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Abstract: The paper introduces a higher-order, type-theoretical formal language LST
GP of information content that is par-

tial, parametric, underspecified, dependent on situations, and recursive. The terms of the formal language
represent situation-theoretic objects. The language has specialized terms for constrained computations by
mutual recursion. It introduces terms representing nets of parameters that are simultaneously constrained to
satisfy restrictions.

1 INTRODUCTION

The formal language LST
GP is a generalization of the

formal language introduced in (Loukanova, 2015) and
serves as a language for algorithmic semantics by us-
ing semantic structures that are models of informa-
tion by Situation Theory introduced in (Seligman and
Moss, 2011) and (Loukanova, 2014).

The semantic type system of Situation Theory, as
model-theory of information, is important in the in-
formational structures of the theory, because, on the
one hand, its types classify the distribution of objects
in the situation-theoretic domains, and, on the other
hand, the types participate in the informational com-
ponents of the situation-theoretic objects themselves.
We re-introduce that type system, formally, into the
components of the formal language LST

GP, presented in
this paper. By this, the formal types serve the inter-
face between the formal syntax of LST

GP and the situa-
tional, semantic frames. We are designing the syn-
tax of LST

GP to be as close as possible to the multi-
dimensional geometry of abstract, semantic objects.

The types play important role of the algorithmic
semantics in the syntax-semantics interfaces of LST

GP,
where LST

GP-terms of specialized forms determine the
algorithms for computing their denotations. We con-
sider that such features of LST

GP contribute to adequate-
ness of computational semantics of human language,
targeting advanced applications to computational pro-
cessing of human language. This is a central motiva-
tion for our work on extending and developing both
Situation Theory, as a fine-grained model-theory of

information, as well as a specialized formal language
for it, e.g., LST

GP in this paper.
We consider that developing LST

GP, introduced here,
facilitates important aspects of syntax-semantics in-
terfaces of human language. Developing computa-
tional semantics of human language by a direct map-
pings between its syntax and situation-theoretic, i.e.,
semantic set-theoretic, domains, would be difficult,
hard work, even for simple applications. Instead, such
tasks would be facilitated, by having a suitable formal
language, e.g., as the one introduced in (Loukanova,
2015), and extending it by LST

GP, introduced in this pa-
per. It would be advantageous to use such a formal
language that represents the fine-granularity of infor-
mation content in situation-theoretical objects.

The formal language LST
GP has expressions for func-

tions, properties, relations, and types, with explicitly
expressed argument roles, not by linearly ordered ar-
gument slots typically used in traditional formal lan-
guages and semantic model-theories. The argument
roles of functions, relations, and types are associated
with appropriateness constraints. Only objects sat-
isfying the corresponding constraints can fill up the
roles.

We define terms of generalized recursion over
situation-theoretic objects that can have functional
and relational components with constraints. These
terms have separate, but connected components, re-
spectively, for recursive computations with assign-
ments and propositional restrictions. The recursion
component of a term represents instantiations of para-
metric information in recursion variables, i.e., in
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memory cells. The cells, and other parameters that
occur in the objects saved in the cells, can be re-
stricted to satisfy constraints, which also can be linked
by mutual recursion.

The recursion terms represent algorithms for com-
putation of values that are saved in memory slots, i.e.,
in memory variables. The memory variables that oc-
cur in LST

GP terms, represent the structures in memory
sections of a computational entity, which are engaged
in algorithmic computations by using informational
content saved in the memory slots. From the perspec-
tive of neuroscience, LST

GP terms represent neural nets
of recursively linked memory cells for processing and
saving information. Our inspiration for this is from
the work (Kandel et al., 2000) and (Squire and Kan-
del, 2009). Information is saved in the memory cells
of a neural network via mutual recursion. In addition,
the memory cells are restricted to satisfy higher-order,
typed constraints. The components of recursive as-
signments and of recursive constraints represent neu-
ral cells for memory and exchange of partial, para-
metric, information that depends on situations.

We introduce specialized terms that generalize the
situation theoretical notion of a complex, restricted
parameter to a generalized, parametric net. The para-
metric net consists of memory components, which are
restricted to be simultaneously of a given complex
type, and can involve recursive computations.

In this paper, we focus on introducing the for-
mal syntax of LST

GP and its motivation. We support
this work with examples. Full presentation of deno-
tational and algorithmic semantics of the formal lan-
guage LST

GP, interpreted in the situation-theoretic mod-
els, requires rather technical means, formal reduction
calculus and inference system, which are outside the
scope of this paper.

