
Cassandra for Internet of Things: An Experimental Evaluation

André Duarte
Polytechnic Institute of Coimbra, ISEC, Rua Pedro Nunes, 3030-199, Coimbra, Portugal

Jorge Bernardino
Informatics, Polytechnic Institute of Coimbra, ISEC, Rua Pedro Nunes, 3030-199, Coimbra, Portugal

CISUC – Centre of Informatics and Systems of the University of Coimbra, University of Coimbra, 3030-290, Coimbra,
Portugal

Keywords: Internet of Things (IoT), Cassandra, NoSQL.

Abstract: The proliferation of the Internet of Things (IoT) increases the amount of data that is being produced.
Therefore it is extremely important to find the best possible storage engine to process these huge amounts of
data. With the intent of discovering which database engine better supports the characteristics of an IoT
system it is essential to analyse the existing databases and test them in a practical context. With this
objective we decided to use one of the most popular databases, Cassandra, to evaluate it on an IoT
environment. We evaluate the querying processing time of Cassandra using queries of an IoT real time
environment and comparing it with different types of data architectures. The main focus of this work is to
investigate if Cassandra can provide good performance in an IoT system.

1 INTRODUCTION

Nowadays the world is evolving and producing large
amounts of data due to the growth of Internet of
Things (IoT). This constant and fast evolution leads
developers to pursuit the best possible solutions to
handle large amounts of data. Even though the need
for intelligent data mining tools is extremely
important, we also need to pay attention to the way
this data is stored and which type of engine better
fits the needs of an IoT system.

To the best of our knowledge, a perfect solution
for the Internet of Things data layer does not exists.
With this in mind we aim to find out the best
possible solution for this type of environment.
Therefore an investigation was conducted to
understand which database would be the most
suitable to provide a production ready environment.
It is important to keep in mind that, generally
speaking, these kind of systems need to handle large
amounts of data, real time insertion of records and
huge data diversity.

The database will be used in an Internet of
Things environment that intends to gather data from
a city and process it in order to find events that are
considered dangerous. The system collects data from

sensors and provides alerts to each subscribed
application. It is important to understand that this
system will act as a demonstrator for the data layer.

In (van der Veen et al., 2012) it is discussed that
scaling systems that deal with sensors is becoming
gradually difficult due to the amount of sensors and
clients that extract data from them. Therefore it is
significant to not only pay attention to the frequency
of the data, but also to the huge volume that it will
obtain.

According to (Abramova et al., 2014a; 2014b;
2014c; Barata et al., 2015) Cassandra seems to have
a clear advantage in terms of the characteristics
necessary to implement this system because it
provides good writes speeds without sacrificing
performance. Furthermore, Cassandra system was
designed to run on cheap commodity hardware and
handle high write throughput while not sacrificing
read efficiency (Lakshman and Malik, 2010).
Additionally the decision of choosing Cassandra is a
result of its popularity and market share (DB-
Engines Ranking, 2015). With all of this in mind,
Cassandra seems to be a solid choice for this use
case.

In addition to storing data, every system needs to
provide it in order to query and filter later. It is

Duarte, A. and Bernardino, J.
Cassandra for Internet of Things: An Experimental Evaluation.
DOI: 10.5220/0005846400490056
In Proceedings of the International Conference on Internet of Things and Big Data (IoTBD 2016), pages 49-56
ISBN: 978-989-758-183-0
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

49

important to keep in mind that systems included in
the IoT context tend to be stream oriented, rather
than batch. For this reason, the database to be chosen
needs to accept data in streams, or at least support a
high rate of data insertion, and have the necessary
mechanisms to withstand this.

We aim to test which architecture for the data
layer would best suit the needs of an IoT platform in
terms of querying performance, without sacrificing
the write performance. There were two relevant
ways in terms of implementation. First, a single
table with all the data, which would then be filtered
and dealt with when needed. A second approach is
multiple tables for each specific application that
sends events.

From a theoretical standpoint it seems that the
best way of organizing our data is through the
creation of a table per application. This will result in
smaller tables which, in comparison to a centralized
table that stores everything are a lot faster because
they have much less records. In a nutshell, we aim to
understand which data architecture will have the best
performance while querying the data.

