
Reliable Virtual Data Center Embedding Across Multiple Data
Centers

Gang Sun1,2, Sitong Bu1, Vishal Anand3, Victor Chang4 and Dan Liao1
1Key Lab of Optical Fiber Sensing and Communications (Ministry of Education), UESTC, Chengdu, China

2Institute of Electronic and Information Engineering in Dongguan, UESTC, Chengdu, China
3Department of Computer Science, The College at Brockport, State University of New York, New York, U.S.A.

4Leeds Beckett University, Leeds, U. K.

Keywords: Virtual Data Center, Embedding, Reliability, Multi-domain.

Abstract: Cloud computing has become a cost-effective paradigm for deploying online service applications in large data
centers in recent years. Virtualization technology enables flexible and efficient management of physical
resources in cloud data centers and improves the resource utilization. A request for resources to a data center
can be abstracted as a virtual data center (VDC) request. Due to the use of a large number of resources and at
various locations, reliability is an important issue that should be addressed in large and multiple data centers.
However, most research focuses on the problem of reliable VDC embedding in a single data center. In this
paper, we study the problem of reliable VDC embedding across multiple data centers, such that the total
bandwidth consumption in the inter-data center backbone network is minimized, while satisfying the
reliability requirement of each VDC request. We model the problem by using mixed integer linear
programming (MILP) and propose a heuristic algorithm to address this NP-hard problem efficiently.
Simulation results show that the proposed algorithm performs better in terms of lowering physical resource
consumption and VDC request blocking ratio compared with existing solution.

1 INTRODUCTION

Cloud computing has become a promising paradigm
that enables users to take advantage of various
distributed resources (Armbrust et al., 2010). In a
cloud computing environment, the cloud provider(s)
owning the physical resource pool (i.e., physical data
centers) offer these resources to multiple
users/clients. A user’s demand for resources can be
abstracted as a virtual data center (VDC), also known
as a virtual infrastructure. A typical VDC consists of
virtual machines (VMs) connected through virtual
switches, routers and links with communication
bandwidth. The VDCs are able to provide better
isolation and utilization of network resources, thereby
improving the performance of services and
applications. The main challenge associated with
VDC management in cloud data centers is efficient
VDC embedding (or mapping), which aims at finding
a mapping of VMs and virtual links to physical
components (e.g., servers, switches and links).

Due to the use of a large number of resources and
at various locations in cloud data centers, providing
reliability of cloud services is an important issue that

needs attention. A service disruption can lead to
customer dissatisfaction and revenue loss. However,
restoring failed services is costly. Thus, many cloud
services are deployed in distributed data centers to
meet their high reliability requirements. Furthermore,
some services may require to be within the proximity
of end-users (e.g., Web servers) whereas others may
not have such location constraints and can be
embedded in any data center (e.g., MapReduce jobs)
(Amokrane et al., 2013). Therefore, reliable VDC
embedding across distributed infrastructures is
appealing for Service Providers (SP) as well as
Infrastructure Providers (InPs).

However, there is limited research on the problem
of reliable VDC embedding across multiple data
centers, with most research focusing on only VDC
embedding within a single data center. For example, C.
Guo et al. (2013) proposed a data center network
virtualization architecture, SecondNet, in which VDC
is used as the basic unit of resource allocation for
multiple tenants in the cloud. However, they do not
consider the VDC reliability. M. Zhani et al. (2013)
designed a migration- aware dynamic VDC embedding
framework for efficient VDC planning, which again

Sun, G., Bu, S., Anand, V., Chang, V. and Liao, D.
Reliable Virtual Data Center Embedding Across Multiple Data Centers.
DOI: 10.5220/0005842101950203
In Proceedings of the International Conference on Internet of Things and Big Data (IoTBD 2016), pages 195-203
ISBN: 978-989-758-183-0
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

195

without reliability considerations. Zhang et al. (2014)
proposed a framework, Venice, for reliable virtual data
center mapping. The authors prove that the reliable
VDC embedding problem is NP-hard problem.
However, this study is limited to a single data center.