We hope that this suffices for using LST
GP for for-

mal streamlining developments of various applica-
tions. In particular, LST

GP can contribute to applications,
where semantic information is important, while it car-
ries partiality, ambiguity, underspecification, context-
dependency. Fine-grained, detailed and structured se-
mantic information can be included in such applica-
tions by using terms of LST

GP. Among potential appli-
cations, we would like to point, at first place, the po-
tentials for using LST

GP and its specialized variants, for
computational syntax-semantics interfaces in large-
scale grammars of human language, such as HPSG,
LFG, GF, and grammars using Logic Programming.
Other important applications include database, in re-
lational, object-oriented, and hybrid approaches; for-
mal representation and storing of semantic informa-
tion in ontology systems; semantic information in text
processing; information retrieval; etc.

By the examples, which we include in this pa-
per, we address how space-time information can be
included formally, along all components of seman-
tic information. Specialized variables, representing
semantic parameters for space-time locations, which
can be linked to specific, abstract, real, or virtual sit-
uations that carry partial information.

2 BACKGROUNDS

Originally, Situation Theory was introduced by (Bar-
wise, 1981) as a general theory of information, by
mathematical structures of information. The ideas
of Situation Theory ensued a broad program with
wide spectrum of theoretical research and applica-
tions. The central concepts developed around repre-
senting relational and partial information, and its de-
pendence on situations. The ideas were presented in
great details by (Barwise and Perry, 1983) and (Bar-
wise, 1989). For an informal introduction, see (De-
vlin, 2008). A substantial mathematical presentation
of Situation Theory is given by (Seligman and Moss,
2011). For Situation Theory that we take as a pri-
mary semantic structure of the formal language in
this paper, see (Loukanova, 2014). The non-well-
founded Aczel set theory (Aczel, 1988), with anti-
foundation axiom, is the set-theoretic foundation of
Situation Theory in its full strength that supports cir-
cular information.

Our paper is on a largely open topic of formaliza-
tion of Situation Theory, with computational syntax
and semantic models of finely-grained information,
initiated in (Loukanova, 2014; Loukanova, 2015).
Higher-order, typed Situation Theory of information
and type-theoretic formal languages for its versions
are opening new theoretical investigations and practi-
cal applications. Computational semantics and com-
putational neuroscience of language are among the
primary applications of Situation Theory by using for-
mal languages for it. This paper is based on our work
on several new directions, in particular: (1) functional
type-theory of recursion (a functional approach); (2)
relational type-theory of situated, partial, and para-
metric information (a relational approach); (3) ap-
plications of these theories to computational syntax-
semantics interfaces in natural and formal languages.

Typical syntax of formal and natural languages
is formulated by rules that express syntactic depen-
dencies between sub-expressions and syntactic cate-
gories. Such syntactic dependencies can be visualized
as appropriately labeled graphs, often as parse trees,
in 2-dimensional plane. In contrast, by the formal lan-
guage LST

GP, we express fine-grained, semantic infor-
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mation about semantic objects, properties of objects,
relations between them, operations, processes, activi-
ties, which usually take place in 3-dimensional space,
and in time. Situation Theory is abstract model-
theory of information concerning real or virtual situ-
ations, represented by abstract set-theoretical objects.
The formal constructs of LST

GP express, i.e., designate
situation-theoretic objects. (In a similar manner, a
specialized formal language of first-order logic is em-
ployed in axiomatic set theories.)

In this paper, we introduce a higher-order, typed
formal language of Situation Theory with memory
variables. Memory variables represent memory slots
where underspecified objects can be saved. Such un-
derspecified objects can be simple semantic parame-
ters, or more complex objects with parametric com-
ponents. Informally, while the memory “slots” serve
saving, i.e., memorizing information, they are dy-
namic so that information stored in them can be up-
dated. The memory variables can be thought of be-
ing labels, or addresses of memory slots. The val-
ues saved in the memory variables are subject to two
kinds of “specializations”:
• Memory variables, which correspond to seman-

tic parameters, are constrained to satisfy situation-
theoretic restrictions.

• Values can be assigned to memory variables, re-
spectively to parameters, by recursive computa-
tions.
The LST

GP has terms for functions, types, relations,
and recursive computations with restrictions. Typi-
cally, by traditions, formal languages use symbols and
other more complex expressions for functions, prop-
erties, and relations, with linearly ordered argument
slots that represent argument roles, according to con-
ventional agreements. The formal language LST

GP di-
verges from this tradition, by explicit association of
the argument roles to functions, properties, relations,
and types. The argument roles are associated with ap-
propriateness constraints. Only objects satisfying the
corresponding constraints can fill up the roles.

These features of LST
GP are more direct representa-

tions of operations and relations between objects in
nature and especially, in bio-structures. The type sys-
tem of LST

GP models structures of basic and complex
objects, and information in nature.