The remainder of this paper is structured as
follows. Section 2 gathers background on important
concepts such as the IoT concept and the description
of Cassandra. Section 3 describes Cassandra and its
general characteristics. Section 4 defines the setup
on which the tests were made. Section 5 presents the
performance tests that were made. Finally, section 6
presents our main conclusions and suggests future
work.

2 BACKGROUND

This section aims to present the necessary
background on Internet of Things and Databases.

2.1 Internet of Things

According to (Friess and Vermesan, 2013) the
Internet of Things (IoT) “is a concept and a
paradigm that considers pervasive presence in the
environment of a variety of things/objects that
through wireless and wired connections and unique
addressing schemes are able to interact with each
other and cooperate with other things/objects to
create new applications/services and reach common
goals.” IoT is a concept reflecting a connected set of
anyone, anything, anytime, anyplace, any service,
and any network (Islam et al., 2015). The IoT is a
megatrend in next-generation technologies that can
impact the whole business spectrum and can be

thought of as the interconnection of uniquely
identifiable smart objects and devices within today’s
Internet infrastructure with extended benefits.
Benefits typically include the advanced connectivity
of these devices, systems, and services that goes
beyond machine-to-machine (M2M) scenarios
(Höller et al., 2014). The IoT provides appropriate
solutions for a wide range of applications such as
smart cities, waste management, emergency
services, logistics, retails, industrial control, and
health care. The Internet of Things extends even
beyond communications and new services, it will
allow for a future where, with everything connected,
people can feel more integrated with the world and
let IoT do the day-to-day recurring tasks for them.

The IoT provides a new paradigm that will shape
the world and create a new conception of the
Internet and how people interact with it, due to the
constant interconnectivity between people and the
world (Jara et al., 2014). It will also provide the
necessary resources for the creation of new
applications and data driven platforms that will,
hopefully, improve the citizen’s quality of life. This
new way of reinventing the Internet will not only
provide endless possibilities to improve the overall
interaction between humans and machines but also
create new challenges, which need to be tackled, to
cities themselves.

In short, Internet of Things is successfully
thriving in the current world, therefore intelligent
systems will continue to emerge alongside it.

2.2 Databases

A database can be treated as a related set of
information, which allows the developer to access
the data via queries that intend to express his/her
needs regarding that set of data in that specific
timeframe, either by using simple statements or
complex filtering to enhance the granularity of the
search. For this data to be queried it needs to be
inserted during the time that the database is in place.
Nowadays there are many types of databases,
however in this paper we will focus on Cassandra.
Usually databases are divided in two main classes -
SQL and NoSQL databases (Abramova et al., 2015):

 SQL databases – these are the traditional
relational databases that intend to store data in a
structured way. Famous SQL engines are:
MySQL, MS SQL Server and Oracle (DB-
Engines Ranking, 2015);

 NoSQL databases – NoSQL “is used to refer to
the databases that attempt to solve the problems
of scalability and availability against that of

IoTBD 2016 - International Conference on Internet of Things and Big Data

50

atomicity or consistency” (Vaish, 2013). NoSQL
databases are divided in four main groups
according to each use case and architecture, these
groups are:

 Key-Value databases – These are the simplest
NoSQL databases, which are based in a key-
value organization that allows the developers to
make CRUD (Create, Read, Update, and Delete)
operations only with a key. The type of storage is
BLOB (Binary Large Object) and the data
structure is not organized in any fashion.
According to (Redmond, Wilson and Carter,
2012) these databases have a very good
performance, although aren’t good for complex
querying and aggregation. Examples of these
databases are: Memcached (Memcached, 2015),
Couchbase (Couchbase, 2015) and DynamoDB
(DynamoDB, 2015);

 Document databases – As the name implies this
type of database stores and retrieves document
like files, which can be XML, JSON amongst
others. According to (Redmond, Wilson and
Carter, 2012) a document is a hash with a unique
ID which has more values related to it. Examples
of these databases are: MongoDB (MongoDB,
2015) and CouchDB (CouchDB, 2015);

