
Supporting Organizational Qualities Through Architectural Patterns

Fritz Solms
Department of Computer Science, University of Pretoria, Pretoria, South Africa

Keywords: Organizational Architecture, Architectural Patterns, Blackboard, Microkernel, Pipes and Filters, Organiza-
tional Quality.

Abstract: The structure of an organization is known to affect an organization’s qualities. Commonly variations of the
hierarchical patterns are used to constrain the structure of organizations. Examples include functional and
divisional hierarchies, and organizations based on a matrix structure. In either case the depth of the hierarchies
can be varied. For software architectures a much wider set of architectural patterns is considered and patterns
are combined in such a way as to support desired system qualities. This paper suggests that many of these
patterns are applicable also for organizational architectures and proposes a conceptual framework for the
selection and application of architectural patterns in order to improve the quality attributes of an organization.

1 INTRODUCTION

A quality attributeof a system is the realization of
a non-functional requirement (NFR). Examples of
quality attributes include scalability, reliability, flex-
ibility, integrability, performance, and cost. In soft-
ware architecture design it is common to select and
combine architectural patterns to specify an infras-
tructure within which it is easier to satisfy required
quality attributes (Bachmann et al., 2005; Harrison
and Avgeriou, 2007).

Functional and divisional hierarchies as well as
matrix structures are commonly used in organiza-
tional architecture design (Tran and Tian, 2013; Har-
ris and Raviv, 2002). These are based on the hierar-
chical pattern. Organizational architecture optimiza-
tion involves activities like optimizing, grouping into
clusters, specifying depth (tallness or flatness of the
hierarchy), choosing and specifying the level of de-
centralization and standardization (Harris and Raviv,
2002).

This paper suggests that many of the architec-
tural patterns used in software architecture design are
equally applicable to organizational architecture de-
sign. In particular, theMicrokernelpattern can facil-
itate service provider flexibility and integrability, the
Blackboardpattern innovatability and thePipes and
Filters pattern process flexibility and low cost. It is
suggested that architectural patterns should be com-
bined to support required qualities across an organi-
zation.

2 RELATED WORK

Weber’s early work on organizational theory and the
bureaucratic model (Weber, 1958) included a study
of the impact of responsibility and accountability
localization within a hierarchical structure. Both,
functional and divisional hierarchies were considered.
The former are based on a segregation of activities re-
sulting in good skills separation. However, changes to
product scope or business processes require changes
across the organization which are not well managed
within a functional hierarchy. Divisional hierarchies
base the segregation on some other variable like prod-
uct or geography. Whilst changes to product scope
and business processes are better managed within di-
visional hierarchies, they commonly lead to duplica-
tion of resources and poor product integration.

Matrix structures (Mee, 1964; Galbraith, 1971)
were introduced to realize management and coordina-
tion across functional and divisional domains with in-
dividuals reporting to multiple managers. Benefits in-
clude more efficient resource utilization and wider in-
formation flow resulting in increased innovation and
knowledge distribution. However, multiple reporting
lines may introduce conflicts and unhealthy competi-
tion for resources.

We have seen a trend from narrow and tall orga-
nizations toward flat organizations with wider spans
of control (Docherty et al., 2001), i.e. to hierarchies
with less layers. Benefits are reduced specialization,
loosened hierarchies of control, rapid and less centra
lized decision making, closer contact between man-

594
Solms, F.
Supporting Organizational Qualities Through Architectural Patterns.
In Proceedings of the 18th International Conference on Enterprise Information Systems (ICEIS 2016) - Volume 2, pages 594-599
ISBN: 978-989-758-187-8
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



agement and workers enabling the latter to gain a bet-
ter understanding of the strategic goals of the organi-
zation, improved innovation and knowledge distribu-
tion and lower cost. Disadvantages of flat organiza-
tions include possible quality degradation in the con-
text of reduced control, difficulties around scaling to
large organizations and handling complex processes.
Also, flat organizations put strain on management and
lack of precise definition of employee roles may lead
to uncertainty. (Dalton et al., 1980) have shown that
hierarchical depth, degree of specialization, span of
control, the level of centralization, administrative in-
tensity and the level of formalization and standard-
ization impact not only on frequency and duration of
labour strikes and the level of absenteeism, but also
on the turnover of the organization.

