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Abstract: The proliferation of the Internet of Things (IoT) increases the amount of data that is being produced. 
Therefore it is extremely important to find the best possible storage engine to process these huge amounts of 
data. With the intent of discovering which database engine better supports the characteristics of an IoT 
system it is essential to analyse the existing databases and test them in a practical context. With this 
objective we decided to use one of the most popular databases, Cassandra, to evaluate it on an IoT 
environment. We evaluate the querying processing time of Cassandra using queries of an IoT real time 
environment and comparing it with different types of data architectures. The main focus of this work is to 
investigate if Cassandra can provide good performance in an IoT system. 

1 INTRODUCTION 

Nowadays the world is evolving and producing large 
amounts of data due to the growth of Internet of 
Things (IoT). This constant and fast evolution leads 
developers to pursuit the best possible solutions to 
handle large amounts of data. Even though the need 
for intelligent data mining tools is extremely 
important, we also need to pay attention to the way 
this data is stored and which type of engine better 
fits the needs of an IoT system.  

To the best of our knowledge, a perfect solution 
for the Internet of Things data layer does not exists. 
With this in mind we aim to find out the best 
possible solution for this type of environment. 
Therefore an investigation was conducted to 
understand which database would be the most 
suitable to provide a production ready environment. 
It is important to keep in mind that, generally 
speaking, these kind of systems need to handle large 
amounts of data, real time insertion of records and 
huge data diversity.  

The database will be used in an Internet of 
Things environment that intends to gather data from 
a city and process it in order to find events that are 
considered dangerous. The system collects data from 

sensors and provides alerts to each subscribed 
application. It is important to understand that this 
system will act as a demonstrator for the data layer.  

In (van der Veen et al., 2012) it is discussed that 
scaling systems that deal with sensors is becoming 
gradually difficult due to the amount of sensors and 
clients that extract data from them. Therefore it is 
significant to not only pay attention to the frequency 
of the data, but also to the huge volume that it will 
obtain. 

According to (Abramova et al., 2014a; 2014b; 
2014c; Barata et al., 2015) Cassandra seems to have 
a clear advantage in terms of the characteristics 
necessary to implement this system because it 
provides good writes speeds without sacrificing 
performance. Furthermore, Cassandra system was 
designed to run on cheap commodity hardware and 
handle high write throughput while not sacrificing 
read efficiency (Lakshman and Malik, 2010). 
Additionally the decision of choosing Cassandra is a 
result of its popularity and market share (DB-
Engines Ranking, 2015). With all of this in mind, 
Cassandra seems to be a solid choice for this use 
case. 

In addition to storing data, every system needs to 
provide it in order to query and filter later. It is 
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important to keep in mind that systems included in 
the IoT context tend to be stream oriented, rather 
than batch. For this reason, the database to be chosen 
needs to accept data in streams, or at least support a 
high rate of data insertion, and have the necessary 
mechanisms to withstand this. 

We aim to test which architecture for the data 
layer would best suit the needs of an IoT platform in 
terms of querying performance, without sacrificing 
the write performance. There were two relevant 
ways in terms of implementation. First, a single 
table with all the data, which would then be filtered 
and dealt with when needed. A second approach is 
multiple tables for each specific application that 
sends events.  

From a theoretical standpoint it seems that the 
best way of organizing our data is through the 
creation of a table per application. This will result in 
smaller tables which, in comparison to a centralized 
table that stores everything are a lot faster because 
they have much less records. In a nutshell, we aim to 
understand which data architecture will have the best 
performance while querying the data. 

The remainder of this paper is structured as 
follows. Section 2 gathers background on important 
concepts such as the IoT concept and the description 
of Cassandra. Section 3 describes Cassandra and its 
general characteristics. Section 4 defines the setup 
on which the tests were made. Section 5 presents the 
performance tests that were made. Finally, section 6 
presents our main conclusions and suggests future 
work. 

2 BACKGROUND 

This section aims to present the necessary 
background on Internet of Things and Databases. 