 Column Family databases – These databases
store data um column families which are tables
with columns that are frequently accessed
together. According to (Redmond, Wilson and
Carter, 2012) a columnar structure “is about
midway between relational and key-value”.
Databases of this type are: HBase (HBase, 2015)
and Cassandra;

 Graph databases – According to (Robinson,
Webber and Eifrem, 2013), graph databases “are
normally optimized for transactional
performance, and engineered with transactional
integrity and operational availability in mind”.
Famous databases of this type include (DB-
Engines Ranking, 2015): Neo4j (Neo4j, 2015),
OrientDB (OrientDB, 2015) and Titan (Titan,
2015).

In our case we opted for NoSQL databases because
they seem the more appropriate fit for systems in the
IoT paradigm. On the NoSQL databases we have
opted for Cassandra, the next section will serve to
explain our choice while introducing important
topics related to Cassandra.

3 CASSANDRA DATABASE

Cassandra is a distributed storage system that
manages large amounts of data across servers
(Lakshman and Malik, 2010). Still according to this
author Cassandra uses a combination of well-known
procedures that grant scalability and availability.

In this section we will start by introducing
Cassandra’s data model and, later on, we will
explain Cassandra’s architecture.

The data model of Cassandra provides a high
processing speed when writing the data, this is due
to the indexing. Cassandra indexes data by key,
which is a unique representation of the row that
contains the data. Each row contains columns, which
are attributes and finally these columns make up a
column family. Figure 1 illustrates the data model,
which is composed by rows, column families and
keyspaces.

Figure 1: Cassandra's Data Model (Charsyam, 2011).

Furthermore we shall address the two important
concepts that make up the data representation in
Cassandra, which are the column families and the
keyspaces.

 Column Family – A column family is a container
for a group of rows (Hewitt, 2011). Column
families are not defined, which means that the
structure can be changed at any desired time, this
improves the system’s readiness to change and
adapt during time;

 Keyspace – In Cassandra the keyspace is the
equivalent to a database in the relational
paradigm. The keyspace contains the column
families which make up the full database. The
keyspaces contain attributes that can be tuned to
enhance the overall performance of the database,
these attributes are: (1) replication factor, which
refers to the number of physical copies of the
data. For example if the replication factor is set
to two data will be replicated twice; (2) replica
placement strategy, this attribute is used for
defining the strategy of how data is placed in the
cluster. The possibilities to define the replicas
are, Simple Strategy which is most used when
we have a single group of nodes in the cluster
and Network Topology Strategy which is more
used when the cluster is working across multiple

Cassandra for Internet of Things: An Experimental Evaluation

51

machines providing a way of managing the
replicas in all the machines.

Cassandra uses a peer-to-peer architecture, which
means that all nodes within a cluster can receive a
request and respond to it (Strickland, 2014). This
provides better availability when the database is
online. Also, this provides redundancy, which help
to keep the data safe and horizontal scalability. In
Figure 2 we can observe the Cassandra peer-to-peer
architecture.

Figure 2: Cassandra Architecture (Strickland, 2014).

Furthermore, this architecture provides high
availability to the database, which means that the
system does not have a large downtime period,
providing constant access to the data.

4 EXPERIMENTAL SETUP

The experiments that will be made will allow to
learn which approach is better when storing data in
the IoT. As mentioned in section 1 we have decided
that there were two ways to organize the database
that would be relevant in terms of implementation. A
single table with all the data, which would then be
filtered and dealt with when needed, or multiple
tables for each specific application that sends events.

From a theoretical standpoint it seems that the
best way of organizing our data is through the
creation of a table per application. This will result in
smaller tables which, in comparison to a centralized
table that stores everything is considerable faster
because they have significantly less records. Figure 3
illustrates the two different approaches.

The experimental setup was created with the
following characteristics: (1) The operating system
was Ubuntu 14.04 LTS 64bit; (2) The machine had a
dual core, Core i5 480m with 6GB of RAM and an

HDD; (3) The database ran in a single node to
understand the minimum possible requirements
when running the system; (4) The dataset used
contained environmental data.

