number of 
insignificant clusters (having a proportion less than 
10%), were also taken into account.  Thus, the 
evaluation function, in our case, was a weighted 
mean, as described in (6). All the terms of this 
weighted mean were normalized between 0 and 1. 

Eval = 0.5*WCSS + 0.2*max_dif_clust_prop + 
0.3*no_insignifiant_clust 

(6)

2.2.2 Relevant Textural Feature Selection  

Our method for relevant feature selection aims to 
achieve best class separation, in the context of the 
unsupervised classification. Thus, the overlapping 
area between two neighbouring clusters must be as 
small as possible. For each textural feature f, a 
relevance score was defined, as described below: 

 −=
ji

jisizereggOverlappinflevance
,

),__1()(Re  

(7)

In (7), i and j are neighbouring clusters. The relevance 
of f depends on the sizes of the overlapping regions 
that exist between each pair of Gaussian distributions 
of f corresponding to each pair of neighbouring 
clusters. The overlapping region size was computed 
as in (Mitrea D., 2015).  

The Role of the Complex Extended Textural Microstructure Co-occurrence Matrix in the Unsupervised Detection of the HCC Evolution
Phases, based on Ultrasound Images

701



2.2.3 The Specific Values of the Relevant 
Features 

The arithmetic mean of the relevant textural features, 
corresponding to the cluster centres were computed 
for each cluster. The Graphical representation of 
these arithmetic means, for all the detected clusters, 
was performed, in order to analyse the correlation of 
the feature values with the evolution of HCC. The 
specific variation intervals per class, for each relevant 
feature, were also determined, using the probability 
density tables obtained after applying the Bayesian 
Belief Networks method (Witten, 2005).  

2.3 The Validation Phase 

In order to evaluate the model resulted during the 
learning phase, the relevant textural features were 
provided at the inputs of some supervised classifiers, 
well known for their performance. The following 
supervised classification techniques, which provided 
the best results in our experiments, were adopted: 
Multilayer Perceptron (MLP), Support Vector 
Machines (SVM), the C4.5 algorithm of decision 
trees, and also a specific multiclass meta-classifier, in 
combination with these basic learners. The multiclass 
meta-classifier reduced the classification process to a 
combination of binary classifications and was used in 
conjunction with the Exhaustive Correction Code 
strategy (Weka, 2015). For classification 
performance evaluation, we used the recognition rate 
(accuracy), the average sensitivity (average TP rate) 
and the area under the ROC curve (Witten, 2011).   

3 EXPERIMENTS  
AND DISCUSSIONS 

The experimental dataset consisted of 200 HCC 
cases, three B-mode ultrasound images being taken 
into account for each case (patient). All the patients 
underwent biopsy, for diagnostic confirmation. The 
images were acquired with an ultrasound machine of 
type Logiq 7, under the same settings: 5.5 MHz 
frequency, gain of 78, depth of 16 cm. A region of 
interest (ROI), having 50x50 pixels in size, was 
selected on each image, inside HCC. The textural 
features were determined for each ROI, 
independently on orientation, illumination and ROI 
size. The texture analysis methods were applied using 
our own modules, implemented in Visual C++. The 
clustering methods, the supervised classifiers and the 
Bayesian Belief Networks were implemented using 

the Weka 3.6 library (Weka, 2015). The PSO method 
was implemented in Matlab using a specific 
framework (Biswas, 2013).  

3.1 The Learning Phase 

3.1.1 Discovering Clusters in the Data 

First, the individual clustering techniques: 
Expectation Maximization (EM), X-means clustering 
(XMeans), respectively Particle Swarm Optimization 
(PSO) combined with k-means clustering were 
applied, before and after feature selection. The 
unsupervised classification performances obtained 
after performing feature selection, using the 
algorithm described within the 2.2.2 section, was 
usually better than the performance obtained before 
feature selection.   Then, the estimation concerning 
the number of  clusters within the data was 
performed, by combining the individual results of the 
adopted methods.  For the XMeans method, the 
Euclidean distance was considered.  For each 
unsupervised classification method, the parameters 
representing the number of clusters (for EM and PSO 
combined with k-means), respectively the minimum 
and maximum number of clusters (in the case of 
XMeans), were set to consecutive, integer values 
ranging for 2 to 6, in order to identify the best cluster 
configuration.  

Table 1: The performance of EM. 