2.1 Internet of Things 

According to (Friess and Vermesan, 2013) the 
Internet of Things (IoT) “is a concept and a 
paradigm that considers pervasive presence in the 
environment of a variety of things/objects that 
through wireless and wired connections and unique 
addressing schemes are able to interact with each 
other and cooperate with other things/objects to 
create new applications/services and reach common 
goals.” IoT is a concept reflecting a connected set of 
anyone, anything, anytime, anyplace, any service, 
and any network (Islam et al., 2015). The IoT is a 
megatrend in next-generation technologies that can 
impact the whole business spectrum and can be 

thought of as the interconnection of uniquely 
identifiable smart objects and devices within today’s 
Internet infrastructure with extended benefits. 
Benefits typically include the advanced connectivity 
of these devices, systems, and services that goes 
beyond machine-to-machine (M2M) scenarios 
(Höller et al., 2014). The IoT provides appropriate 
solutions for a wide range of applications such as 
smart cities, waste management, emergency 
services, logistics, retails, industrial control, and 
health care. The Internet of Things extends even 
beyond communications and new services, it will 
allow for a future where, with everything connected, 
people can feel more integrated with the world and 
let IoT do the day-to-day recurring tasks for them. 

The IoT provides a new paradigm that will shape 
the world and create a new conception of the 
Internet and how people interact with it, due to the 
constant interconnectivity between people and the 
world (Jara et al., 2014). It will also provide the 
necessary resources for the creation of new 
applications and data driven platforms that will, 
hopefully, improve the citizen’s quality of life. This 
new way of reinventing the Internet will not only 
provide endless possibilities to improve the overall 
interaction between humans and machines but also 
create new challenges, which need to be tackled, to 
cities themselves. 

In short, Internet of Things is successfully 
thriving in the current world, therefore intelligent 
systems will continue to emerge alongside it.  

2.2 Databases 

A database can be treated as a related set of 
information, which allows the developer to access 
the data via queries that intend to express his/her 
needs regarding that set of data in that specific 
timeframe, either by using simple statements or 
complex filtering to enhance the granularity of the 
search. For this data to be queried it needs to be 
inserted during the time that the database is in place. 
Nowadays there are many types of databases, 
however in this paper we will focus on Cassandra. 
Usually databases are divided in two main classes - 
SQL and NoSQL databases (Abramova et al., 2015): 

 SQL databases – these are the traditional 
relational databases that intend to store data in a 
structured way. Famous SQL engines are: 
MySQL, MS SQL Server and Oracle (DB-
Engines Ranking, 2015); 

 NoSQL databases – NoSQL “is used to refer to 
the databases that attempt to solve the problems 
of scalability and availability against that of 
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atomicity or consistency” (Vaish, 2013). NoSQL 
databases are divided in four main groups 
according to each use case and architecture, these 
groups are: 

 Key-Value databases – These are the simplest 
NoSQL databases, which are based in a key-
value organization that allows the developers to 
make CRUD (Create, Read, Update, and Delete) 
operations only with a key. The type of storage is 
BLOB (Binary Large Object) and the data 
structure is not organized in any fashion. 
According to (Redmond, Wilson and Carter, 
2012) these databases have a very good 
performance, although aren’t good for complex 
querying and aggregation.  Examples of these 
databases are: Memcached (Memcached, 2015), 
Couchbase (Couchbase, 2015) and DynamoDB 
(DynamoDB, 2015); 

 Document databases – As the name implies this 
type of database stores and retrieves document 
like files, which can be XML, JSON amongst 
others. According to (Redmond, Wilson and 
Carter, 2012) a document is a hash with a unique 
ID which has more values related to it. Examples 
of these databases are: MongoDB (MongoDB, 
2015) and CouchDB (CouchDB, 2015); 

 Column Family databases – These databases 
store data um column families which are tables 
with columns that are frequently accessed 
together. According to (Redmond, Wilson and 
Carter, 2012) a columnar structure “is about 
midway between relational and key-value”. 
Databases of this type are: HBase (HBase, 2015) 
and Cassandra; 

 Graph databases – According to (Robinson, 
Webber and Eifrem, 2013), graph databases “are 
normally optimized for transactional 
performance, and engineered with transactional 
integrity and operational availability in mind”. 
Famous databases of this type include (DB-
Engines Ranking, 2015): Neo4j (Neo4j, 2015), 
OrientDB (OrientDB, 2015) and Titan (Titan, 
2015). 

In our case we opted for NoSQL databases because 
they seem the more appropriate fit for systems in the 
IoT paradigm. On the NoSQL databases we have 
opted for Cassandra, the next section will serve to 
explain our choice while introducing important 
topics related to Cassandra. 

3 CASSANDRA DATABASE 

Cassandra is a distributed storage system that 
manages large amounts of data across servers 
(Lakshman and Malik, 2010). Still according to this 
author Cassandra uses a combination of well-known 
procedures that grant scalability and availability. 

In this section we will start by introducing 
Cassandra’s data model and, later on, we will 
explain Cassandra’s architecture.  

