
Model-driven Engineering for Optimizing the Usability of User
Interfaces

Marwa Hentati1, Lassaad Ben Ammar1, Abdelwaheb Trabelsi2 and Adel Mahfoudhi3

1University of Sfax, National School of Engineering, CES Laboratory, Sfax, Tunisia
2University of Sfax, Sfax, Tunisia

3College of Computer and Information Technology, Taif University, Taif, Saudi Arabia

Keywords: MDE, User Interface, Usability Optimization, Transformation Process.

Abstract: Usability is considered to be one of the most important quality factors that determine the success or failure
of an interactive system. This can be explained by the ever-increasing number of studies addressing the
integration of the usability evaluation at the development process. However, most of these proposals aim to
guide the user interface transformation process according to a set of usability criteria allowing the
generation of user interfaces which meet the usability requirement. In fact, the selection of the adequate
alternative transformation depends on the usability attributes that will be met. This paper proposed an
approach that considers the user interface generation process as a usability optimization problem according
to given usability optimization objectives. The aims to generate all possible concrete user interfaces from a
given abstract user interface. Then, the usability optimization process selects the optimal concrete user
interface for a specific context of use.

1 INTRODUCTION

The model-driven engineering (MDE) is currently
being adopted in the Human-computer Interaction
(HCI) field to support user interface specification and
engineering activities (Hussmann et al., 2011). The
MDE paradigm is proved to be quite appropriate
(Favre, 2004). This approach specifies an automated
process of developing user interfaces through the
definition of models and their transformation from
high-level models to code generation in the target
platform (OMG, 2003). A renowned approach in this
context is the Cameleon Reference framework
(Calvary et al., 2003). It provides a unifying reference
framework that structures the user interface
development taking the context of use (user, platform
and environment) into account.

In this framework, focus is generally placed on
data and functional modelling, disregarding usability
aspects. Therefore, there is a need to extend the
MDE process in order to promote usability as a first
class entity in the development process.

The present paper aims to delineate an approach
that addresses these weaknesses by extending the
user interface process in order to optimize the user
interface usability. The proposed approach is

intended to optimize the usability from the
conceptual model in a user interface (UI). It should
be noted that the conceptual model covers the
abstract user interface (AUI) model and the concrete
user interface (CUI) models. Therefore, the selection
of the adequate alternative transformation depends
on the usability attributes, which are able to convey.
The proposition is structured in three main
contributions: (1) generating all the possible
concrete user interfaces from a given abstract user
interface, (2) formulating the usability optimization
function for a given context of use and (3) selecting
the alternative transformation able to generate the
optimal usability user interface.

We structure the remainder of this paper as follows:
section 2 presents some related studies. Section 3
describes the different stages of the proposed approach.
In order to show the usefulness of our proposal, a case
study is presented in Section 4. Finally, section 5
presents the conclusion and the future research work.

2 RELATED WORKS

There are currently several research studies that have
dealt with usability in MDE environment have been

Hentati, M., Ammar, L., Trabelsi, A. and Mahfoudhi, A.
Model-driven Engineering for Optimizing the Usability of User Interfaces.
In Proceedings of the 18th International Conference on Enterprise Information Systems (ICEIS 2016) - Volume 2, pages 459-466
ISBN: 978-989-758-187-8
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

459

proposed. The main objective of these methods is to
propose a set of usability attributes in order to drive
the selection of adequate alternative transformations.

In (Panach et al., 2013), the authors have
addressed the usability features related to the system
functionality, which may involve important changes
in the system architecture. They use the term FUFs
(Functional Usability Features) to indicate this type
of usability features. The FUFs are abstractly
represented by means of conceptual primitives that
will extend the conceptual model of an existing
model-driven development (MDD) method. Then,
the conceptual model can be seen as the input of a
model compiler that can generate the software
application automatically (or semi-automatically). In
(Panach et al., 2014) a set of the well-known FUFs
in the human–computer interaction (HCI)
community are gathered in a usability model that is
included from an early stage of a holistic MDD
method.