There are also some studies on virtual data center
or virtual network (VN) embedding across multiple
domains. The work in (Amokrane et al., 2013) studied
the problem of VDC embedding across distributed
infrastructures. The authors in (Yu et al., 2014)
presented a framework of cost efficient VN
embedding across multiple domains, called MD-
VNM. Di et al. (2014) proposed an algorithm for
reliable virtual network embedding across multiple
data centers. However, there are differences between
VDC embedding and VN embedding in some aspects.
For example, a VDC is a collection of VMs, switches
and routers that are interconnected through virtual
links. Each virtual link is characterized by its
bandwidth capacity and its propagation delay. VDCs
are able to provide better isolation of network
resources, and thereby improve the performance of
service applications. A VN is a combination of active
and passive network elements (network nodes and
network links) on top of a Substrate Network (SN)
(Fischer et al., 2013).In addition, a VN node generally
cannot be embedded on a physical node that hosts
another VN node of the same VN, whereas each
physical server can host multiple VMs from the same
VDC in the VDC embedding problem. Therefore,
most existing VDC embedding approaches cannot be
directly applied to solve the problem of reliable VDC
embedding across distributed infrastructures.

In this paper, we study the problem of reliable
VDC embedding (RVDCE) across multiple data
centers. In our work, we minimize the total backbone
bandwidth consumption, while satisfying the
reliability requirement of VDC request. We formulate
the RVDCE problem as a mixed integer linear
programming (MILP) problem and propose a cost
efficient algorithm for solving this problem.
Simulation results show that the proposed algorithm
performs better than the existing approach.

2 PROBLEM STATEMENT

In this section, we give the descriptions on the
problem of reliable VDC embedding across
distributed infrastructures.

2.1 VDC Request

A VDC request consists of multiple VMs and virtual

links that connect these VMs. Figure 1 shows an
example of a VDC request with 5 VMs,
interconnected by virtual links. The i-th VDC request
is represented by Gi= (Vi, Ei), where Vi denotes the set
of virtual machines, Ei is the set of virtual links. The
VMs with location constraints can only be embedded
onto the specified data centers, whereas the VMs
without location constraints can be embedded onto
any data center in the substrate infrastructure. We use
R to denote the types of resources (e.g., CPU or
memory) offered by each physical node. We use ܿ௩	to denote the requirement of resource of virtual
node v, be to present the amount of bandwidth
required by virtual link e. Similarly, we define sve and
dve as the variables that indicate whether virtual node
v is the source or destination of link e.

Web

App

App Database

Database

Figure 1: Example of a VDC request.

2.2 Distributed Infrastructure

The distributed infrastructure consists of the
backbone network and data centers managed by
infrastructure providers (InP).Thus, the InP knows
the information of all the distributed data centers.
Typically, the cost of per unit bandwidth in the
backbone network is more expensive than the cost of
per unit bandwidth within data center (Greenberg et
al., 2008).

Figure 2: The Fat-Tree topology.

We model the physical infrastructure as a undirected
graph G = (തܸ ∪ ,തതതതܸܤ തܧ ∪ (തതതതܧܤ , where തܸ denotes the
set of physical nodes in the data centers, ܸܤതതതത denotes

IoTBD 2016 - International Conference on Internet of Things and Big Data

196

the set of nodes in backbone network, ܧത denotes the
set of physical links of data centers, and ܧܤതതതതdenotes
the set of physical links of the backbone and physical
links that connect the backbone and data centers. Let ܩ = (തܸ, ,ത) represent the physical data center kܧ
where തܸ denotes the set of physical nodes and ܧത
denotes the set of physical links in the data center. We
use ܿ௩ത to indicate the capacity of resource on the
physical node ̅ݒ , and ܾ̅ to indicate bandwidth
capacity of physical link ݁̅. Let ݏ௩ത̅, ݀௩ത̅ be indicator
variables that denote whether ̅ݒ is the source or
destination of physical link ݁̅ .Without loss the
generality, in this work, we assume that each data
center has a Fat-Tree (Leiserson, 1985) topology as
shown in Figure 2.

2.3 Reliable VDC Embedding

We define the reliability of a VDC as the probability
that the service is still available even after the failure
of physical servers. Similar to (Zhang et al., 2014),
we use replication groups to guarantee the reliability
requirements of data centers. The basic idea is that if
one VM in the replication group fails, the other VM
in the same replication group can run as a backup. In
other words, a replication group is reliable as long as
one of the VMs in the group is available. The VMs in
different replication groups have different
functionalities, and the set of all replication groups
form the complete service. Therefore, when any
group fails, the entire service is unavailable, since the
rest of groups cannot form a complete service. In this
work, the key objective is to guarantee the reliability
of the whole VDC, while satisfying its resource
requirements.