Figure 3: Data layer possible architectures.

We have decided not to use a benchmark tool
because we wished to approximate the tests made
with a real world scenario. Also, with this approach
we guarantee that the performances we see are more
accurate and can be replicated in a production
environment.

The chosen queries intend to illustrate regular
situations during the usage of the system, which
reflect the better approaches to the problem, keeping
in mind that attention to the write speed is also
needed. To analyse them, different queries will be
created, matching the needs while the system is in
place. These queries may vary from time to time,
although some of them will be a recurrent task that
needs to be performed. Additionally, it is important
to keep in mind that these queries are to be
performed in an IoT system, which generates alerts
with the data that comes from the sensors scattered
around a city. These alerts are filterable and
searchable throughout the lifecycle of the system.
In the experiments we have three queries types:
Q1: Alert selection from a specific type – This

query is performed to provide the number of
alerts of each type (e.g. Number of ‘warning’
alerts);

Q2: Alert selection for a submitted rule – This
query will be used to see how many alerts were
raised by a submitted rule (e.g. how many
alerts were generated by rule X);

Q3: Alert selection in a range of time – This query
serves to select a type of alerts (e.g. ‘warning’,
‘critical’) in a period of time.

These queries give a broad perspective of the system
in terms of querying performance.

To query the database we use the Cassandra
CQL shell, to record the times we have enabled
tracing which allow us to have a detailed view of the

IoTBD 2016 - International Conference on Internet of Things and Big Data

52

query and created indexes to allow filtering to
happen.

Figure 4: Row prototype.

Figure 4 shows the row prototype which is
composed by the following columns:

 alert_uuid – This field is of the type UUID, it
represents the universal id of the alert to keep
each alert unique;

 config_id – This field is of the type UUID, it
represents the application id which created this
alert;

 event_query – This field is of type TEXT and it
represent the rule needed to fire the alert;

 alert_type – This field is of the type VARCHAR
and represents the type of alert which was
generated (i.e. Critical, Warning);

 event_type – This field is of the type VARCHAR
and represents the type of event to be processed
(i.e. Environment, Traffic);

 event_window – This field is of the type TEXT
and represents the event window which triggered
the alert;

 event_body – This field is of the type TEXT and
represent the full event which triggered the alert;

 created_on – This field is of the type
TIMESTAMP and it represents the timestamp on
which the alert was triggered.

On the next section we will present the results of the
experiments.

5 EVALUATION

In this section we show the experimental evaluation
for query processing time. Each chart contains, in
the Y axis, the “Query Time (ms)” which represents
the time the queries took to be processed. In the X
axis, we have “Table Name” which represents the
table where the query was made. The tables are
divided by configuration and each represents an
application. The “Table Name” axis uses the
following notation:
 App1-App5: correspond to applications with data

that comes from environmental sensors. Each of
these applications have 100.000 records;

 All: corresponds to the single table containing all
the information. This table will have 500.000
records.

The values presented in the experiments were
obtained by executing the same query five times and
then calculating the average value. Also, the first
three queries of each run were discarded due to the
possibility of cold boots. In the figures the dots
represent the average value of the query speed and
the error bars represent the standard deviation to that
value. For a better approximation of a real system,
the queries were made in no specific order. This has
to do with the Cassandra reading architecture which
is faster if the table is in memory.

In the next sections we will show the values
obtained during the experiments and present a
summary of the values obtained.

5.1 Querying an Alert of a Specific
Type (Q1)

In the experiment we use this query to select all the
alerts of type ‘warning’ from the applications. Using
the CQL language the query looks like this:

SELECT * FROM query_performance.alerts_
<config_id> WHERE alert_type =
<alert_type>;

For the table with all of the data the query used was:

SELECT * FROM query_performance.alerts_
full WHERE config_id = <config_id> AND
alert_type = <alert_type> ALLOW
FILTERING;

This a very simple query, since it only lists the alerts
of type “warning” that were generated by the
application. However it is expected to see an
enormous change in terms of performance, due to
the amount of data in the “All” table. Figure 5 shows
the performance for Q1.