In (Huerta et al., 2010), the authors have
proposed an architecture to perform the quality of
the model-driven transformation. The main goal of
this architecture is to define a set of artifacts and a
process for specifying and executing model
transformations. The selection of the alternative
transformations is guided by quality attributes. The
feasibility of the proposed architecture is shown
using a case study which transforms a requirements
model into a UML class model.

(Ammar et al., 2014) have suggested an approach
to integrate usability issues as a part of a user
interface development process from the conceptual
models. The proposed approach is structured in two
main stages: (1) the definition of the model
transformation and (2) the execution of a
parameterized transformation. Concerning the first
stage, it establishes a set of transformation rules
describing all the possible alternative transformations
for a given domain. As for the second one, it executes
a model driven transformation parameterized by the
usability model in order to select the adequate
alternative transformation.

Although the previously mentioned works are
useful in the interplay between the usability and
MDD paradigm, they lack precise details about the
quality of the alternative selection process. In fact,
all of them try to select the alternative
transformation without addressing the problem of
the choice optimization. This problem is the object
of some initiatives in the research field among which
we quote (Gajos et al., 2010), (Petter et al., 2008)
and (Raneburger et al., 2011).

In (Gajos et al., 2010), the authors implemented
the SUPPLE system that automatically generates
multi-target UI using the user interface specification
as input. The user interface adaption is treated as an
optimization problem related to a user and device
specific cost function. Therefore, the SUPPLE
system renders each interface element from the
functional interface specification into an appropriate
concrete widget according to a matching function.
To find the optimal one, SUPPLE relies on a cost
function that provides a quantitative metric, such as
the speed of use.

In the same context, (Petter et al., 2008)
proposed to optimize the usability of the graphical
user interface (GUI). They suggest an extension to
the QVT standard in order to consider the usability
aspects. The main goal is to transform each element
from the user interface specification model to an
optimal (GUI) component. The optimization
function has been formulated on the basis of the
manipulation and navigation time.

Face to the increasing use of small screen
devices, (Raneburger et al., 2011) suggested an
approach for extending and incrementing the
Discourse-based communication models
transformation process. This approach introduces
straight-forward optimization techniques into the
model-driven generation of GUIs to reduce some
usability problems. This allows the optimization of
the generated GUIs for devices with small screens in
such a way as to utilize the given space and to
minimize navigation and scrolling.

The analysis of the aforementioned studies
allows us to detect some limitations related to the
usability optimization problem. In fact, a limited
usability aspect may not ensure the usability of the
final application. It is within this context that our
research work lies to introduce a framework
addressing the problem of usability optimization in
an MDE-compliant method.

3 USER INTERFACE
GENERATION AS USABILITY
OPTIMIZATION PROBLEM

3.1 Overview

Since its first beginning HCI has been concerned
with the evaluation of interactive systems, and
consideration of usability. Recently, the MDE has
been adopted in the HCI domain to support
interaction systems specification and engineering

ICEIS 2016 - 18th International Conference on Enterprise Information Systems

460

activities (Hussmann et al. 2009). In this context, the
approach is completely based on the Cameleon
framework which presents a unifying framework for
the development of multi-target user interfaces
supporting multi-context of use (Calvary et al.,
2003). In the development process, the unifying
framework structures the user interface development
process into four levels of abstraction, starting from
task specification to a running interface: The Task
and Concepts (T&C) level, the Abstract User
Interface (AUI) level, the Concrete User Interface
(CUI) level and the Final User Interface (FUI) level.
It should be noted that the proposed approach is
intended to improve the usability at the conceptual
model which covers the AUI model and the CUI
model. In fact, the conceptual model represents an
abstraction of the user interface. The proposed
approach is made up of three main stages:

 Generating all the possible CUI from a given
AUI,

 Optimizing the usability at the conceptual
model,

 Selecting the alternative transformation able to
generate a user interface with an optimal
usability.

In the first stage, all the possible generation of
CUI are established from a given AUI. The second
stage performs a usability optimization process
taking as input each CUI established in stage one. A
profit usability function is formulated as an
optimization function according to a set of usability
attributes. With each one of them is associated at
least one metric which provides a numerical value
interpreted by a mechanism of indicators. In the
third stage, the user interface with the optimal value
of usability will be selected as a result of the
optimization process in a particular context of use.
Figure 1 shows an overview of the proposed
approach.