This leads one to model the design of an organi-
zational architecture more formally as an optimiza-
tion problem (Harris and Raviv, 2002; Tran and Tian,
2013). (Harris and Raviv, 2002) modeled the im-
pact of changes to an organization’s structure on its
basic activities of producing, designing and market-
ing products, its coordination activities and manage-
rial costs. They found the optimal structure follows
a life cycle as the company grows in size and com-
plexity. In particular, a company tends to evolve from
flat structure to a highly centralized structure to a divi-
sional hierarchy to a functional hierarchy and finally
to either a matrix structure or a highly decentralized
flat structure. They also found that firms that do not
face high resource constraints, highly regulated firms
and firms operating in stable environment tend to have
decentralized organizational structures.

Moving beyond hierarchical structures,
(Mintzberg, 1979) introduced theStructure of 5.
Here an operational core is managed by the middle-
line (middle management) reporting to the strategic
APEX of the organization with support from tech-
nostructure and support staff. Technostructure covers
areas which are not involved in operations but may
observe, design and optimize them, e.g. research and
development, business analysis, operational research
and strategic planning.

(Kolp et al., 2004) study the ease with which
NFRs can be addressed within different organiza-
tional styles. They includeStructure of 5, Pyramid,
Matrix, Chain of Valueand theBidding Style. (Gómez
and Ortiz, 2013) extend the analysis of Kolp and Tung
Do to include further qualities including security and
availability.

(Berzisa, 2015) proposedCapability Driven De-
velopment(CDD) for integrating organizational and
information system development. They suggest
reusing organizational patterns, but these refer to op-

erational patterns and not structural patterns.

3 STRUCTURAL PATTERNS

In this section the hierarchical pattern widely used
in organizational architecture design is compared to
structural patterns used in software architecture de-
sign but currently not explicitly in organizational
architecture design. It is shown how patterns can be
combined to enhance different qualities in different
parts of an organization.

3.1 The Hierarchical Pattern

Functional and divisional hierarchies, flat structures
(single level hierarchies) and matrix structures are all
based on the hierarchical pattern

Employee ReportsTo

-superior

0..1Manages

-subordinates

0..*

Figure 1: A UML class diagram representing the structure
of the hierarchical pattern. Employees have a communi-
cation channel to their superior as well as to their subor-
dinates. Exceptions are the top (CEO) and bottom of the
reporting hierarchy.

Figure 1 shows the reporting lines specified by the
simple hierarchical pattern. The pattern introduces
specialized roles requiring a person to manage a par-
ticular domain of responsibility at a particular level of
accountability as is more explicitly depicted in Figure
2. The natural human resourcing approach is thus job
based human resourcing.

X

domain of responsibility

le
v
e

l 
o

f
a

c
c
o

u
n

ta
b

ili
ty

Figure 2: A UML object diagram depicting an instance
structure. It shows the domain of responsibility and level
of accountability assigned to employee X.

Accountability hierarchies improve reliability and
role based human resourcing around defined domains
of responsibility at defined levels of accountability re-
sult in standard skills requirements which simplifies
scalability.

On the other hand, the reduced communication
channels and fixed ring-fenced domains of responsi-
bility make it more difficult to achieve high levels of
innovatability and learnability. Changing processes
within hierarchical organizations is often more diffi-
cult as processes typically cut across domains of re-

Supporting Organizational Qualities Through Architectural Patterns

595



sponsibility and business units. Finally, deep hierar-
chies incur a significant cost-overhead.

The hierarchical pattern is particularly applicable
in areas where control and accountability hierarchies
are desirable. It’s use should be minimized in areas of
the organization where innovatability and flexibility
are important.

3.2 The Blackboard Pattern

The blackboard architectural pattern (Buschmann
et al., 1996) has been applied to a wide range of
problems including speech recognition (Lesser et al.,
1975), distributed resource allocation planning (Han
et al., 2014), and decision support for stock trading
(Luo et al., 2002). It provides an infrastructure for
specialized processing units (experts) to collaborate
in developing a possibly partial or approximate solu-
tion to a difficult problem for which no deterministic
solution strategies are known.

The pattern obtained its name from an analog
of mathematicians collaboratively solving a difficult
problem using a blackboard as communication mech-
anism. An observable blackboard hosts both the prob-
lem specification as well as the current state of the so-
lution. One mathematician may try one approach to a
solution and get stuck leading to another expert per-
haps continuing on the approach or alternatively argu-
ing why the approach will not work and removing the
contributions made by the first mathematician from
the blackboard. Note that the experts auto-orchestrate
a process amongst themselves.