The terms of the formal language LST
GP are demon-

strated with examples. We give intuitions about the
denotational and algorithmic semantics of LST

GP. In
particular, we provide examples of computational
patterns in The work (Loukanova, 2015) introduces
a similar formal language LST

GP for Situation The-
ory. The language LST

GP introduced in this paper is
a proper extension of LST

GP. The restricted recursion

LST
GP-terms constrain memory locations individually,

by constraints of the form (p : T ). The language LST
GP

covers restrictions over sets of objects, e.g., by propo-
sitional constraints ({p1, . . . , pm} : T ), where T is a
term for a type with m argument roles. By such a gen-
eralized constraint, the memory variables p1, . . . , pm
represent objects that are restricted to be simultane-
ously of the type T . E.g., p1, . . . , pm can be memory
nets for memorizing such objects.

Thus, the language LST
GP has terms for designating

a new kind of semantic objects — complex units of
informational parameters, that consist of sets of pa-
rameters that are simultaneously constrained to sat-
isfy recursive conditions, instead of singleton param-
eters with recursive restrictions. Such terms, in effect,
extend Situation Theory with complex parametric ob-
jects.

3 TYPES AND VOCABULARY OF
LST

GP

As in Situation Theory, the class Types, which can be
a proper class, i.e., a non-well-founded set, is defined
at recursive stages, by starting with a set of primitive
(basic) types. The choice of the basic types depends
on technical choices and applications of LST

GP. Note
that some of the expressions of the formal language
LST

GP, defined later, will be its complex types.

Primitive Types. We take a set, BTypes, of primitive
(basic) types:

BTypes= { IND,REL, FUN,ARGR,LOC,

POL, PAR, INFON, SIT,

PROP, SET,TYPE, |=}
(1)

where:
• IND is the type for individuals and expressions

denoting individuals;
• REL, for relations, primitive and complex, and

expressions denoting such;
• FUN, for functions, primitive and complex, and

function expressions;
• ARGR, for abstract argument roles of proper-

ties, relations, functions, and types basic and com-
plex (Typically, in formal languages and theories, ar-
gument roles are represented by argument slots, ac-
cording to some fixed, conventional linear order.);
• LOC, for space-time locations;
• POL, for two polarities denoted by 1 and 0

(which are markers for a property, relation, activity,
action, or process, taking place, not truth values.);
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• PAR, for basic and complex parameters, as se-
mantic underspecified objects, and for expressions de-
noting semantic parameters;
• INFON, for situation-theoretic objects that are

basic or complex information units, and for expres-
sions denoting such;
• SIT, for situations;
• PROP, for abstract objects that are propositions,

and for expressions denoting such;
• TYPE, for primitive and complex types and type

expressions;
• SET, for sets and set expressions;
• |= is a designated type called “supports”, which

is used to state and express that informational content
holds in, or is supported by, a certain situation s
(more details later).

Typed Vocabulary. The vocabulary of LST
GP consists

of typed constants and two kinds of variables in all
types, as follows.

Constants: LST
GP has a countable set of constants,

Kτ = {cτ
0,c

τ
1, . . .}, for all τ ∈ Types, and K is the set

of all constants:

K =
⋃

τ∈Types
Kτ (2)

Some of the sets of constants can be finite, and some
empty (e.g., for complex types). Here we assume
non-empty sets of constants: KIND 6= /0 — for primi-
tive individuals, KLOC 6= /0 — for space-time locations,
KREL 6= /0 — for primitive relations, KFUN 6= /0 — for
primitive functions, KPOL = {0,1} – for polarity val-
ues1.
Note that in Situation Theory as semantic model-
theory, there is a non-empty domain Reln of primitive
relations with n argument roles, for each natural num-
ber n ∈ N. A given primitive relation r is represented
by some unique set-theoretic object, e.g., an atomic
element (urelement), not by a set of the ordered n-
tuples of objects assumed to stand in that relation.
The reason is that, in Situation Theory, n objects can
stand in the relation r, only in some situation s. How-
ever, we can define the extension of the relation r in a
given situation s, as the set of the ordered n-tuples of
objects, which stand in the relation n, in the situation
s.
Another note is in due that, in Situation theory, the
domain AIND of the individuals is a collection that,
depending on specific applications, can be either a
set or a proper class, i.e., non-well-founded set. See
(Aczel, 1988) about Aczel non-well-founded set the-
ory. Furthermore, we shell assume that AIND includes
1To distinguish the polarities from propositional truth val-
ues, one may take two other distinctive symbols, e.g.,
KPOL = {−,+}.

numbers, e.g., all natural numbers, N= {0,1, . . .}, in-
tegers, real numbers, etc. One may choose also that
AIND is a proper class that includes the universe of all
sets (which is not a set), or a specific sub-collection
of sets, e.g., the hereditarily countable sets. A more
fine-grained Situation Theory may have such objects
like sets, in a domain of type SET, which can either a
sub-type of the type IND, or a separate type. We leave
these choices open here.