The reliability rl of a VDC which has been
embedded can be calculated as follows:

(1) ,
v v

i RC v F v NF

fr fr Nl v Pr
∈ ∈ ∈

= − ∀ ∈ ∏ ∏ , (1)

where PN denotes the set of physical nodes which
host the VMs in the VDC; RC denotes the set of cases
which can guarantee the availability of the VDC; ݂ݎഥ
denotes the failure probability of the physical node ̅ݒ;
F is the set of the failed physical nodes in all data
centers; and NF is the set of the available physical
nodes in data centers.

The problem of VDC embedding across multiple
domains (i.e., multiple data centers) means that VMs
in a VDC may be embedded in multiple data centers.
Since VMs have different location constraints, they
may not be embedded in the same data center. Figure
3 shows an example of VDC embedding across
multiple domains.

Backbone
network

Virtual data
center

DC1

DC2 DC4

DC3

Figure 3: Example of VDC cross-domain embedding.

3 MILP MODEL

In this section we describe the constraints and
objective of our researched problem and then
construct a MILP model.

3.1 The Constraints

In order to ensure that the VDC embedding does not
violate the physical resource capacity limits, the
following capacity constraints must be met.

 , ,
i

i ir r
vvv v

i I v V

x c c v V r R
∈ ∈

≤ ∀ ∈ ∈ , (2)

 ,
i

i

ee e
i I e E

b b e E
∈ ∈

≤ ∀ ∈ , (3)

Where ݔ௩௩ത is a variable denoting whether the virtual
node v(i.e., VM v)of VDCi is embedded on the
physical node ̅ݒ ; ܾ̅ denotes the amount of
bandwidth resources provisioned by physical
link	݁̅	for virtual link e of VDC i. In addition, the flow
conservation constraints below must also be satisfied.

, ,e ,
i i

i i

ve ee ve ee
e E e E

i i i i i
ve e ve evv vv

v V v V

s b d b

x s b x d b i I E v V

∈ ∈

∈ ∈

−

= − ∀ ∈ ∈ ∈

 (4)

We define ݔ௩௩ത as a variable that indicates whether the
VM v can be embedded on physical node 	ݒഥ . Then the
virtual node placement constraints can be formulated
as follows:

 , , ,

ii i
vvvv

x x i I v V v V≤ ∀ ∈ ∈ ∈ , (5)

Reliable Virtual Data Center Embedding Across Multiple Data Centers

197

 1, ,i i

vv
v V

x i I v V
∈

= ∀ ∈ ∈ . (6)

We define ݕ௩ത as a variable to indicate whether the
physical node ̅ݒ is active. If a physical node hosts at
least one VM, then this node must be active,
otherwise inactive. It means that the following
constraints should be satisfied:

 , , ,i i

v vv
y x i I v V v V≥ ∀ ∈ ∈ ∈ , (7)

1
, , , ,i i

v ee ve
e

y b s i I v V e E e E
b

≥ ∀ ∈ ∈ ∈ ∈ , (8)

1
, , , ,i i

v ee ve
e

y b d i I v V e E e E
b

≥ ∀ ∈ ∈ ∈ ∈ .(9)

Furthermore, the following geographical location
constraints must be satisfied:

1 if can be assigned to DC

0 otherwise
i
kv

v k
z

=

, (10)

1 if is assigned to DC

0 otherwise
i
kv

v k
w

=

, (11)

 , i i i
kv kvw z v V≤ ∀ ∈ , (12)

 1, : G
i

i k
kv

v V

w k
∈

= ∀ . (13)

3.2 The Objective

We use ܣ to represent the reliability of i-th VDC. If
the InP fails to meet the reliability requirement ܣ ,
there will be a penalty:

 (1)unavail

i i
i I

P A π
∈

= − , (14)

where πi denotes the penalty from failing to meet the
reliability of the i-th VDC.