Figure 1: The proposed approach to optimize the usability
of UI with model-driven development process.

Each stage of this approach will be described in the
following sections.

3.2 The Concrete User Interface
Generation

Model transformation is a key mechanism when
building software systems with MDE approach. The
model transformation expresses how one or more
source models are transformed into one or more target
models. It consists of a set of transformation rules,
each of which describes how a construct of the source
model can be transformed into another in the target
model. The elaboration of the transformation rules
identifies the corresponding construct in the CUI
model for each construct from the AUI model. There
may be more than one construct in the CUI model that
can be associated with the one from the AUI model.

Transformation associated with an abstract
component are equivalent. However, they may differ
from the non-functional perspective and do not
satisfy the same usability attributes. For example, in
Figure 2, the first solution displays the ranges of the
accepted values. Hence, the user is well guided to
insert the expected doors number, and therefore, the
Prompting attribute is well fulfilled. In the second
and third solutions, the user is generally intended to
select from a set of possibilities, and thus the Error
Prevention attribute is well fulfilled. By considering
this example, we can notice that each transformation
optimizes at least one usability property.

In general, we can calculate the number of CUIs
(CUInum) that can be generated for a given AUI as:

CUInum=∏ ୀଵݎܾ݁݉ݑ݊_݊݅ݐܽ݉ݎ݂ݏ݊ܽݎݐ (1)
where n is the number of abstract components that
are matched in the AUI and the
transformation_number is the number of all possible
transformations associated with an abstract
component i.

Figure 2: Example of different model transformations for
the input data element.

Task and Concepts model
(T&C)

Abstract User Interface
(AUI)

Optimal Concrete User
Interface (OCUI)

Final User Interface (FUI)

CUI Generation

CUI
CUI

CUI
CUI i

Selecting optimal
CUI

Cameleon Framework

ArtifactActivityData flow

Usability measurement

Contexte of user

Usability Model

Select Metrics

Select Attributes

Grouping Function

Establish Rating
Levels

Usability optimization process

Model-driven Engineering for Optimizing the Usability of User Interfaces

461

3.3 Usability Measurement

Usability is a difficult concept to quantify. It
involves several dimensions, mainly the process and
the product dimensions. In this paper, we will focus
on the product dimension since our objective is to
evaluate usability at an early stage. Therefore, we
opt to use a usability model which extends the one
presented in the ISO/IEC 9126-1 standard (ISO,
2001). This view is more deal with the
characteristics of the product itself and can be used
to evaluate the intermediate artifacts produced in an
MDE development process.

A usability optimization approach is
implemented to optimize the usability of the targeted
user interfaces against the defined usability
attributes by means of usability metrics carried out
at the conceptual model. To do so, we propose a
usability optimization function that was formulated
according to a set of usability attributes through the
usability metrics. Consequently, this stage involves
four main steps: (1) formulating a profit function, (2)
selecting metrics, (3) establishing rating levels, and
(4) grouping function. The last three steps are
adapted from the evaluation method proposed by
(Ammar et al., 2015).

3.3.1 Formulation of the Profit Function

This step aims to formulate a profit function which
plays the role of an optimization objective function.
The profit function is intended to select the optimal
CUI generated in the first stage (section 3.2) of the
proposed approach.

Our optimization objectives reflect which aspect
to be considered in our approach and in which order
we consider their importance. In this context, we
believe that the usability optimization can be
improved by means of optimizing the performance
and the appearance of the user interface. Hence, we
formulated our usability optimization problem
through two optimization objectives which are:

 Maximizing the user performance P(),
 Maximizing the user interface appearance

A().
We start by defining the CUIprofit of a specific

combination of transformation (ti) to be of the form:
CUIprofit (ti)= P(ti)+A(ti) (2)

where P(ti) represents the performance value of a
user interface generated with a specific
transformation ti and A(ti) represents the appearance
value of a user interface generated with a specific
transformation ti.