When analysing the results of Q1, shown on
Figure 5, we can conclude that the separate tables
were, in general, the best choice. Although in the
second application we saw a little deviation from the
average value, this is related with the reading
architecture of Cassandra which is faster if the table
is in memory.

Figure 5: Execution of Query 1.

Cassandra for Internet of Things: An Experimental Evaluation

53

As explained before, we have tried to make
queries to different tables in order to provide results
which are useful for people who want to know if this
database is a liable option for a production system.

5.2 Querying an Alert for a Rule (Q2)

This query intends to list every alert for a specific
rule created by the user. The query, using the CQL
language, will look like this:

SELECT * FROM query_performance.alerts_
<config_id> WHERE event_query=<rule>;

For the full table the query looks like this:

SELECT * FROM query_performance.alerts_
full WHERE config_id = <config_id> AND
event_query=<rule> ALLOW FILTERING;

The query on the full table could not be completed
because the operation timed out. The operation
quitted when filtering the data with the where clause,
this is due to the amount of data it needed to filter.
We have tried to change the environment settings for
Cassandra to try to overcome this situation, but the
error persisted. This led to the removal of this query
from the charts. Due to this problem, the comparison
was made only between the applications.
Furthermore, we can conclude that this query cannot
be made in a production environment because the
system cannot be stuck waiting for the query to end.
On a real world system, and because IoT systems
require near real time responses, it is impossible to
implement this query because of the error it kept
raising. Figure 6 shows the performance for Q2.

With the results of the execution of Q2, seen, we
conclude that every application has similar
performances when dealing with this query. The
main conclusion to draw from this experiment is that
the table with all the data could not be queried
because it kept raising an out of time error. This is
due to the amount of data which is stored in that
table which Cassandra cannot filter.

Figure 6: Execution of Query 2.

5.3 Querying an Alert on a Time Range
(Q3)

This query selects all the alerts of each application in
a time range. In the real system this query is
important because it delivers a time based approach
to the data. Using the CQL language the query looks
like this:

SELECT * FROM query_performance.alerts_
<config_id> WHERE created_on <=
<timestamp> AND config_id = <config_id>
ALLOW FILTERING;

The query made on the table with all of the
information will look like this:

SELECT * FROM query_performance.alerts_
full WHERE created_on <= <timestamp>
AND config_id = <config_id> ALLOW
FILTERING;

Figure 7: Execution of Query 3.

Figure 7 shows the processing execution time for
Q3.

The query Q3, had comparable performance
across all of the separate tables, the standard
deviation on the first application is higher, due to
discrepancy between the performances of when the
table is in memory and needs to be loaded to
memory. We can also see that the average time for
the table with all the data is much higher than the
others, once again proving that an architecture where
the data is separated is better.

5.4 Results Summary

The results show that, as expected, the single table
had the worst performance. This is due to the
amount of data that Cassandra has to filter, which
cannot be placed in memory all at once. Although
the results of the “All” table were not five times
worse we conclude that the best implementation is
with separate tables which not only give a better
performance, but also provide a better overall data
separation.

IoTBD 2016 - International Conference on Internet of Things and Big Data

54

The performance changes between the first two
applications are a little bit different, this might be
due to the size of the string that is being searched.
The main differences are between the “All” table,
which was finished on Q1 but not on Q2. This is due
to the fact that, on these tables, data is sequentially
organized which means that if the query results are
not on the first records, Cassandra cannot load all
the data to memory and initiate the filtering process.

The average query processing time in Q3 is
smaller than on the others, this is related to the fact
that the dataset is not heterogeneous enough in terms
of dates because the values of the applications were
recorded on a single day. Also, filtering is made by
primary key because in Cassandra to make a time
range query the column with the date needs to be on
the primary key of the table.

In short, we think that these queries, although
very straightforward, give a quick and simple
performance overview to a data layer architecture in
the IoT.