:Blackboard
(Knowledge Repository)

Expert Pool
ObserverObservable

:Controller
:Expert

:Expert

Observable space

*

Figure 3: A UML object diagram depicting the structure of
the blackboard pattern.

In the blackboard pattern (see Figure 3) a con-
troller manages a pool of experts and feeds problems
into a blackboard which is observed by them. Oper-
ating as a self-organizing team, experts decide when
to process information or requests published on the
blackboard. The output of any processing is fed back
into the blackboard and may trigger further activities
by experts. The controller manages the scope of the
problem and decides when a solution or a sufficient
approximation to it has been obtained. The natural
human resourcing for blackboard based architectures
is skills based human resourcing (Lawler and Led-
ford, 1992) and not role-based human resourcing.

The strengths of the blackboard pattern include
innovatabilitythrough auto-orchestrated processes as
well as learnability and knowledge distribution(Ju-
rado et al., 2012). The blackboard provides an in-
tegration infrastructure improvingintegrability (Ju-
rado et al., 2012) andauditability. Scalability can
be achieved by adding further experts for concur-
rent processing within a processing grid (Dong et al.,
2005). One can dynamically add and remove ex-
perts resulting new processes being immediately auto-
orchestrated across the new skills set. This increases
flexibility. Securityis enforced through access con-
trol on the blackboard (Ortega-Arjona and Fernan-
dez, 2008). Weaknesses include reducedpredictabil-
ity and reliability as the success of auto-orchestrated
is not guaranteed. Communication overheads and
auto-orchestration may lead to performance concerns
(Schwartz, 1995). Due to redundancy and non-
stream-lined processes, theblackboardpattern is not
usually suited for organizations competing on cost.

Even though the blackboard pattern is currently
not used explicitly in organizational architecture de-
sign, one finds organizational structures which are im-
plicitly based on this pattern. In open source soft-
ware development organizations the version control
repository represents the blackboard, developers the
experts, and the project lead the controller. Other ex-
amples include Wikipedia, the bidding style discussed
by (Kolp et al., 2004) and even a board of directors.
One should consider the blackboard pattern when in-
novation, learnability, extreme flexibility are required,
e.g. for R&D, marketing and software development
teams.

3.3 The Microkernel Pattern

The microkernel pattern was introduced for operating
systems to separate a minimal set of core functional-
ity for which flexibility is sacrificed for efficiency and
reliability from pluggable extension code which re-
quires a higher level of flexibility (Liedtke, 1995). It
has also been used for application servers (Goebel and
Nestler, 2004) and is the base pattern for Services Ori-
ented Architectures (SOA) with the Enterprise Ser-
vices Bus (ESB) representing the microkernel (Solms,
2012).

Figure 4 depicts the structure of the microkernel
pattern. The microkernel and internal servers are ef-
ficient, reliable implementations which evolve only
slowly whilst external servers evolve more rapidly
to address evolving client requirements. The micro-
kernel provides a communication infrastructure de-
coupling the various servers. Clients access external
servers through an adapter.

ICEIS 2016 - 18th International Conference on Enterprise Information Systems

596



:Microkernel

:External
Server

:Adapter

:External
Server

:Adapter :Adapter

:Adapter:Adapter :Adapter

:Internal
Server

:Internal
Server

:Client:Client

Kernel
Space

User
Space

Figure 4: A UML object diagram depicting the structure of
the microkernel pattern.

The main purpose of using a microkernel pattern
is usuallyintegrability (Solms, 2012) which, in turn,
improvesreusablityandflexibility through decoupling
and pluggability.Auditability is achieved by logging
all messages traversing the microkernel.

On the other hand, decoupling via a microkernel
introducesperformanceand cost overheads (Solms,
2015; Sun et al., 2013) and the isolation of the vari-
ous responsibility domains (servers) reduces opportu-
nities forinnovationandlearning.

An example for implicit use of the microkernel
pattern with organizational architecture design is that
of an internal post-office routing messages between
internal departments as well as to and from exter-
nal organizations to the appropriate internal business
units represents a microkernel. Also, corporate and
merchant banks can be seen to be implicitly based on
the microkernel pattern. Client faced business units
like credit derivatives and foreign exchange operate
like independent organizations. These are the ex-
ternal servers which need to be flexible and innova-
tive, evolving their service offering to address chang-
ing client needs and environmental changes. Back-
office services like transaction processing and reg-
ulatory reporting which need to provide their ser-
vices reliably and efficiently are the internal servers
which change infrequently. The communication be-
tween client faced external servers and the internal
servers providing back-office services is commonly
facilitated through anEnterprise Services Bus(ESB).
Finally, clients are provided unified access channels
across external servers in the form of a web interface
and call center for human access and web-services
and messaging adapters for system access. This uni-
fied interface represents the adapter of the microker-
nel pattern.