Recovery costs come from restarting VMs and
reconfiguring the network equipment. We thus define
the failure recovery costs of node ̅ݒ and link ݁̅ as
shown in Equation (15) and (16), respectively. Let ߩ௩ത
and ߩ̅ represent the energy cost of an active node ̅ݒ
and link ݁̅, respectively.

,
i i

restore i i
v ev v vv ee ve

i I v V e E

P x b v Vρ λ μ λ
∈ ∈ ∈

= + + ∀ ∈ ,(15)

, \
i

restore i
ee e ee

i I e E

P b e E BEρ λ
∈ ∈

= + ∀ ∈ , (16)

where ߣ௩ and ߣ are the recovery costs of virtual
node v and virtual link e, and ௩ത̅ݑ	 ,௩ത̅ݏ}ݔܽ݉= ݀௩ത̅}	 denotes that whether node ̅ݒ is the
source or destination of link ݁̅ . The cost for
embedding e onto backbone network is:

 ,
i

backbone i
ebe ee

e E

P b e BEλ
∈

= ∀ ∈ , (17)

where ߣ denotes the provisioning cost of virtual
link e in backbone network.

We use ܨ௩ത and ܨ̅ to denote the failure probability
of node ̅ݒ and link ݁̅, respectively. Then the total cost
of unreliable VDC is as follows:

unavail restore
A v v

v V

restore backbone

e e e
e E

P P F P

F P P

∈

∈

= +

+ +

 . (18)

Therefore, the objective function to minimize the
total cost defined as follows:

 AM inimize P . (19)

4 ALGORITHM DESIGN

In this section, we propose an efficient algorithm for
solving the problem of reliable VDC embedding
(RVDCE) across multiple domains. The RVDCE
problem consists of two key issues: i) how to ensure
the reliability of the VDC request; ii) how to reduce
the backbone bandwidth consumption.

Multiple VMs may be embedded on the same
physical node, and the reliability of embedding all
VMs of a VDC on the same physical node is higher
than that of embedding the VMs on different nodes.
The reason is as follows: according to the definition
of the reliability requirement of a VDC, reliable
service implies that all replication groups are reliable.
All replication groups form the complete service, and
each plays a unique role as explained in the third part
of Section 2.Therefore, when any group fails, the
entire service is unavailable. Hence, if we embed all
VMs belonging to different replication groups on the
same physical node, the service reliability is equal to
the reliability of that physical node. On the other
hand, if we embed all VMs on different physical
nodes, the service reliability is equal to the product of
the reliability of those physical nodes. In addition, in
order to improve the service reliability, we need to
embed VMs in the same replication group on to
different physical node so that these VMs can backup

IoTBD 2016 - International Conference on Internet of Things and Big Data

198

each other. However, physical nodes with limited
resources and VMs with location constraints may not
allow all VMs in a VDC to be embedded onto the
same physical node, or even the same data center.

Moreover, reducing the backbone bandwidth
consumption is the other issue we have to address in
this work. For addressing this issue, we partition a
VDC into several partitions before mapping it. The
reasons are as follows: i) if we place VMs one by one,
it will cause a large amount of backbone bandwidth
consumption, because the backbone bandwidth
consumption is not considered in the VM mapping
process; ii) the network resource in inter-data centers
is more expensive than that of intra-data centers
networks. We put the VMs that have a large amount
of communication bandwidth requirement between
each other into the same partition, and the VMs in the
same partition will be mapped into the same data
center. Thus, the backbone bandwidth consumption
can be reduced. On the other hand, the way of
mapping VMs one by one mentioned above will
cause much higher reliability than required. It is
unnecessary that the data centers provide much higher
reliability than that required by VDC request, so it is
necessary to just meet the required reliability for
reducing the resource consumption.

In addition, if we map virtual components with
low reliability requirement on the servers with high
reliability, the physical server resources will be
wasted and may result in increasing in the blocking
ratio of the VDC requests in the long term. Therefore,
in order to use physical server resource with different
reliability rationally, we grade the servers in data
center according to their reliability.

The RVDCE algorithm consists of three main
steps: i) group the physical servers; ii) partition the
VDC; iii) embed the VDC partitions. The detailed
RVDCE algorithm as shown in Algorithm 1.

Algorithm 1: Reliable VDC Embedding.