Pure Variables: The language LST
GP has a set of

typed pure variables, PVτ = {vτ
0,v

τ
1, . . .}, for all types

τ ∈ Types, and PV is the set of the pure variables:

PV =
⋃

τ∈Types
PVτ (3)

Restricted Memory Variables: The formal lan-
guage LST

GP has a distinctive set MVτ of typed variables
MVτ = {pτ

0,p
τ
1, . . .}, for all types τ ∈ Types. The set

of all restricted memory variables is:

MV =
⋃

τ∈Types
MVτ, (4)

The variables of MV are also simply called memory
variables or recursion variables. Thus, the LST

GP vari-
ables are typed, and the sets of all variables are clas-
sified as follows:

Varsτ = PVτ∪MVτ, (5a)
Vars = PV∪MV (5b)

For each of the basic types, we take a set of basic,
restricted memory variables, which can be used for
assigning, i.e., “saving”, information and objects in
them, by respecting the corresponding types. The
typing of the memory variables, serves among other
computational tasks, also reserving specific shape or
construction structure of the memory slots, as unde-
termined blue-prints. E.g., PARIND, PARLOC, PARREL,
PARFUN, PARINFON, PARSIT, PARPROP, etc.

We also interprete the memory variables as mem-
ory slots carrying information about partly known ob-
jects, where the information available in a memory
slot is subject to update. Alternatively, memory vari-
ables are for objects under developmental changes.

For semantic reasons, we distinguish between re-
stricted variables, which are syntactic objects, and se-
mantic parameters as semantic objects, while such de-
tails are not in the subject of this paper. Sometimes,
when the context makes it clear, the restricted, mem-
ory variables can be called parameters. Typically, un-
less otherwise specified either explicitly or by the syn-
tax of the expressions, we shall use letters x, y, z, with
or without subscripts, to vary over pure variables of
any types, and letters p, q, r, with or without sub-
scripts, to vary over memory variables of any type.
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Definition 1 (Argument roles). Argument roles.
1. We take a set of expressions (basic or complex,

by relatively simple rules of construction), called ba-
sic argument roles, which can be associated with
some of the expressions, such as the constants for ba-
sic relations, functions, and types:

BRoles = {ρ1, . . . ,ρm, . . .}. (6)
2. ARoles is the class of basic and complex ar-

gument roles, which includes the set of the basic ar-
gument roles, BRoles ⊂ ARoles, and other argument
roles, denoted by [ξ], for ξ ∈ PV, that are assigned to
complex relations, functions, and types via rules of
term formations (given later)

ARoles = BRoles∪{ [ξ] | ξ ∈ PV} (7)
Note that the argument roles [ξ] are argument

roles generated by using only pure variables from
the collection PV, which are typed. The argument
roles [ξ] of relations, functions, and types, and terms
denoting such, get generated via the term formation
rules given later. Note that the elements of the
set ARoles, esp. for the primitives, are specialized
expressions, which can vary depending on specific
applications of LST

GP.

Example 3.1. As usually in relational approaches, we
take relation constants such as smile, read, read-to,
and give. We can associate sets of argument roles with
them, in a simple way, without including constraints
over the expressions filling the argument roles, and
by using conventional linking and understanding be-
tween the actual roles representing “who-does-what-
to-whom”, which is used in many applications involv-
ing functions and relations:

ARGR(read) = {arg1,arg2 } (8a)
ARGR(read-to) = {arg1,arg2,arg3 } (8b)

ARGR(give) = {arg1,arg2,arg3 } (8c)
Rules for syntax-semantics interface can provide

the necessary links between {arg1,arg2,arg3 }, and
the actual roles “who-does-what-to-whom”.

Typically, the basic relations and types are asso-
ciated with argument roles that have to satisfy con-
straints for their appropriate filling. We stress that
there is no assumption that the argument roles of the
relations, functions, and types are ordered.
Argument Roles with Appropriateness Con-
straints.

1. Every relation and type constant and pure or
memory variable γ, is associated with a set ARGR(γ)
of typed expressions argi, i = 1, . . . ,n, for argument
roles:

ARGR(γ) = {T1 : arg1, . . . ,Tn : argn }
for all γ ∈ KREL ∪KTYPE ∪VarsREL∪VarsTYPE

(9)

where n ≥ 0, argi ∈ ARoles, and Ti are sets of basic
types. The expressions arg1, . . . ,argn are called the
argument roles (or the argument slots) of γ. Each Ti is
specific for the corresponding argument role argi of γ,
i= 1, . . . ,n. Ti is called the appropriateness constraint
of argi, i = 1, . . . ,n.