Since our objective is to optimize the usability
before the implementation of the user interface, we
believe that the user performance is optimized when
the user is well informed, guided and prevented from
making mistakes during the interaction with the final
user interface. In addition, optimizing the user
performance needs to minimize the number of steps
required to accomplish a task and an accepted level
of the control action which includes cancellability,
undoability and explicit user actions. Indeed, we
define that the user performance value of a given
CUI which represents objective 1 as the following
formula:
P(ti)= WBR * BR(ti)+ WERP * ERP(ti) + WPR *
PR(ti)+ WUCA * UCA(ti)

(3)

where BR(ti) represents the brevity value, ERP(ti) is
the error prevention value, PR(ti) is the prompting
value, UCA(ti) is the user control action value and
WBR, WERP, WPR, WERP represent the additional
weight values.

While the user performance is of high
importance, the user interface appearance is an
equally essential factor for determining the user
interface usability that gives the user a comfortable
feeling during the interaction with the user interface
(Marcus, 2011). Therefore, the usability is enhanced
by improving the appearance of the user interface
(or synonyms and related concepts, such as
“aesthetics”, “attractiveness”, “beauty” or “form”).
(Ngo-2000).

We believe that obtaining an optimized user
interface appearance needs an appropriate number of
elements per window by keeping a good equilibrium
between information density and white space in a
specific computing-device. Additionally, the best
appearance can be ensured by the consistency of the
user interface elements and the presence of an
acceptable number of navigation elements. Thus, the
appearance A () value of a specific CUI which
represents objective 2 is calculated by the following
formula:

A(ti)=WID*ID(ti)+WCN*CN(ti)+WNAv*NAV(ti) (4)
where ID(ti) represents the information density
value, CN(ti) is the consistency value, NAV(ti) is
the navigability value and WID WCN WNAv represent
the additional weight values.

It should be noted that each additional weight
(i.e., WBR, WERP, WPR, WUCA, WID, WCN, WNAv) is
used to influence the impact of a specific addend on
the overall usability profit value. The importance of
the usability attributes varies according to systems
and target population characteristics (e.g., small

ICEIS 2016 - 18th International Conference on Enterprise Information Systems

462

screen device, user experience). This work was
described with details in (Hentati et al., 2015).

3.3.2 Selecting Metrics

We need to associate with each usability attribute at
least one metric. In what follows, we illustrate for
each usability attribute the opted metric and its
generic description:

Brevity (BR): The user interface should allow
users to interact with the UI element in a few
number of action steps. The brevity can be
quantified by the number of steps (counted in
keystrokes) required to accomplish a task.

BR = distance(x,y) (5)
where distance(x,y) represents the distance between
source screen (x) and the target screen (y).

Error Prevention (ERP): can be quantified by
the percentage of the list primitive used instead of
text field when the input element has a set of
enumerated values:

ERP = list(x)/n (6)
where list(x) represents the number of the list
primitive and n is the number of input data elements
with limited possible values.

Prompting (PR): the prompting can be
measured in terms of the proportion of label that
displays supplementary information. PR = StaticField()/n (7)
where StaticField() represents the number of labels
which display the supplementary information and n
is the total number of static field (label).

User Control Actions (UCA): We propose to
quantify the user control actions according to the
degree of control assigned by the system which
includes cancellability, undoability and explicit user
actions.

UCA = Σxi /n (8)
where ݅ݔ represents the action elements and n
represents the total number of elements.

Information Density (ID): The information
density of a user interface can be measured in terms
of the number of elements per user interface.

ID = ݊ (9)

where n represents the total number of UI elements
per interface.

Consistency (CN): This factor includes the
element consistency attribute that can be measured
by means of the percentage of the repeated elements
and the label consistency which can be quantified by
the means of the percentage of the repeated label at

the same user interface.
CN= r (10)

where r represents the proportion of repeated elements
with the same label.

Navigability (NV): The navigability measures
the level of facilities that the system will provide to
navigate throughout several interfaces. We propose
the average of navigation elements per UI as an
internal metric to measure the navigability attribute.

NV= n (11)
where n represents the number of navigation elements.