No. Clusters Log likelihood Score  

2  -139.87 0.41 

3  -131.95 0.51 

4 -117.87 0.74 

5 -112.42 0.94 

6 -109.027 0.5 

In the case of the EM method, the log likelihood was 
estimated and a score was computed, as well, using 
the following formula: Score= 0.5*log_likelihood 
+0.3*(1-n)+ 0.2*(1-dif), where n is the number of 
small clusters, while dif is the maximum difference 
between the cluster propor-tions. When computing 
this score, the values for log_likelihood, n and dif 
were normalized between 0 and 1. As we notice from 
Table 1, the maximum score was obtained in the case 
of 5 clusters, so, according to the EM method, there 
are 5 clusters within the data.  

In the case of the X-means clustering technique, 
the distortion measure was estimated and an index 
was computed as follows: Index= 0.5*distortion 
+0.3*n+0.2*dif, where n is the number of small 
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clusters, while dif is the maximum difference between 
the cluster proportions. All the terms (distortion, n 
and dif) were normalized between 0 and 1.  Thus, the 
smallest index value indicated the best solution in this 
situation. This index had a minimum value for 5 
clusters, so there exist 5 clusters within the data, 
according to the X-means clustering technique. 

Table 2: The performance of PSO+k-means clustering. 

No. 
Clusters 

WCSS Index  

2  1.256e+012 0.27 

3  7.392e+011 0.62 

4 5.312e+011 0.34 

5 4.172e+011 0.23 

6 1.333e+011 0.32 

In the case of PSO combined with k-means 
clustering, the WCSS measure, specific for the 
evaluation of the k-means technique, was considered, 
and also an index was computed, corresponding to the 
best values of the evaluation function, as described in 
(6). Thus, also in this situation, both the WCSS 
parameter and the index must take minimum values 
in the best case. According to Table 2, the index took 
the smallest value in the case of 5 clusters. 
Considering the results provided by each of the three 
adopted clustering methods, we can conclude that 
there are, most likely, 5 distinct clusters within the 
data, corresponding to the HCC evolution phases.  

3.1.2 The Relevant Textural Features 

The relevant textural features were detected by the 
algorithm described in 2.2.2, for each clustering 
method. Only the features that had a relevance index 
above the threshold (0.6) were taken into account. 
The three resulting relevant feature sets were 
intersected, yielding the final set, depicted in (8).  

Relevant_features = {Max_grey_level, 
EOCM_Homogeneity, EOCM_Energy, 
EOCM_Coreelation, GLCM3_Energy, 

GLCM5_Variance,  Directional_grad_variance, 
Mean_level, Mean_Laws_edges, Spot_Frequency,  

CETMCM_Max_AreaH, 
CETMCM_Cluster_Shade, CETMCM_Cluster 

_Promminence, CETMCM3_Energy, 
CETMCM3_Homogeneity} 

(8)

Besides the classical textural features, we notice 
the presence of the CETMCM based features: the 
homogeneity and the energy, derived from the third 
order CETMCM, stood for the homogeneity 

decrease, respectively for the echogenicity increase, 
towards the advanced HCC evolution phases; the 
second order CETMCM cluster shade and cluster 
promminence, respectively the maximum area for the 
interesection with a horizontal plan, revealed a sparse 
distribution of the complex extended textural 
microstructures during the initial evolution phases,  
respectively an increased density of these 
microstructures towards the advanced HCC evolution 
phases. We also remarked the increased values for the 
mean relevance index associated to the parameters 
CETMCM_Cluster_Shade and 
CETMCM_Max_AreaH, of 0.97, respectively 0.85.  
The homogeneity, energy and variance, derived from 
the EOCM matrix, as well as from the third and fifth 
order GLCM,  were also included in the relevant 
feature set, expressing again the heterogeneous, 
complex structure of the HCC tissue that 
corresponded to the advanced HCC evolution phases. 
We also remark the presence of the first order 
statistics concerning the gradient based features and 
the textural Laws’ microstructures, standing for the 
variations in the tissue structure complexity, as well 
as of the correlation computed from the EOCM 
matrix, emphasizing differences in granularity 
between various HCC evolution phases. 

3.1.3 The Specific Values of the Relevant 
Textural Features 

In Figure 2, the values of the arithmetic means that 
corresponded to some of the relevant textural 
features, considered for each cluster, were graphically 
represented. According to the a-priori existing 
knowledge concerning the decrease in homogeneity, 
respectively the increase in echogenicity during the 
evolution of HCC, the second cluster, c2,  
corresponded to the incipient phase, having the most 
decreased value for the grey levels, respectively the 
maximum GLCM homogeneity, while cluster c5 
corresponded to the most advanced evolution phase 
for the HCC tumor, presenting the most increased 
value of the gray levels, respectively the minimum 
value of the GLCM homogeneity. The other clusters, 
c1, c3 and c4 corresponded to intermediary evolution 
phases: c1 was closer to the incipient evolution phase, 
while c3 and c4 were closer to the advanced evolution 
phases. The arithmetic mean values of other features, 
such as the energy of the third order CETMCM and 
the cluster promminence derived from the second 
order CETMCM, were also analyzed. 