2. Every function constant and function variable
γ, i.e., γ ∈AFUN ∪ VarsFUN, is associated with two sets
of sub-typed expressions:

ARGR(γ) = {T1 : arg1, . . . ,Tn : argn } (10a)
Value(γ) = {Tn+1 : argn+1 } (10b)

where n ≥ 0., argi ∈ ARoles, and Ti are sets of basic
types. The expressions arg1, . . . ,argn are called the
argument roles (or the argument slots) of γ. The ex-
pression argn+1 is called the value role of γ. Each Ti
is specific for the corresponding argument role argi
of γ, i = 1, . . . ,n+1. Ti is called the appropriateness
constraint of argi, i = 1, . . . ,n+1.

More sensible approaches, in compare to Ex-
ample (3.1), use more explicit, informative naming
of the specific argument roles for the primitive
relations. E.g., semantic roles of the verbs denoting
actions, processes, etc., have been subject of syntactic
representations in Transformational Grammar (TG)
and Government and Binding Theory (GB, GBT), by
the so called Theta Theory and Θ-roles in (Chomsky,
1993) and (Dowty, 1979). For a more recent work on
the topic, see (Jaworski and Przepórkowski, 2014).
Situation-theoretic approaches to semantics of human
language, e.g., in HPSG grammars, have been using
a traditional convention, by which the semantic
argument roles of a relation denoted by a verb are
named by using English word-formation rules, e.g.,
adding the suffixes “er”, “ed”, etc. (sometimes by
misspelling), respectively for the agent and patient.
See Example (11a)–(11d).

Example 3.2.
ARGR(IND : smile) = { IND : smiler} (11a)

ARGR(read) = { IND : reader,
IND : readed}, (11b)

ARGR(read-to) = { IND : reader
IND : readed,
IND : listener}

ARGR(give) = { IND : giver
IND : recipient,
IND : what}

(11c)

ARGR(γ) = {T1 : arg1, . . . ,

Tn : argn }
(11d)

(for γ ∈ KREL, n ∈ N)
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Note 1. Note that complex types can be associated
with relation, type, and function terms, including con-
stants and variables, via more complex terms, i.e., via
restriction terms, introduced later.
Theorem 1. (1) BRoles can be countable, given that
the sets of basic relations, functions, and types are
countable, and each have a countable set of argument
roles.

(2) BRoles can be (equinumerously) generated
from a finite base of symbols, by assuming Situation
Theory with basic relations, functions, and types that
have finite number of argument roles, and that the sets
of the basic relations, functions and types are count-
able.

(3) BRoles can be restricted to a finite set given
that the sets of primitive relations, functions and types
are finite.

Proof. By using Cantor Theorem for countable sets.

4 TERMS OF LST
GP

The classes of Termsτ, for τ : TYPE, are defined recur-
sively, at stages with respect to the recursive levels of
type constructions.

Constants (as terms). If c ∈ Kτ, then c ∈ Termsτ,
denoted as c : τ. There are no free and no bound vari-
ables in c. Variables (as terms). If x ∈ Varsτ, then,
x ∈ Termsτ. denoted x : τ. The only occurrence of
the variable x in the term x is free; there are no bound
occurrences of variables in x.

Infon Terms. For every relation term (basic or com-
plex) ρ ∈ TermsREL, associated with argument roles

ARGR(ρ) = {T1 : arg1, . . . ,Tn : argn } (12)

and every sequence of terms ξ1, . . . , ξn such that

ξ1 ∈ TermsT1 , . . . ,ξn ∈ TermsTn (13)

(i.e., terms ξ1, . . . , ξn that satisfy the correspond-
ing appropriateness constraints of the argument roles
of ρ, denoted also as T1 : ξ1, . . . , Tn : ξn), and ev-
ery space-time term τ ∈ TermsLOC, i.e., LOC : τ, ev-
ery polarity term t ∈ TermsPOL, i.e., POL : t, i.e.,
t ∈ {0,1}∪ PARPOL, the expression (14a) is an infon
term, i.e., an element of TermsINFON, alternatively de-
noted with type assignment in (14b).

� ρ,T1 : arg1 : ξ1, . . . ,

Tn : argn : ξn,

LOC : Loc : τ,
POL : Pol : t�∈ TermsINFON

(14a)

� ρ,T1 : arg1 : ξ1, . . . ,Tn : argn : ξn,

LOC : Loc : τ, POL : Pol : t� : INFON
(14b)

All free (bound) occurrences of variables in ρ, ξ1, . . . ,
ξn, τ are also free (bound) in the infon term (14a).