The data model of Cassandra provides a high 
processing speed when writing the data, this is due 
to the indexing. Cassandra indexes data by key, 
which is a unique representation of the row that 
contains the data. Each row contains columns, which 
are attributes and finally these columns make up a 
column family. Figure 1 illustrates the data model, 
which is composed by rows, column families and 
keyspaces. 

 

Figure 1: Cassandra's Data Model (Charsyam, 2011). 

Furthermore we shall address the two important 
concepts that make up the data representation in 
Cassandra, which are the column families and the 
keyspaces. 

 Column Family – A column family is a container 
for a group of rows (Hewitt, 2011). Column 
families are not defined, which means that the 
structure can be changed at any desired time, this 
improves the system’s readiness to change and 
adapt during time; 

 Keyspace – In Cassandra the keyspace is the 
equivalent to a database in the relational 
paradigm. The keyspace contains the column 
families which make up the full database. The 
keyspaces contain attributes that can be tuned to 
enhance the overall performance of the database, 
these attributes are: (1) replication factor, which 
refers to the number of physical copies of the 
data. For example if the replication factor is set 
to two data will be replicated twice; (2) replica 
placement strategy, this attribute is used for 
defining the strategy of how data is placed in the 
cluster. The possibilities to define the replicas 
are, Simple Strategy which is most used when 
we have a single group of nodes in the cluster 
and Network Topology Strategy which is more 
used when the cluster is working across multiple 
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machines providing a way of managing the 
replicas in all the machines. 

Cassandra uses a peer-to-peer architecture, which 
means that all nodes within a cluster can receive a 
request and respond to it (Strickland, 2014). This 
provides better availability when the database is 
online. Also, this provides redundancy, which help 
to keep the data safe and horizontal scalability. In 
Figure 2 we can observe the Cassandra peer-to-peer 
architecture. 

 

Figure 2: Cassandra Architecture (Strickland, 2014). 

Furthermore, this architecture provides high 
availability to the database, which means that the 
system does not have a large downtime period, 
providing constant access to the data. 

4 EXPERIMENTAL SETUP 

The experiments that will be made will allow to 
learn which approach is better when storing data in 
the IoT. As mentioned in section 1 we have decided 
that there were two ways to organize the database 
that would be relevant in terms of implementation. A 
single table with all the data, which would then be 
filtered and dealt with when needed, or multiple 
tables for each specific application that sends events.  

From a theoretical standpoint it seems that the 
best way of organizing our data is through the 
creation of a table per application. This will result in 
smaller tables which, in comparison to a centralized 
table that stores everything is considerable faster 
because they have significantly less records. Figure 3 
illustrates the two different approaches. 

The experimental setup was created with the 
following characteristics: (1) The operating system 
was Ubuntu 14.04 LTS 64bit; (2) The machine had a 
dual core, Core i5 480m with 6GB of RAM and an 

HDD; (3) The database ran in a single node to 
understand the minimum possible requirements 
when running the system; (4) The dataset used 
contained environmental data. 

 

 

Figure 3: Data layer possible architectures. 

We have decided not to use a benchmark tool 
because we wished to approximate the tests made 
with a real world scenario. Also, with this approach 
we guarantee that the performances we see are more 
accurate and can be replicated in a production 
environment. 

The chosen queries intend to illustrate regular 
situations during the usage of the system, which 
reflect the better approaches to the problem, keeping 
in mind that attention to the write speed is also 
needed. To analyse them, different queries will be 
created, matching the needs while the system is in 
place. These queries may vary from time to time, 
although some of them will be a recurrent task that 
needs to be performed. Additionally, it is important 
to keep in mind that these queries are to be 
performed in an IoT system, which generates alerts 
with the data that comes from the sensors scattered 
around a city. These alerts are filterable and 
searchable throughout the lifecycle of the system.  
In the experiments we have three queries types:  
Q1: Alert selection from a specific type – This 

query is performed to provide the number of 
alerts of each type (e.g. Number of ‘warning’ 
alerts); 

Q2: Alert selection for a submitted rule – This 
query will be used to see how many alerts were 
raised by a submitted rule (e.g. how many 
alerts were generated by rule X); 

Q3: Alert selection in a range of time – This query 
serves to select a type of alerts (e.g. ‘warning’, 
‘critical’) in a period of time. 

These queries give a broad perspective of the system 
in terms of querying performance.  