6 CONCLUSIONS AND FUTURE
WORK

To the best of our knowledge, a complete solution
for the IoT data layer does not exist. With the intent
to find a suitable and workable solution we have
tested two different architectures for the data layer,
which provide two different approaches when
dealing with data. For this we have evaluated the
NoSQL database Cassandra, which have been
applied in an Internet of Things platform. The
queries that were made gave us, not only an initial
perspective of how Cassandra will handle the system
workloads, but also will provide knowledge for
whoever wants to have an idea of how Cassandra
handles data in the IoT environment.

To run the tests we have tried to make constant
changes to the query order to enhance the credibility
of the results, this was done because the system will
not have a constant pattern of querying, when
deployed. This has a great impact in terms of query
performance because, as we have seen before, if a
table is queried twice in a row the second time it will
be in memory. Additionally, it is important to refer
that the tests were made on a personal computer,
which makes the RAM management more difficult,
due to other processes that might be running at the
same time.

The results show that the single table had the
worst performance. From this, we conclude that the

best implementation is with separate tables, which
not only give a better performance, but also provide
a better data independence. In the IoT, data is
produced continuously by each application, which
means that distinct tables would also be a good
choice, providing an independent way for each
application to store its data and be able to scale
without sacrificing performance.

In summary, from this work we can conclude
that Cassandra can be used on an IoT platform as the
main database system because it contains the
necessary characteristics to handle the overall
requirements of these platforms.

The dataset used could be larger and more
heterogeneous, although the results have shown
differences between the two approaches.
Nevertheless, tests with larger datasets and with a
bigger variety of data are needed in order to
understand if scalability is an issue.

As future work we suggest that similar tests can
be made with sharding, which is a horizontal
division of data that improves the overall
performance of the queries. The main goal is to
divide the applications by shard, providing a similar
approach to the separate tables we have seen. We
also would like to distribute the system, testing it for
better availability.

ACKNOWLEDGEMENTS

This work was partially financed by national funding
via the Foundation for Science and Technology and
by the European Regional Development Fund
(FEDER), through the COMPETE 2020 –
Operational Program for Competitiveness and
Internationalization (POCI).

This work was also made possible with the help
of Ubiwhere, Lda, which provided the dataset and
useful inputs in discussions.

REFERENCES

Abramova, V. and Bernardino, J. (2013). NoSQL
databases. Proceedings of the International C*
Conference on Computer Science and Software
Engineering - C3S2E '13, pp. 14-22.

Abramova, V., Bernardino, J. and Furtado, P. (2014a).
Evaluating Cassandra Scalability with YCSB.
International Conference on Database and Expert
Systems Applications, DEXA 2014, pp.199-207.

Abramova, V., Bernardino, J. and Furtado, P. (2014b).
Testing Cloud Benchmark Scalability with Cassandra.
2014 IEEE World Congress on Services.

Cassandra for Internet of Things: An Experimental Evaluation

55

Abramova, V., Bernardino, J. and Furtado, P. (2014c).
Which NoSQL Database? A Performance Overview.
Open Journal of Databases (OJDB), Vol 1. Issue 2,
pp.17-24.

Abramova, M., Bernardino, J. and Furtado, P. (2015).
SQL or NoSQL? Performance and scalability
evaluation. Int. Journal of Business Process
Integration and Management, Vol. 7 (4), pp. 314-321.

Barata, M., Bernardino, J. and Furtado, P. (2015).
Cassandra: what it does and what it does not and
benchmarking. Int. Journal of Business Process
Integration and Management, Vol. 7 (4), pp. 364-371.

Charsyam - Cassandra Data Model -
https://charsyam.wordpress.com/tag/cassandra-data-
model/ [online] Available at: [Accessed 08-01-2015]

Couchbase.com, (2015). Couchbase. Available at:
http://www.couchbase.com/ [Accessed 25 Sep. 2015].

Couchdb.apache.org, (2015). Apache CouchDB. [online]
Available at: http://couchdb.apache.org/ [Accessed 25
Sep. 2015]

DataStax, (2014). ALLOW FILTERING explained.
[online] Available at: http://www.datastax.com/
dev/blog/allow-filtering-explained-2 [Accessed 5 Jul.
2015].