Input:1. Size of partitions: N;

2. The VDC request: (V ,E)i i iG = ;
3. Substrate data center:

(,)G V BV E BE= .
Output: The VDC embedding result.
1:Sort servers in data centers in

ascending order of their reliability;
2:Divide the servers in data centers

into L levels, where a lower level has
a lower reliability;

3: The initial partition size denoted as

K , let K N= ;
4: letisSuccessful ← false;
5:while 0K > do

6: Call Procedure1 to partition the
VDC request;

7: for all l L∈ do

8: S ←the set of servers in all data
centers whose levels are lower

than or equal to l ;
9: Call Procedure 2 to embed

partitions;
10: if all partitions are embedded
successfully

11: isSuccessful ← true;
12: return VDC embedding result;
13: end if
14: end for
15: 1K K= −
16:end while
17:if (isSuccessful == false)
18: return VDC embedding is failed
19:end if

4.1 Group the Physical Servers

We sort the servers in descending order of their
reliability, and then group the servers into groups with
different reliability levels. That is, higher level means
higher reliability. In the embedding process, we chose
level l servers to host a VDC, meaning that we can
use the servers whose levels are less than or equal to
l for hosting the VDC. If the reliability does not meet
VDC requirement after completing the VDC
embedding, it is necessary to increase the reliability
level l and re-embed the VDC. If the reliability is
lower than the required for any available physical
servers, we have to change the partition size and re-
embed the VDC.

4.2 Partition the VDC

Before embedding a VDC, we first partition the VDC
into several sub-VDCs, with the aim of minimizing
the bandwidth demands between partitions, thereby
reducing the bandwidth consumption in the backbone
network.

Assume the number of VMs in a VDC is N, the
partition size is K(i.e., the number of VMs in each
partition cannot exceed K), where the partition size K
is adjustable. The initial value of K is equal to N, then
the K is gradually reduced in the process of adjusting
the size. If a VDC is successfully embedded while K=
N, we do not need to adjust the size K, since the
backbone bandwidth consumption is minimized.

In the VDC partition process, we first make each
node as a partition, and calculate the total amount of
bandwidth demands between the original partitions.
Then the algorithm traversals all nodes ݒ ∈ ܸ, and

Reliable Virtual Data Center Embedding Across Multiple Data Centers

199

finds partition P that allows us move v from its
original partition to P and satisfy the follow
conditions: i) reduce the amount of bandwidth in
backbone network; ii) the VMs in P have same
location constraints; iii) the number of VMs in P is
smaller than k. If a partition P that meets the above
conditions is found, we will move VM v to P. As long
as there are nodes moving between different
partitions, algorithm keeps traversing the VMs until
there is no node need to be moved. If the current
bandwidth demands in inter-data center is less than
the bandwidth demands between original partitions,
algorithm will regenerate a new graph where a
partition of ܩ is as a node in this new graph.

Procedure 1: VDC Partition.
1: Let flag← true;
2: while(flag)

3: Denote each node of iG as apartition;
4: Record the initial bandwidths

between partitions;
5: while nodes need to be moved between

partitions do

6: for each iv V∈ , do

7: Find a partition P and move

v to P, such that: a) the

number of VMs in Pdoes not

exceed k ; b)bandwidths
consumptionis minimized; c)

all of the nodes in P with
same location constraint.

8: end for
9: end while
10: if current bandwidth demands <

initial bandwidth demands

11: Change iG as the graph of
partitions;
12: else
13: flag ←false
14: end if
15:end while

Figure 4 shows an example of partitioning a VDC
request. We assume that two data centers included in
the substrate network, denoted as DC1 and DC2. The
VDC request m is shown in Figure 4(a). The location
constraints of the four VMs are as follows: i)VM a
must be embedded in DC1;ii) VM b and VM c must
be embedded in DC2; iii)VM d can be embedded in
DC1 orDC2. Therefore, VM a cannot be in the same
partition with VM b and VM c. Figure 4(b) shows the
partitioning of VDC m when the partition size is 1.
When the partition size is 2, the feasible partitions of
m are shown in Figure 4(b) and Figure 4(c). When the

partition size is 3, the feasible partitions of m are
shown in Figure 4(b), Figure4(c) and Figure 4(d).

b

a d

c

2 4

3 5

(a) (b)

b

a d

c

2 4

3 5

b

a d

c

2 4

3 5

(c) (d)

Figure 4: Example of partitioning a VDC.