3.4 The Pipes and Filters Pattern

The pipes and filterspattern was originally used for
compiler design (Meunier, 1995). The pattern is
widely used for processing pipelines like signal or
video processing,Unix command pipelines and for
workflow systems (Scheibler et al., 2010).

Filters represent processing units which process

Pipe
Filter

Source

Sink
-outputPipe

1

-inputPipe

1

Figure 5: A UML class diagram depicting the structure of
the pipes and filters pattern.

inputs received from an input pipe and deliver out-
puts to an output pipe (see Figure 5). Pipes have the
responsibility of transporting artifacts between filters.
Processing units are decoupled through pipes and de-
fined pipes and filters processes can be aggregated
into higher-level, reusable filters.

The main strength of the pipes and filters pattern
are processflexibility including the ability to quickly
assemble new processes from the available processing
components (filters) (Scheibler et al., 2010). Weak-
nesses include low innovatability and learnability due
to the isolation of processing units and the lack of
overall control. The pattern does, however, incur
only low costoverheads as the structure is focused
on value-generating processing components.

The pipes and filters pattern is the base pattern for
the Chain of Valuestyle discussed by (Kolp et al.,
2004). It is also commonly used to achieve flexibility
in manufacturing organizations. The filters are ma-
chines performing processing steps on the product be-
ing built and pipes (e.g. conveyor belts) transport the
product between processing steps.

4 LEVELS OF GRANULARITY

When designing an infrastructure for an organization,
one is unlikely to use a single pattern. Instead one
may constrain the high-level structure for the system
as a whole (the first level of granularity) with a partic-
ular pattern, whilst constraining the infrastructure of
lower level organizational components through other
patterns.

The infrastructure design of an organization can
be driven by a recursive decomposition into business
units requiring qualities and basing the selection of
the pattern constraining its infrastructure on the ease
with which the required qualities are realized within
the structure prescribed by the pattern as discussed
in section 3 and summarized in Table 1. Generally
one will want to select a pattern which supports the
most important quality attribute(s) for the respective
business unit whilst not negatively impacting on other
relevant qualities.

For example, an infrastructure based on thehier-
archical pattern could be chosen ifreliability/control
are important and themicrokernelor blackboardfor
integrability andpipes and filtersfor process flexibil-

Supporting Organizational Qualities Through Architectural Patterns

597



Table 1: Impact of architectural patterns on organi-
zational qualities. An up/down-arrow indicates that
the pattern makes it easier/more difficult to realize
a quality attribute, whilst the tilde symbol indicates
that it has no significant effect on a quality attribute.

Pattern Quality Attribute

Quality

In
no

va
ta

bi
lit

y

L
e

a
rn

a
bi

lit
y

F
le

xi
bi

lit
y

R
e

lia
bi

lit
y

In
te

gr
a

bi
lit

y

R
e

us
a

bi
lit

y

S
ca

la
bi

lit
y

P
e

rf
or

m
a

nc
e

A
ud

ita
bi

lit
y

Microkernel ∼ ∼ ↑ ∼ ↑ ↑ ∼ ↓ ↑
Blackboard ↑ ↑ ↑ ↓ ↑ ↑ ↑ ↓ ↑
Hierarchcal ↓ ↓ ↓ ↑ ↓ ↓ ↑ ∼ ∼

Pipes & Filt ↓ ↓ ↑ ∼ ∼ ↑ ∼ ∼ ∼

ity and low cost. The blackboard pattern is the only
pattern which provides infrastructural support for in-
novation.

As an illustrative example consider designing the
infrastructure for a hypothetical corporate and mer-
chant bank. Assume the organization has a large num-
ber of specialized trading units operating as virtually
independent business units with their own accounting
base (e.g. credit derivatives, foreign exchange and eq-
uities) which compete in the market by constructing
innovative hedging products for their clients. These
trading units consume back-end services like transac-
tion processing, regulatory reporting and procurement
from back-office units. These back-office units need
to not only provide their services efficiently, but must
also be able to rapidly and at low cost change their
business processes to adapt to continuously changing
laws an regulations. The organization as a whole is
to be controlled by a relatively shallow management
structure.