The notation (14b) is used when the type label-
ing is relevant. We use the notation � ρ,arg1 :
ξ1, . . . ,argn : ξn,Loc : τ; t�when the type constraints
are understood; or � ρ,ξ1, . . . ,ξn,τ; t � when also
there is an understood order of the arguments.

Proposition Terms. For every type term (basic or
complex) γ ∈ TermsTYPE, associated with argument
roles ARGR(γ) = {T1 : arg1, . . . ,Tn : argn }, and ξ1 ∈
TermsT1 , . . . , ξn ∈ TermsTn , i.e., terms ξ1, . . . , ξn that
satisfy the corresponding appropriateness constraints
of the argument roles of γ, denoted T1 : ξ1, . . . , Tn : ξn,
the expression in (15a) is a proposition term, in a post-
fix notation, i.e., an element of TermsPROP, alterna-
tively denoted in (15b) with the type assignment that
it is a term of type PROP.

({T1 : arg1 : ξ1, . . . ,

Tn : argn : ξn} : γ) ∈ TermsPROP
(15a)

({T1 : arg1 : ξ1, . . . ,

Tn : argn : ξn} : γ) : PROP
(15b)

All free (bound) occurrences of variables in γ, ξ1,
. . . , ξn, are also free (bound) in the proposition term
in (15a) and (15b).

Often, we shall skip the braces around the argu-
ment role assignments in (15a) and (15b). As custom-
ary in formal languages, depending on circumstances,
postfix notation of the proposition terms (as above in
(15a) and (15b)) can be alternated with prefix, or infix
notations.

Notation 1. In some cases, the full prefix notations
(16a)–(16b) are more convenient.

(γ, {T1 : arg1 : ξ1, . . . ,Tn : argn : ξn }) : PROP (16a)
(γ, T1 : arg1 : ξ1, . . . ,Tn : argn : ξn) : PROP (16b)

Complex Proposition Terms. Terms for proposi-
tion are formed by using the usual logic connectives,
¬, ∧, ∨, etc.

Notation 2. Negated propositions as in (17a) are
sometimes denoted by (17b).

¬({T1 : arg1 : ξ1, . . . ,Tn : argn : ξn}γ) (17a)
({T1 : arg1 : ξ1, . . . ,Tn : argn : ξn} 6: γ) (17b)

Notation 3. The prefex notation (18a) is used when
the type constraints over the argument roles are un-
derstood. The notation (18b) is used when also there
is an understood order of the argument roles.
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(γ,arg1 : ξ1, . . . ,argn : ξn) (18a)
(γ,ξ1, . . . ,ξn) (18b)

Notation 4. A postfix notation (19a) can be used
when the type constraints over the argument roles
are understood; and (19b) when the proposition is
negated. The notations (19c) and (19d) are used when
also there is an understood order of the arguments,
since they conform with a traditional notation of type
association to terms in the case of n = 1. A precaution
is due with the later notation since it is an abbreviated
notation of a proposition term of the formal language
LST

GP not a type assignment to a LST
GP term.

({arg1 : ξ1, . . . ,argn : ξn} : γ) (19a)
({arg1 : ξ1, . . . ,argn : ξn} 6: γ) (19b)
(ξ1, . . . ,ξn : γ) (19c)
(ξ1, . . . ,ξn 6: γ) (19d)

A precaution is due for proposition terms with n>
1. (19c), and respectively, (19d), does not mean that
each one of the objects ξi is (is not) of type γ, since the
type γ has n arguments. The proposition terms (19c)
and (19d), i.e., (ξ1, . . . ,ξn : γ) and (ξ1, . . . ,ξn 6: γ) de-
note statements that the objects {ξ1, . . . ,ξn}, together
as a set (or a group), respectively are not, of type γ,
by filling the corresponding argument roles. I.e., in
these notations, each ξi fills the corresponding argu-
ment role argi, and linearity is only visual notation.

Application Terms. For every function term (ba-
sic or complex) γ ∈ TermsFUN, associated with ar-
gument roles ARGR(γ) = {T1 : arg1, . . . ,Tn : argn }
and a value role Value(γ) = {Tn+1 : val}, and every
ξ1 ∈ TermsT1 , . . . , ξn, ξn+1 ∈ TermsTn+1 , the expres-
sion in (20a), respectively (20b), is an application
term:

γ{T1 : arg1 : ξ1, . . . ,

Tn : argn : ξn} ∈ TermsTn+1

(20a)

γ{T1 : arg1 : ξ1, . . . ,Tn : argn : ξn} : Tn+1 (20b)

The notation (20b), which includes the type associ-
ation, is used when the type labeling is relevant. In
addition, the term (21a), respectively in (21b), is a
proposition term.