4.3 Embed the Partitions

We guarantee the reliability of VDC by using
replication groups. If one VM in the replication group
fails, the other VM in the same replication group can
run as a backup. Therefore, a replication group is
reliable as long as at least one of the VMs in the group
is reliable. We choose one node in a replication group
as the working node, the other nodes in that
replication group can be used for backup. We take
different approaches for embedding the working node
and backup nodes.

4.3.1 Embedding of Working Nodes

Since the VMs in partition have location constraints,
each partition has a corresponding location constraint.

IoTBD 2016 - International Conference on Internet of Things and Big Data

200

Partitions can only be embedded on to data centers
that satisfy the location constraints.

We choose the first partition randomly and find a
data center that can provide the highest reliability for
the chosen partition. Then we embed the VMs in the
partition according to the following two steps: 1)
embedding the VMs without backups;2) embedding
the VMs that with backups. If any VM in the
replication group has been embedded, the VMs
belong to this replication group in the partition should
be skipped. In other words, only one VM of each
replication group needs to be embedded. We
preferentially embed it on the servers that have hosted
other VMs belong to the same VDC. If the resources
of the physical server are not enough, we need to
embed the VM on a new available server which with
the highest reliability.

4.3.2 Embedding of Backup Nodes

We calculate the reliability of the VDC by using the
reliability computing algorithm (Zhang et al., 2014),
after embedding the working node. If the reliability is
higher than required, we embed the backups into the
physical servers with lower reliability. If the reliability
is lower than required, we embed the backups into the
physical servers with higher reliability.

Procedure 2: Partition embedding.

1:Randomly chose a partition g from

partition set Partitions ;
2:Choose a data center dc with the
highest reliability and enough

resources from data center set DCs ;
3: PartitionToDC = PartitionToDC ∪	< g , dc >.
4:M: the set of nodes in VDC that have

been embedded, let =M φ ;

5:while Partitions is not empty do
6: for all v in g do
7: if none of the virtual node in

the replication group that v
belongs to has been embedded

8: if v can be embedded on the
server s S∈ hosting the
nodes in M

9: Embed v on server s ;

10: { };M M v← ∪
11: else
12: Chose the server has

highest reliability that

belongs to dc and s to host
v ;

13: end if
14: end if

15: end for
16: \{g};Partitions Partitions←

17: g ← the partition in Partitions which
has the largest amount of bandwidth
demand to communicate with the
embedded partitions;

18: Choose a dc that can provide highest
reliability and enough resources to

g from DCs ;
19: PartitionToDC = PartitionToDC ∪	< g , dc >;
20:end while
21:Compute the current reliability r of

VDC request by using the reliability
computing algorithm proposed in
(Zhang et al., 2014);

22:for all < g , dc > in PartitionToDC do
23: if r > ra

24: for each node v in g do
25: Embed v on the server

with enough resources
and the lowest

reliability in dc ;
26: end for
27: else
28: for remaining nodes v in g do
29: if v can be embedded on

the server that node μ
in g has been embedded
on and the replication
groups of v and μ are
different

30: Embed v on s ;
31: else
32: Embed v on the server

has highest
reliability;

33: end if
34: end for
35: end if
36:end for

We note that all VMs belonging to the same partition
must be embedded in the same data center.
Accordingly, when embedding the backup VMs, we
need to choose the data center that has the embedded
VMs belonging to the same partition. In addition, it is
important to note that the VMs belonging to the same
replication group cannot be embedded on to the same
server. After embedding the backup nodes, we
calculate the reliability and check whether the
reliability meets the VDC requirement.

Reliable Virtual Data Center Embedding Across Multiple Data Centers

201

5 SIMULATIONS AND
ANALYSIS

5.1 Simulation Environment

In our simulation, each data center has a Fat-Tree
(Leiserson, 1985) topology composed of 128 physical
servers connected through 80 switches. Each physical
server has 1000units CPU resource. The capacity of
physical link in data center is 100 units. We generate
the VDC requests by using GT-ITM tool (GT-ITM)
and the parameter settings are similar to (Zhang et al.,
2014). The number of VMs in each VDC request is
randomly set between 3 and 15.The CPU resource
demand of each VM is generated randomly between
8 to 16 units. The bandwidth requirement of each
virtual link is set randomly between 1 and 3 units.