DB-Engines Ranking [online] http://db-
engines.com/en/ranking (Accessed 22 April of 2015)

Docs.aws.amazon.com, (2015). What Is Amazon
DynamoDB? - Amazon DynamoDB. Available at:
http://docs.aws.amazon.com/amazondynamodb/latest/
developerguide/Introduction.html [Ac. 25 Sep. 2015].

Docs.datastax.com, (2015). Apache Cassandra™ 2.0.
[online] Available at:
http://docs.datastax.com/en/cassandra/2.0/cassandra/ar
chitecture/architectureDataDistributeReplication_c.ht
ml [Accessed 25 Oct. 2015].

DZone, (2015). DZone Database. [online] Available at:
https://dzone.com/articles/introduction-apache-
cassandras [Accessed 21 Jul. 2015].

Hbase.apache.org, (2015). Apache HBase – Apache
HBase™ Home. [online] Available at:
http://hbase.apache.org/ [Accessed 25 Sep. 2015].

Hewitt, E. (2011). Cassandra The definitive guide.
Beijing. O’Reilly.

Höller, J., Tsiatsis, V., Mulligan, C., Karnouskos, S.
Avesand, S. and Boyle D., From Machine-to-Machine
to the Internet of Things: Introduction to a New Age of
Intelligence. Amsterdam, The Netherlands: Elsevier,
2014.

Islam, S. M.; Kwak D., Kabir H., Hossain, M., Kyung-Sup
Kwak, "The Internet of Things for Health Care: A
Comprehensive Survey," in Access, IEEE , vol.3, no.,
pp.678-708, 2015

Jara, A. J.; Genoud, D.; Bocchi, Y., "Big Data in Smart
Cities: From Poisson to Human Dynamics," Advanced
Information Networking and Applications Workshops
(WAINA), 2014 28th International Conference on ,,
pp.785- 790, 13-16 May 2014

Lakshman, A. and Malik, P. (2010). Cassandra. SIGOPS
Oper. Syst. Rev., 44(2), p.35.

Memcached.org, (2015). memcached - a distributed

memory object caching system. [online] Available at:
http://memcached.org/ [Accessed 25 Sep. 2015].

MongoDB, (2015). MongoDB. [online] Available at:
http://mongodb.com [Accessed 25 Sep. 2015].

Neo4j Graph Database, (2015). Neo4j, the World's
Leading Graph Database. [online] Available at:
http://neo4j.com [Accessed 25 Sep. 2015].

OrientDB Multi-Model NoSQL Database, (2015).
OrientDB - OrientDB Multi-Model NoSQL Database.
Available at: http://orientdb.com/orientdb/ [Accessed
25 Sep. 2015].

P. Friess and O. Vermesan, Internet of Things:
Converging Technologies for Smart Environments and
Integrated Ecosystems. Aalborg, Denmark: River
Publishers, 2013.

Redmond, E., Wilson, J. and Carter, J. (2012). Seven
databases in seven weeks. Dallas, Tex.: Pragmatic
Bookshelf.

Robinson, I., Webber, J. and Eifrem, E. (2013). Graph
databases. Sebastopol, Calif.: O'Reilly Media.

Strickland, R. (2014). Cassandra high availability.
Birmingham. Packt Publishing.

Thinkaurelius.github.io, (2015). Titan: Distributed Graph
Database. [online] Available at:
http://thinkaurelius.github.io/titan/ [25 Sep. 2015].

Vaish, G. (2013). Getting started with NoSQL.
Birmingham: Packt Publishing.

van der Veen, J. S.; van der Waaij, B.; Meijer, R.J.,
"Sensor Data Storage Performance: SQL or NoSQL,
Physical or Virtual," Cloud Computing (CLOUD),
2012 IEEE 5th Int. Conference, pp.431- 438

Welsh, M., Culler, D., Brewer, E.: SEDA: an architecture
for well-conditioned, scalable internet services. In:
Proc. of ACM Symposium on Operating Systems
Principles (SOSP 2001), pp. 230–243.

IoTBD 2016 - International Conference on Internet of Things and Big Data

56