(
γ{T1 : arg1 : ξ1, . . . ,

Tn : argn : ξn}= ξn+1
)
∈ TermsPROP

(21a)

(
γ{T1 : arg1 : ξ1, . . . ,

Tn : argn : ξn}= ξn+1
)

: PROP
(21b)

All free (bound) occurrences of variables in γ, ξ1, . . . ,
ξn+1 are also free (bound) in the application terms.

Note that the application expression in (20a) does
not by default designate the value, i.e., the result of a
process of valuation of the function application. Fur-
thermore, we allow partial functions, i.e., the value
of a function application term γ{T1 : arg1 : ξ1, . . . ,Tn :
argn : ξn}may not exist. In such a case, the denotation
of the corresponding proposition term (21a) might be
undefined, or a special object that designates error.
When there is an understood order of the function ar-
guments, we may use the traditional terms of func-
tional application: γ(ξ1, . . . ,ξn) : Tn+1.

λ-Terms. For every term (basic or complex) Φ ∈
Terms and any pure variables ξ1, . . . ,ξn ∈ PV, the ex-
pression λ{ξ1, . . . ,ξn }Φ is a λ-abstraction term, i.e.:

λ{ξ1, . . . ,ξn }Φ ∈ Terms (22a)

[ξ1], . . . , [ξn] are expressions for the argument roles of
λ{ξ1, . . . ,ξn }Φ, and are associated with correspond-
ing appropriateness constraints as follows:

ARGR(λ{ξ1, . . . ,ξn }Φ) =

{T1 : [ξ1], . . . ,Tn : [ξn]}
(23)

where, for each i ∈ {1, . . . ,n}, Ti is the union of all
sets (of types) that are the appropriateness constraints
of all the argument roles that occur in Φ, and such
that ξi fills up them, without being bound. (Note that
ξi may fill more than one argument role in Φ.)

All free occurrences of ξ1, . . . ,ξn in Φ are bound
in the term λ{ξ1, . . . ,ξn }Φ. All other free (bound)
occurrences of variables in Φ are free (bound) in the
term λ{ξ1, . . . ,ξn }Φ.

Case 1: Complex Relations with Complex Ar-
guments. In the case when Φ ∈ TermsINFON the ex-
pression λ{ξ1, . . . ,ξn }Φ is a complex-relation term,
i.e.:

λ{ξ1, . . . ,ξn }Φ ∈ TermsREL (24a)
λ{ξ1, . . . ,ξn }Φ : REL (24b)

Case 2: Complex Types with Complex Argu-
ments. In the case when Φ ∈ TermsPROP, the expres-
sion λ{ξ1, . . . ,ξn }Φ is a complex-type term, i.e.:

λ{ξ1, . . . ,ξn }Φ ∈ TermsTYPE (25a)
λ{ξ1, . . . ,ξn }Φ : TYPE (25b)

The expressions for types, as result of abstraction for-
mation over pure variables in proposition terms, are
significantly distinct from other λ-terms, and we use
the following expressions for abstraction types:

[T1 : ξ1, . . . ,Tn : ξn |Φ] ∈ TermsTYPE (26a)
[T1 : ξ1, . . . ,Tn : ξn |Φ] : TYPE (26b)

When the type assignment is understood, we use the
notation (27).
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Notation 5.
[ξ1, . . . ,ξn |Φ] (27)

Case 3: Complex Function Terms (Also Oper-
ation Terms) with Complex Arguments. For every
ϕ ∈ Termsτ where τ ∈ Types, τ 6≡ INFON, τ 6≡ PROP,
and for any pure variables ξ1, . . . ,ξn ∈ PV, the expres-
sion λ{ξ1, . . . ,ξn }ϕ is a complex-function term:

λ{ξ1, . . . ,ξn }ϕ ∈ TermsFUN (28a)
λ{ξ1, . . . ,ξn }ϕ : FUN (28b)

Every function term λ{ξ1, . . . ,ξn }ϕ has a role for the
function value, Value(λ{ξ1, . . . ,ξn }ϕ) = {τ : val},
and argument roles [ξ1], . . . , [ξn], which are associ-
ated with corresponding appropriateness constraints
as follows:

ARGR(λ{ξ1, . . . ,ξn }ϕ) =
{T1 : [ξ1], . . . ,Tn : [ξn]}

(29a)

Value(λ{ξ1, . . . ,ξn }ϕ) = {τ : val} (29b)

where, for each i ∈ {1, . . . ,n}, Ti is the union of all
sets (of types) that are the appropriateness constraints
of all the argument roles that occur in ϕ, and such
that ξi fills up them, without being bound. (Note that
any of the pure variables ξi may fill more than one
argument role in ϕ.)