For evaluating the effectiveness and correctness
of our proposed algorithm, we have implemented
three algorithms for comparison purposes. The
algorithms compared in our simulation experiments
are shown in Table 1.

Table 1: Algorithms compared in our simulations.

Algorithms Descriptions

RVDCE
The algorithm proposed in this work for
provisioning reliable VDC across
multiple data centers.

RVDCE_R

The algorithm proposed in this work for
provisioning reliable VDC across
multiple data centers in which the VMs
are embedded on the available servers
with the highest reliability.

RVNE
Algorithm proposed in (Yu et al., 2014)
for reliable virtual network embedding
across multiple domains.

5.2 Simulation Experiment Results

Backbone bandwidth consumption: Figure 5 shows
the performance of average backbone bandwidth
consumption for provisioning VDC requests against

the number of VDC requests. The K in Fig. 5
represents the size of the partition. It can be seen that
the RVDCE algorithm leads to a lower average
backbone bandwidth consumption compared to that
of RVNE and RVDCE_R. This is because RVDCE
divides a VDC request into multiple partitions and
consumes the bandwidth of backbone network as few
as possible while mapping these partitions.
Furthermore, average backbone bandwidth
consumption of RVDCE decreases with the growth of
the value of K. Since larger partition size leads to a
lower bandwidth consumption between partitions.

Blocking ratio of VDC request: Figure 6 shows the
performance of blocking ratio under various reliability
requirements. In this set of simulations, the reliability
requirement rr varies from 0.92 to 0.98 with a step of
0.02.It is clear that when the number of VDCs is small,
the blocking ratios of the three compared algorithms
are very low. For example, in Figure 6(a), when the
number of VDC requests is smaller than 20, the
blocking ratios of these algorithm is zero. The blocking
ratio increases with the growth of the number of VDC
requests. The blocking ratio of RVDCE is lower than
that of the other two algorithms under different
reliability requirements. It is due to fact that RVDCE
algorithm embeds VMs onto servers with as lower
reliability as possible while satisfying the reliability
requirements of VDCs, for avoiding over-provisioning
and thus can admit more VDC request.

Cumulative CPU resource consumption: Figure 7
presents the results of total CPU resource
consumption for various number of VDC requests.
The cumulative CPU resource consumption increases
with the growth of the number of VDC requests. It
also can be seen from Figure 7 that the CPU resource
consumption of RVDCE is lower than that of RVNE.
This is because our RVDCE algorithm does not use
redundant resources as the backups for satisfying the
VDC reliability. Furthermore, our proposed
algorithm selects the servers to host the VMs
according to the dependencies between VMs, thus
avoiding over-provisioning and results in a lower
resource consumption.

0 100 200 300 400 500 600 700 800 900 1000
28

32

36

40

44

48

52

56

60

64

B
ac

kb
on

e
B

in
dw

id
th

 C
on

su
m

pt
io

n

Number of VDC Requests

 RVDCE, K=1 RVNE, K=1
 RVDCE_R, K=1

0 100 200 300 400 500 600 700 800 900 1000
24

28

32

36

40

44

48

52

56

60

64

Ba
ck

bo
ne

 B
in

dw
id

th
 C

on
su

m
pt

io
n

Number of VDC Requests

 RVDCE, K=5 RVNE, K=5
 RVDCE_R, K=5

0 100 200 300 400 500 600 700 800 900 1000
15

20

25

30

35

40

45

50

55

60

65

B
ac

kb
on

e
B

in
dw

id
th

 C
on

su
m

pt
io

n

Number of VDC Requests

 RVDCE, K=11 RVNE, K=11
 RVDCE_R, K=11

Figure 5: Average backbone bandwidth consumption.