3.3.3 Establishing Rating Levels

The previously defined metrics provide a numerical
value that necessitates having a meaning in order to
be interpreted. The mechanism of indicator is
restored in order to reach such goal. It consists in the
attribution of qualitative values to each numerical
one. In (Ammar and Mahfoudhi, 2013), the
qualitative values was summarized in: very good
(VG), good (G), medium (M), bad (B), and very bad
(VB). According to (Panach et al., 2014), these
indicators do not differentiate correctly between the
values (VG) and (G), and the values B and VB. In
our approach, we propose to attribute three
indicators (B), (M) and (G). For each qualitative
value, a numerical range was assigned. For example,
the prompting value (PR) may be considered as
good (G) when at least 95% of input element labels
should display additional information (e.g. the
required data format). Table 1 shows the list of
indicators that have been defined.

Table 1: Proposed indicators for usability metrics.

Metric G M B
PR PR≥0.95 0.75≤PR<0.95 PR<0.75
BR BR≤2 2<BR≤5 BR >5

ERP ERP≥0.9 0.7≤ERP<0.9 ERP<0.7
UCA UCA≥0.9 0.5≤UCA<0.9 UCA<0.5

ID ID<15 15≤ID<25 ID≥25
CN CN≥0.85 0.6≤CN<0.85 CN<0.6
NV NV<7 7≤NV<12 NV≥12

3.3.4 Grouping Function

The aim of this stage is to put metrics and attributes
together in order to obtain a single usability profit
measure. While executing the usability evaluation,
the previously defined metrics are applied. The
obtained numerical values are converted into their
corresponding qualitative ones. Next, each
categorical value is converted to numerical values

Model-driven Engineering for Optimizing the Usability of User Interfaces

463

with respect to the following hypothesis. (G) ⇒3,
(M) ⇒2, (B) ⇒1. The final result is calculated by a
sum function.

The last step in the grouping function is to
convert the obtained numerical value into an ordinal
value. We assign B to the value between 1 and 2, M
to the value between 2.1 and G to value lower or
equal to 3. The three steps are applied for each
grouping. Groupings are performed bottom-up from
indicators until the overall user interface usability is
reached.

3.4 Selecting the Optimal CUI

The entire CUI generated in stage one has a final
usability evaluation value. The higher one is selected
as the optimal CUI. It should be noted that the
present stage is actually performed (semi)-
automatically. The selecting stage will be an
exhaustive task with the increasing number of CUI
possible combinations. That is why we hope to
automate this stage by implementing it in the future.

4 AN ILLUSTRATIVE CASE
STUDY

This section investigates a case study in order to
illustrate the feasibility of our proposal. The research
question addressed by this case study is: Does the
proposal ensure the usability optimization of the
generated user interface artifact?

The object of the experimentation is Rent-a-car
system. The scenario is adapted from (Bouchelligua
et al., 2010). The system will run on terminals of
customers (laptop, PDA, mobile phone, etc.).
Therefore, the user interface must be able to bring
not only a feeling of comfort when interacting with a
best appearance user interface but also a best
performance regardless the context of use.

Since the Rent-a-car system was large, we focused
our interests on the generation of the CUI for “the
renting period”, “customer personal information”
and “car preferences” tasks. The transformation of
the AUI allowed the generation of 216 CUIs. It
covered all the possible combinations between the
possible concrete components. It should be noted
that the number of all possible combinations was
obtained from a limited number of tasks (3 tasks and
8 sub-tasks), thus selecting the best alternative
among them is an exhaustive task which can be
solved by our approach according to the usability
profit function.

We suppose to have the abstract user interface
from Figure 3 as a result of the transformation of the
three tasks «the renting period”, «customer personal
information» and «car preferences» following the
model transformation explained in details in
(Bouchelligua et al.,2010). The result of the
transformation is an XML file which is in
accordance with the AUI metamodel (left part of
Figure 3). An editor with the Graphical Modelling
Framework (GMF) of eclipse was developed in
order to better clear up the user interface layout. The
sketch of the user interface presented by the editor is
shown in the right part of Figure 3.