We notice, from Figure 2, that the third order 
CETMCM energy had low values for the incipient 
phases  and  high  values for  more  advanced phases, 
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Figure 2: The mean values of the relevant textural features 
for each HCC evolution phase. 

denoting an increase in the density of the complex 
extended textural microstructures during the HCC 
evolution. The cluster promminence of the CETMCM 
matrix, corresponding to the 3D histogram kurtosis,  
had maximum values during the incipient evolution 
phase and small values during the advanced evolution 
phases, due to the fact that, during the incipient phase, 
umany small values of the complex extended textural 
microstructures and few increased values of these 
microstructures occur. The probability distributions 
generated by Bayesian Belief Networks confirmed 
these results.  

3.2 The Validation Phase 

During this phase, the values of the relevant textural 
features were provided at the inputs of some 
powerfull supervised classifiers and meta-classifiers, 
as described before. The SMO method, standing for 
the SVM classifier, with a 3rd  degree polynomial 
kernel was considered; the MLP classifier was also 
adopted, with a learning rate of 0.2, a momentum (α) 
of 0.8, and the number of nodes from the single 
hidden layer equal with a = (nr_input_features + 
nr_classes)/2; the J48 method, the Weka equivalent 
of C4.5, was employed as well. Also, we adopted the 

multiclass meta-classifier of Weka 3.6 (Weka, 2015). 
The instances were labeled according to the results 
provided by PSO combined with  k-means clustering.  
The following situations were compared: the case of 
using only the previous textural features; the case of 
using the former textural features, combined with the 
recently defined Haralick features, derived from the 
CTMCM matrix, based on Laws’ features (Mitrea D., 
2015); the case of using the former textural features 
combined with the newly defined CETMCM features. 
For the last case, both situations of 5 and 6 clusters 
were considered, as, for 6 clusters, increased values 
of the usual unsupervised classification performance 
parameters were obtained, but, however the size of 
some resulted clusters was very small. The 
comparison of the recognition rates is depicted in 
Figure 3.   

It results that the CETMCM features led to the 
best recognition accuracy, in most of the situations.  
The values obtained for 5 clusters were superior to 
those obtained in the case of 6 clusters. The average 
recognition rate obtained in the first case was 88.95%, 
while the average accuracy obtained in the second 
case was 78.63%. This confirms the results obtained 
in the previous subsection, so there exist 5 clusters in 
the data. When considering the combination between 
the former textural features and the CETMCM 
features, the maximum recognition rate, of 93.35%, 
together with the maximum sensitivity (average TP 
rate), of 93.14%, respectively the maximum value of 
the AUC, of 98.3%, resulted in the case of the MLP 
classifier. 

The obtained results, indicating a 90% accuracy, 
were comparable with the already obtained accuracy 
for the supervised and unsupervised classification of 
the HCC evolution phases (Atupelage, 2013), 
(Ciocchetta, 2000). In addition, in our research, five 
evolution stages of HCC were discovered, 
noninvasively, through unsupervised classification 
methods, from ultrasound images. 

 

Figure 3: Evaluation of the CETMCM textural features through supervised classification methods. 
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4 CONCLUSIONS AND FUTURE 
WORK 

The textural features, based on the CETMCM matrix, 
provided satisfying results in our study, leading to the 
discovery of 5 HCC evolution phases and to an 
increase in accuracy in comparison with our 
previously obtained results in this domain (Mitrea D, 
2015).  The newly considered textural features, 
associated to the spatial representation of the 
CETMCM, were selected as relevant and indicated 
differences concerning the complexity of the tissue 
structure during the evolution of HCC.  The obtained 
results were validated through supervised 
classification, achieving classification accuracies 
around 90%.  In our future work, the newly defined 
features will be compared with other existing textural 
features, such as the Local Binary Pattern (LBP). We 
also aim to further increase the accuracy of the texture 
analysis methods by employing more multiresolution 
features. Larger datasets will be considered as well 
and data representation techniques, such as Self 
Organizing Maps (SOM) will be also employed. (Yin, 
2008).   
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