IoTBD 2016 - International Conference on Internet of Things and Big Data

202

500 1000 1500 2000 2500 3000 3500 4000
-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

B
lo

ck
in

g
R

at
io

Number of VDC Requests

 RVDCE, rr=0.92
 RVNE, rr=0.92
 RVDCE_R, rr=0.92

500 1000 1500 2000 2500 3000 3500 4000
-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Bl
oc

ki
ng

 R
at

io

Number of VDC Requests

 RVDCE, rr=0.96
 RVNE, rr=0.96
 RVDCE_R, rr=0.96

0 500 1000 1500 2000 2500 3000 3500 4000

0.0

0.2

0.4

0.6

0.8

B
lo

ck
in

g
R

at
io

Number of VDC Requests

 RVDCE, rr=0.98
 RVNE, rr=0.98
 RVDCE_R, rr=0.98

Figure 6: Blocking ratios under different reliability requirements.

0 10 20 30 40 50
0

2000

4000

6000

8000

10000

C
P

U
 R

es
ou

rc
e

C
on

su
m

pt
io

n

Number of the VDCs

 RVDCE
 RVNE

Figure 7: Total CPU resource consumption.

6 CONCLUSION

In this paper, we have studied the problem of reliable
VDC embedding across multiple infrastructures and
proposed a heuristic algorithm for solving this
problem. The aim of our research is to minimize the
total bandwidth consumption in backbone network
for provisioning a VDC request, while satisfying its
reliability requirement. Our algorithm makes a trade-
off between backbone bandwidth consumption and
reliability. Simulation results show that the proposed
algorithm significantly reduced the resource
consumption and blocking ratio than the existing
approach.

ACKNOWLEDGEMENTS

This research was partially supported by the National
Grand Fundamental Research 973 Program of China
under Grant (2013CB329103), Natural Science
Foundation of China grant (61271171, 61571098),
China Postdoctoral Science Foundation
(2015M570778), Fundamental Research Funds for
the Central Universities (ZYGX2013J002),
Guangdong Science and Technology Project

(2012B090400031, 2012B090500003,
2012B091000163), and National Development and
Reform Commission Project.

REFERENCES

Armbrust, M., Fox, A., Griffith, R., et al, 2010. A view of
cloud computing. Communications of the ACM.

Bari, M., Boutaba, R., Esteves, R., Granville, L., Podlesny,
M., Rabbani, M., Zhang, Q., and Zhani, M., 2013. Data
center network virtualization: A survey. IEEE
Communications Surveys and Tutorials.

Amokrane, A., Zhani, M., Langar, R., Boutaba, R., Pujolle,
G., 2013. Greenhead: Virtual Data Center Embedding
Across Distributed Infrastructures. IEEE Transactions
on Cloud Computing.

Zhang, Q., Zhani, M., Jabri, M., Boutaba, R., 2014. Venice:
Reliable Virtual Data Center Embedding in Clouds.
IEEE INFOCOM.

Guo, C., Lu, G., Wang, H., Yang, S., Kong, C., Sun, P., Wu,
W., and Zhang, Y., 2010. SecondNet: a data center
network virtualization architecture with bandwidth
guarantees. ACM CoNEXT.

Zhani, M. F., Zhang, Q., Simon, G., and Boutaba, R., 2013.
VDC planner: Dynamic migration-aware virtual data
center embedding for clouds. IFIP/IEEE IM.

Yu, H., Wen, T., Di, H., Anand, V., Li, L., 2014. Cost
efficient virtual network embedding across multiple
domains with joint intra-domain and inter-domain
embedding. Optical Switching and Networking.

Di, H., Anand, V., Yu, H., Li, L., Lianand D., Sun, G., 2014.
Design of Reliable Virtual Infrastructure Using Local
Protection. IEEE International Conference on
Computing, Networking and Communications.

Fischer, A., Botero, J., Beck, M., Meer, H., Hesselbach, X.,
2013. Virtual Network Embedding: A Survey. IEEE
Communications Surveys &Tutorials.

Greenberg, A., Hamilton, J., Maltz, D., and Patel, P., 2008.
The cost of a cloud: research problems in data center
networks. ACM SIGCOMM Computer Communication
Review.

Leiserson, C., 1985. Fat-Trees: Universal Networks for
Hardware Efficient Supercomputing. IEEE
Transactions on Computers.

GT-ITM. http://www.cc.gatech.edu/projects/gtitm/

Reliable Virtual Data Center Embedding Across Multiple Data Centers

203