To query the database we use the Cassandra 
CQL shell, to record the times we have enabled 
tracing which allow us to have a detailed view of the 
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query and created indexes to allow filtering to 
happen.  

 

Figure 4: Row prototype. 

Figure 4 shows the row prototype which is 
composed by the following columns:  

 alert_uuid – This field is of the type UUID, it 
represents the universal id of the alert to keep 
each alert unique; 

 config_id – This field is of the type UUID, it 
represents the application id which created this 
alert; 

 event_query – This field is of type TEXT and it 
represent the rule needed to fire the alert; 

 alert_type – This field is of the type VARCHAR 
and represents the type of alert which was 
generated (i.e. Critical, Warning); 

 event_type – This field is of the type VARCHAR 
and represents the type of event to be processed 
(i.e. Environment, Traffic);   

 event_window – This field is of the type TEXT 
and represents the event window which triggered 
the alert;  

 event_body – This field is of the type TEXT and 
represent the full event which triggered the alert; 

 created_on – This field is of the type 
TIMESTAMP and it represents the timestamp on 
which the alert was triggered. 

On the next section we will present the results of the 
experiments. 

5 EVALUATION 

In this section we show the experimental evaluation 
for query processing time. Each chart contains, in 
the Y axis, the “Query Time (ms)” which represents 
the time the queries took to be processed. In the X 
axis, we have “Table Name” which represents the 
table where the query was made. The tables are 
divided by configuration and each represents an 
application. The “Table Name” axis uses the 
following notation: 
 App1-App5: correspond to applications with data 

that comes from environmental sensors. Each of 
these applications have 100.000 records; 

 All: corresponds to the single table containing all 
the information. This table will have 500.000 
records. 

The values presented in the experiments were 
obtained by executing the same query five times and 
then calculating the average value. Also, the first 
three queries of each run were discarded due to the 
possibility of cold boots. In the figures the dots 
represent the average value of the query speed and 
the error bars represent the standard deviation to that 
value. For a better approximation of a real system, 
the queries were made in no specific order. This has 
to do with the Cassandra reading architecture which 
is faster if the table is in memory. 

In the next sections we will show the values 
obtained during the experiments and present a 
summary of the values obtained. 

5.1 Querying an Alert of a Specific 
Type (Q1) 

In the experiment we use this query to select all the 
alerts of type ‘warning’ from the applications. Using 
the CQL language the query looks like this: 
 

SELECT * FROM query_performance.alerts_ 
<config_id> WHERE alert_type = 
<alert_type>;  
 

For the table with all of the data the query used was: 
 
SELECT * FROM query_performance.alerts_ 
full WHERE config_id = <config_id> AND 
alert_type = <alert_type> ALLOW 
FILTERING;  
 

This a very simple query, since it only lists the alerts 
of type “warning” that were generated by the 
application. However it is expected to see an 
enormous change in terms of performance, due to 
the amount of data in the “All” table. Figure 5 shows 
the performance for Q1. 

When analysing the results of Q1, shown on 
Figure 5, we can conclude that the separate tables 
were, in general, the best choice. Although in the 
second application we saw a little deviation from the 
average value, this is related with the reading 
architecture of Cassandra which is faster if the table 
is in memory. 

 

Figure 5: Execution of Query 1. 
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As explained before, we have tried to make 
queries to different tables in order to provide results 
which are useful for people who want to know if this 
database is a liable option for a production system. 

5.2 Querying an Alert for a Rule (Q2) 

This query intends to list every alert for a specific 
rule created by the user. The query, using the CQL 
language, will look like this: 
 

SELECT * FROM query_performance.alerts_ 
<config_id> WHERE event_query=<rule>; 
 

For the full table the query looks like this: 
 
SELECT * FROM query_performance.alerts_ 
full WHERE config_id = <config_id> AND 
event_query=<rule>  ALLOW FILTERING; 
 

The query on the full table could not be completed 
because the operation timed out. The operation 
quitted when filtering the data with the where clause, 
this is due to the amount of data it needed to filter. 
We have tried to change the environment settings for 
Cassandra to try to overcome this situation, but the 
error persisted. This led to the removal of this query 
from the charts. Due to this problem, the comparison 
was made only between the applications. 
Furthermore, we can conclude that this query cannot 
be made in a production environment because the 
system cannot be stuck waiting for the query to end. 
On a real world system, and because IoT systems 
require near real time responses, it is impossible to 
implement this query because of the error it kept 
raising. Figure 6 shows the performance for Q2. 