The most important quality requirement for the
small trading business units is innovatability. Hence
one may consider either basing their infrastructure on
the blackboard architectural pattern or use that pattern
within those business units as incubator for innova-
tion.

The back-office services could provide their
streamlined services within a pipes and filters infras-
tructure which allows for rapid and efficient process
changes driven by regulatory requirements. Select-
ing themicrokernelpattern as integration infrastruc-
ture between the loosely coupled client facing and
back-office business units enhances flexibility and the
ability to easily add further business units. The back-
office units represent the internal servers of the micro-
kernel pattern, the trading units the external servers
and a unified client interface the adapter. The mi-
crokernel is responsible for routing requests from the
client adapter to the appropriate trading units and be-
tween the trading and back-office units. The concrete
manifestation might be anEnterprise Services Bus

(ESB) within a service-oriented software architecture.
For the control infrastructure for each of the busi-

ness units one could consider a single layer hierarchy
which in turn reports to a relatively flathierarchyfor
overall control and accountability of the organization.
The above combination of pattern is chosen to facil-
itate innovation, flexibility, integrability and account-
ability and control where these respective qualities are
important.

5 CONCLUSIONS AND FUTURE
WORK

Organizational architecture design has predominantly
focused on structures based on the hierarchical pat-
tern including functional and divisional hierarchies,
matrix structures and flat hierarchies. Hierarchical
structures are strong in control and accountability,
but achieving qualities like innovatability, flexibil-
ity, learning, and knowledge distribution is difficult
within such structures.

This paper argues that one should also consider
other architectural patterns like blackboard, hierarchi-
cal and pipes and filters to achieve qualities like flex-
ibility, innovatability, and integrability. One should
select and combine patterns in such a way that they
facilitate the required qualities across organizational
components. Furthermore, viewing enterprise archi-
tecture as an aggregation of organizational and soft-
ware architecture makes it attractive to use the same
concepts across both these sub-domains. Such an ap-
proach may make it easier to achieve alignment of
software architecture and organizational architecture
– it is across both of these that an organization needs
to realize its desired quality attributes.

Future work will include include empirical stud-
ies investigating the correlation between the use of ar-
chitectural patterns and organizational qualities. The
work of Harris and Raviv (Harris and Raviv, 2002)
can be extended to provide a formal optimization
framework for selecting and combining architectural
patterns.

Whist the selection of architectural patterns pro-
vides an infrastructure within which it is easier to re-
alize certain qualities, it is the selection of architec-
tural tactics like load balancing, resource reuse, ac-
tive and passive redundancy which concretely realize
these qualities (Solms, 2012). Future work will aim
to include the selection of architectural patterns and
tactics within a comprehensive method for organiza-
tional architecture design.

ICEIS 2016 - 18th International Conference on Enterprise Information Systems

598



REFERENCES

Bachmann, F., Bass, L., Klein, M., and Shelton, C. (2005).
Designing Software Architectures to Achieve Quality
Attribute Requirements.IEE Proceedings - Software,
152(4):153–165.

Berzisa, S. e. a. (2015). Capability driven development: An
approach to designing digital enterprises.Business &
Information Systems Engineering, 57(1):15–25.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P.,
and Stal, M. (1996).Pattern-Oriented Software Archi-
tecture, Volume 1: A System of Patterns. Wiley, Chich-
ester, UK.

Dalton, D. R., Todor, W. T., Spendolini, M. J., Fielding,
G. J., and Porter, L. W. (1980). Organizational struc-
ture and performans: A critical review.Academy of
Management Review, 5(1):49–64.

Docherty, J. P., Surles, R. C., and Donovan, C. M. (2001).
Textbook of Administrative Psychiatry, chapter Orga-
nizational Theory, pages 33–43. ASM Zahidul Islam,
second edition edition.

Dong, J., Chen, S., and Jeng, J.-J. (2005). Event-based
blackboard architecture for multi-agent systems. In
Information Technology: Coding and Computing,
2005. ITCC 2005. International Conference on, vol-
ume 2, pages 379–384 Vol. 2.

Galbraith, J. R. (1971). Matrix organization designs: How
to combine functional and project forms.Business
Horizons, 14(1):29 – 40.