The AUI contains a UIGroup called «Renting
Cars» which gives access to three UIUnitSuit called
«Renting Period», «Customer Personal information»
and «Car Preferences». The «Renting Period»
container gives access to the collection date and the
return date. The customer should specify his/her
name, surname and age whose acceptable value
should be more than 18. After that, the customer
should specify the car preferences as the doors
number, fuel and color.

To better explain our proposal, we started the
case study by a CUI model transformation illustrated
in Figure 4. The generated CUI did not take into
account our proposed usability optimization in a
specific context of use. The context is the following:
a laptop as an interactive device (normal screen
size), a customer with a low level of experience of
using the Rent-a-car system. Although the deducted
CUI filled their functional objectives, it did not
satisfy our proposed usability optimization profit
functions.

Figure 3: The abstract user interface model for Renting-a-
car system.

Each input element generated CUI illustrated in
Figure 4 was transformed into UIFieldEdit. Since

ICEIS 2016 - 18th International Conference on Enterprise Information Systems

464

novice users should be protected against errors while
entering data, input elements with limited values (eg.
Doors number, Fuel and Car color) should be displayed
with list box elements such as dropdown list and radio
button. Moreover, novice users need to be well
informed and guided by the presence of supplementary
information displayed in the labels UI StaticField in
order to ensure the best user performance.

Figure 4: Non-optimal concrete user interface for a normal
screen size.

The execution of a proposed approach, wherein
the usability optimization function is conveyed lead
to the generation of the user interface which contains
concrete elements that fulfil the desired usability
attributes. Figure 5 illustrates such transformation
taking into account the computing device and the
target population characteristics. In this example, the
target population is a customer with a low level of
experience of using the Rent-a-car system a laptop
as an interactive device (normal screen size) (15’’).
In this case, the optimized CUI illustrated in Figure
5 ensure the best performance by using list box
elements and by the presence of the supplementary

Figure 5: An optimal concrete user interface for normal
screen size.

information like the mask of date (DD/MM/YYYY),
the range of accepted values for the age value (>18
years) and the doors number (3 or 5). Hence, the
novice users were well informed to insert the correct
value. Furthermore, the UCA attribute is respected
by the presence of a Cancel and Validate buttons.

Figure 6: An optimal concrete user interface for a small
screen size.

The second transformation to be conducted takes
an «iPAQ Hx 2490 Pocket PC» as platform and a
customer with a low level of experience of using the
Rent-a-car system as a target population. The
migration to such platform raises a new
redistribution of the user interface elements. The
small screen size (240x320) is not sufficient to
display all information.

In Figure 6, the CUI with an optimal usability for
small screen group a limited number of concrete
components, whose maximum number of concepts
can be manipulated (5 in the case of «iPAQHx2490
Pocket PC»). To ensure the best user interface
appearance, the user interface elements are
redistributed on several windows. The redistribution
of interface elements on several windows will bring
more steps to reach the goal by the aims of
navigability elements (eg. Next, Return).

5 CONCLUSIONS

This paper presents an approach for optimizing
usability aspects as a part of a user interface
development process. It can be used in any software
development proposal based on conceptual models.
The proposed approach extends the Cameleon
reference framework by integrating the usability
optimization process from the conceptual models.
This proposition gathers three main stages: the first
one aims to generate all possible concrete user
interfaces from a given abstract user interface. Then,

Model-driven Engineering for Optimizing the Usability of User Interfaces

465

a usability optimization process was performed. We
used a profit function by a set of usability attributes,
each of which was associated at least with a metric.
These metrics will be interpreted by defining a
mechanism of indicator taking into account the
target population and the computing device
characteristics. Finally, the usability results allowed
the selection of the optimal alternative
transformation.

Several research studies can be considered as a
continuation of this work. In fact, the present
approach can be defined as a linear optimization,
while respecting a set of optimization constants. An
empirical validation of the optimized user interface
is recommended to clearly demonstrate the
coherence between values obtained by our proposal
and those perceived by end-user.