With the results of the execution of Q2, seen, we 
conclude that every application has similar 
performances when dealing with this query. The 
main conclusion to draw from this experiment is that 
the table with all the data could not be queried 
because it kept raising an out of time error. This is 
due to the amount of data which is stored in that 
table which Cassandra cannot filter. 
 

 

Figure 6: Execution of Query 2. 

5.3 Querying an Alert on a Time Range 
(Q3) 

This query selects all the alerts of each application in 
a time range. In the real system this query is 
important because it delivers a time based approach 
to the data. Using the CQL language the query looks 
like this: 
 

SELECT * FROM query_performance.alerts_ 
<config_id> WHERE created_on <= 
<timestamp> AND config_id = <config_id> 
ALLOW FILTERING; 
 

The query made on the table with all of the 
information will look like this: 

 

SELECT * FROM query_performance.alerts_ 
full WHERE created_on <= <timestamp> 
AND config_id = <config_id> ALLOW 
FILTERING; 

 

Figure 7: Execution of Query 3. 

Figure 7 shows the processing execution time for 
Q3. 

The query Q3, had comparable performance 
across all of the separate tables, the standard 
deviation on the first application is higher, due to 
discrepancy between the performances of when the 
table is in memory and needs to be loaded to 
memory. We can also see that the average time for 
the table with all the data is much higher than the 
others, once again proving that an architecture where 
the data is separated is better. 

5.4 Results Summary 

The results show that, as expected, the single table 
had the worst performance. This is due to the 
amount of data that Cassandra has to filter, which 
cannot be placed in memory all at once. Although 
the results of the “All” table were not five times 
worse we conclude that the best implementation is 
with separate tables which not only give a better 
performance, but also provide a better overall data 
separation.  
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The performance changes between the first two 
applications are a little bit different, this might be 
due to the size of the string that is being searched. 
The main differences are between the “All” table, 
which was finished on Q1 but not on Q2. This is due 
to the fact that, on these tables, data is sequentially 
organized which means that if the query results are 
not on the first records, Cassandra cannot load all 
the data to memory and initiate the filtering process.  

The average query processing time in Q3 is 
smaller than on the others, this is related to the fact 
that the dataset is not heterogeneous enough in terms 
of dates because the values of the applications were 
recorded on a single day. Also, filtering is made by 
primary key because in Cassandra to make a time 
range query the column with the date needs to be on 
the primary key of the table. 

In short, we think that these queries, although 
very straightforward, give a quick and simple 
performance overview to a data layer architecture in 
the IoT.  

6 CONCLUSIONS AND FUTURE 
WORK 

To the best of our knowledge, a complete solution 
for the IoT data layer does not exist. With the intent 
to find a suitable and workable solution we have 
tested two different architectures for the data layer, 
which provide two different approaches when 
dealing with data. For this we have evaluated the 
NoSQL database Cassandra, which have been 
applied in an Internet of Things platform. The 
queries that were made gave us, not only an initial 
perspective of how Cassandra will handle the system 
workloads, but also will provide knowledge for 
whoever wants to have an idea of how Cassandra 
handles data in the IoT environment. 

To run the tests we have tried to make constant 
changes to the query order to enhance the credibility 
of the results, this was done because the system will 
not have a constant pattern of querying, when 
deployed. This has a great impact in terms of query 
performance because, as we have seen before, if a 
table is queried twice in a row the second time it will 
be in memory. Additionally, it is important to refer 
that the tests were made on a personal computer, 
which makes the RAM management more difficult, 
due to other processes that might be running at the 
same time. 

The results show that the single table had the 
worst performance. From this, we conclude that the 

best implementation is with separate tables, which 
not only give a better performance, but also provide 
a better data independence. In the IoT, data is 
produced continuously by each application, which 
means that distinct tables would also be a good 
choice, providing an independent way for each 
application to store its data and be able to scale 
without sacrificing performance. 

In summary, from this work we can conclude 
that Cassandra can be used on an IoT platform as the 
main database system because it contains the 
necessary characteristics to handle the overall 
requirements of these platforms.  

The dataset used could be larger and more 
heterogeneous, although the results have shown 
differences between the two approaches. 
Nevertheless, tests with larger datasets and with a 
bigger variety of data are needed in order to 
understand if scalability is an issue.  

As future work we suggest that similar tests can 
be made with sharding, which is a horizontal 
division of data that improves the overall 
performance of the queries. The main goal is to 
divide the applications by shard, providing a similar 
approach to the separate tables we have seen. We 
also would like to distribute the system, testing it for 
better availability. 
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