Goebel, S. and Nestler, M. (2004). Composite component
support for ejb. InProceedings of the Winter Interna-
tional Synposium on Information and Communication
Technologies, WISICT ’04, pages 1–6. Trinity Col-
lege Dublin.

Gómez, O. and Ortiz, J. (2013). Modeling the organiza-
tional style structure in five.Procedia Technology,
7:384 – 390.

Han, X., Mandal, S., Pattipati, K., Kleinman, D., and
Mishra, M. (2014). An optimization-based distributed
planning algorithm: A blackboard-based collaborative
framework.Systems, Man, and Cybernetics: Systems,
IEEE Transactions on, 44(6):673–686.

Harris, M. and Raviv, A. (2002). Organization design.Man-
age. Sci., 48(7):852–865.

Harrison, N. B. and Avgeriou, P. (2007). Leveraging
architecture patterns to satisfy quality attributes. In
Oquendo, F., editor,Software Architecture, First Eu-
ropean Conference, ECSA 2007, Aranjuez, Spain,
September 24-26, 2007, Proceedings, volume 4758 of
Lecture Notes in Computer Science, pages 263–270.
Springer.

Jurado, F., Redondo, M. A., and Ortega, M. (2012). Black-
board architecture to integrate components and agents
in heterogeneous distributed elearning systems: An
application for learning to program.Journal of Sys-
tems and Software, 85(7):1621 – 1636. Software
Ecosystems.

Kolp, M., Do, T. T., and Faulkner, S. (2004). Analysis styles
for requirements engineering: An organizational per-
spective. In Chang, S., editor,Handbook Of Software

Engineering And Knowledge Engineering, volume 3,
chapter 1. World Scientific.

Lawler, E. and Ledford, G. (1992). A skill-based approach
to human resource management.European Manage-
ment Journal, 10(4):383–391.

Lesser, V., Fennell, R., Erman, L., and Reddy, D. (1975).
Organization of the hearsay ii speech understanding
system. Acoustics, Speech and Signal Processing,
IEEE Transactions on, 23(1):11–24.

Liedtke, J. (1995). On micro-kernel construction.SIGOPS
Oper. Syst. Rev., 29(5):237–250.

Luo, Y., Liu, K., and Davis, D. (2002). A multi-agent deci-
sion support system for stock trading.Network, IEEE,
16(1):20–27.

Mee, J. F. (1964). Matrix organization.Business Horizons,
7(2):70 – 72.

Meunier, R. (1995). The pipes and filters architecture. In
Pattern Languages of Program Design, pages 427–
440. ACM Press/Addison-Wesley Publishing Co.,
New York, NY, USA.

Mintzberg, H. (1979).The structuring of organizations: a
synthesis of the research. Theory of management pol-
icy series. Prentice-Hall.

Ortega-Arjona, J. L. and Fernandez, E. B. (2008). The se-
cure blackboard pattern. InProceedings of the 15th
Conference on Pattern Languages of Programs, PLoP
’08, pages 22:1–22:5, New York, NY, USA. ACM.

Scheibler, T., Leymann, F., and Roller, D. (2010). Execut-
ing pipes-and-filters with workflows. InInternet and
Web Applications and Services (ICIW), 2010 Fifth In-
ternational Conference on, pages 143–148.

Schwartz, D. (1995). Blackboard systems. InCooperating
Heterogeneous Systems, volume 299 ofThe Springer
International Series in Engineering and Computer
Science, pages 27–42. Springer US.

Solms, F. (2012). What is software architecture? InPro-
ceedings of the South African Institute for Computer
Scientists and Information Technologists Conference,
SAICSIT ’12, pages 363–373, New York, NY, USA.
ACM.

Solms, F. (2015). A Systematic Method for Architecture
Recovery. In10’th International Conference on Eval-
uation of Novel Approaches to Software Engineering,
pages 215–222, Barcelona, Spain.

Sun, H., Wang, X., Yan, M., Tang, Y., and Liu, X. (2013).
Towards a scalable paas for service oriented software.
In Parallel and Distributed Systems (ICPADS), 2013
International Conference on, pages 522–527.

Tran, Q. and Tian, Y. (2013). Organizational structure:
Influencing factors and impact on a firm.Ameri-
can Journal of Industrial and Business Management,
(3):229–236.

Weber, M. (1958).From Max Weber: Essays in Sociology.
Oxford University Press, USA.

Supporting Organizational Qualities Through Architectural Patterns

599