REFERENCES

Aquino, N., Vanderdonckt, J., Fernandez, N.C., Dieste, O.,
Pastor O., (2010) “ Usability evaluation of multi-
device/platform user interfaces generated by model-
driven engineering”, In: Proceedings of the 2010
ACM-IEEE international symposium on empirical
software engineering and measurement ESEM ‘10, pp.
30: 1-30. DOI 10.1145/1852786.1852826.

 Ammar, L. B., Trabelsi, A. and Mahfoudhi, A.,(2014)
“Incorporating usability requirements into model
transformation Technologies”, Requirements
Engineering: 1-15, 2014.

 Ammar, L.B., & Mahfoudhi, A. (2013). Early usability
evaluation in model driven framework. In ICEIS 2013:
Proceedings of the 15th international conference on
enterprise information systems, Volume 3 (pp. 23–30).
France: Angers, 4–7.

Ammar, L. B., Trabelsi, A., & Mahfoudhi, A. (2015). A
model-driven approach for usability engineering of
interactive systems. Software Quality Journal, 1-35.

Bouchelligua,W., Mahfoudhi,A., Mezhoudi,N., Dâassi, O.,
and Abed, M. (2010). User interfaces modelling of
workflow information systems. In EOMAS, pages
143–163.

Calvary, G., Coutaz, J., Thevenin, D. (2003) “A unifying
reference framework for multi-target user interfaces”,
Interacting with Computers, vol.15, no 3, p. 289-308.

Favre,J.M. (2004). Toward a Basic Theory to Model
Driven Engineering.

Gajos, K. Z., Weld, D. S., and Wobbrock, J. O. (2010)
“Automatically generating personalized user interfaces
with Supple. Artificial Intelligence”, 174(12), 910-
950.

Hentati, M., Trabelsi, A., Ben Ammar, L., and Mahfoudhi,
A. (2015). Towards optimizing the usability of user
interface generated with model-driven development

process. In Human System Interactions (HSI), 2015
8th International Conference on (pp. 206-212). IEEE.

Huerta, J.G., Blanes, D., Insfran E., and Abrahão,
S.,(2010) “Towards an architecture for ensuring
product quality in model-driven software development
”, Proceedings of the 11th international conference on
product focused software (PROFES ‘10). ACM,New
York, NY, USA, pp 28–31.

Hussmann, H., Meixner, G., & Zuehlke, D. (Eds.). (2011).
Model-driven development of advanced user
interfaces, studies in computational intelligence (Vol.
340). Berlin: Springer.

ISO/IEC: ISO/IEC 9126 (2001). Software engineering:
Product quality. ISO/IEC.

Marcus, A. (2011). Design, User Experience, and
Usability. Theory, Methods, Tools and Practice: First
International Conference, DUXU 2011, Held as Part
of HCI International 2011, Orlando, FL, USA, July 9-
14, 2011, Proceedings (Vol. 6770). Springer.

Ngo, D. C. L., Samsudin, A., & Abdullah, R. (2000).
Aesthetic measures for assessing graphic screens. J.
Inf. Sci. Eng, 16(1), 97-116.

OMG (2003) MDA guide version 1.0.1.
http://www.omg.org.

Panach J.I., Aquino N. and Pastor O.,(2014) “A proposal
for modelling usability in a holistic mdd method” Sci.
Comput. Program. 86, pp 74-88.

Panach, J.I., Juzgado, N.J.and Pastor, O., (2013)
“Including functional usability features in a model-
driven development metho”, Comput Sci Inf
Syst,10(3):999–1024.

Petter, A., Behring, A., and Zlatkov, M.,(2008) “Modeling
usability in model transformations”, In : Proceedings
of the 1st International Workshop on Non-functional
System Properties in Domain Specific Modeling
Languages, NFPinDSML. p. 1613-0073.

Raneburger, D., Popp, R., Kavaldjian, S., Kaindl, H., and
Falb, J., (2011) “Optimized GUI generation for small
screens”,Model-Driven Development of Advanced
User Interfaces, volume 340 of Studies in
Computational Intelligence, Springer Berlin
Heidelberg, pp. 107-122.

ICEIS 2016 - 18th International Conference on Enterprise Information Systems

466