Constrained Recursion Terms. For any type terms
Ck : TYPE, k = 1, . . . ,m (m ≥ 0), with argument roles
ARGR(Ck):

ARGR(Ck) = {Tk,1 : argk,l1 , . . . ,Tk,lk : argk,lk }
(lk ≥ 1)

(30)

memory (recursion) variables qk, j ∈MVTk, j (i.e., qk, j :
Tk, j), j = 1, . . . , lk, terms Ai : σi, i = 0, . . . ,n (n ≥ 0),
and pairwise different memory variables pi ∈ MVσi
(i.e., pi : σi), i = 1, . . . ,n, such that the two sequences
(31a) and (31b)

{(q1,1, . . . ,q1,l1 : C1), . . . ,

(qm,1, . . . ,qm,lm : Cm)}
(31a)

{p1 := A1, . . . ,pn := An } (31b)

(jointly) satisfy the Acyclicity Constraint 1, the ex-
pression in (32a), respectively (32b), is a restricted
recursion term of type σ0:

A0 suchthat {(q1,1, . . . ,q1,l1 : C1), . . . ,

(qm,1, . . . ,qm,lm : Cm)}
where {p1 := A1, . . . ,

pn := An } ∈ Termsσ0

(32a)

[
A0 suchthat {(q1,1, . . . ,q1,l1 : C1), . . . ,

(qm,1, . . . ,qm,lm : Cm)}
where {p1 := A1, . . . ,pn := An }

]
: σ0

(32b)

Acyclicity Constraint 1. The sequences of type con-
straints (31a) and assignments (31b) are (jointly)
acyclic iff there is a ranking function

rank : {
m⋃

k=1

{qk, j }lk
j=1

⋃
{pi }n

i=1} −→ N (33)

such that:
1. for all qk, j,qk′, j′ ∈

⋃m
k=1{qk, j }lk

j=1, if qk′, j′ oc-
curs freely in Ck, then rank(qk′, j′)< rank(qk, j)

2. for all pi,p j ∈ {pi }n
i=1, if p j occurs freely in

Ai, then rank(p j)< rank(pi).
Note that the acyclicity constraint is a proper part of
the recursive definition of the LST

GP-terms.

All free occurrences of p1, . . . ,pn in A0, . . . , An,
C1, . . . , Cm are bound in the term (32b). All other
free (bound) occurrences of variables in A0, . . . , An,
C1, . . . , Cm are free (bound) in (32b). Sometimes we
enclose the recursion terms in extra brackets to sep-
arate them from the surrounding text, for example as
in (32b).

Generalized, Restricted Variables. For any given

1. type term C : TYPE, such that

ARGR(C) = {T1 : argl, . . . ,Tk : argk }
(k ≥ 1)

(34)

2. memory (recursion) variables q j ∈ MVTj (that is,
q j : Tj), for j = 1, . . . ,k (k > 1), which are not nec-
essarily pairwise different and such that

(a) the proposition term

({T1 : arg1 : q1, . . . ,Tk : argk : qk} : C) (35)

abbreviated as (q1, . . . ,qk : C), is acyclic, i.e.,
no q j ( j = 1, . . . ,k) occurs freely in C, and

(b) {qk1 , . . . ,qkl } is the set of the pairwise differ-
ent variables, such that:
{qk1 , . . . ,qkl }= {q1, . . . ,qk }

the expression in (36a), abbreviated as (36b) and
(36c), is a term of type PARSET. We call it a memory
network (or a restricted memory net).

{qk1 , . . . ,qkl} suchthat {(q1, . . . ,qk : C),
(q1,1, . . . ,q1,l1 : C1), . . . ,

(qm,1, . . . ,qm,lm : Cm)}
where {p1 := A1, . . . ,

pn := An }

(36a)

{qk1 , . . . ,qkl} suchthat {(q1, . . . ,qk : C),

(−→q :
−→
C )}

where {−→p :=
−→
A }

(36b)
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{qk1 , . . . ,qkl} s.th. {(q1, . . . ,qk : C),

(−→q :
−→
C )}

{−→p :=
−→
A }

(36c)

We call the type term C the major constraint of the
generalized memory network in (36a). The term (36a)
denotes a complex situation-theoretic object, which is
a generalized constrained parameter.

For abbreviation, sometimes, the two constants
operators where and suchthat can be collapsed by us-
ing just one of them. In the special case when k = 1,
the type C has just one argument role, ARGR(C) =
{T : arg}. In such a case, we can identify the single-
ton set {q} with the parameter q : T , and the terms in
(37a) and (37b):

{q} s.th. {(q : C), (−→q :
−→
C )}{−→p :=

−→
A } (37a)

≡ q s.th. {(q : C), (−→q :
−→
C )}{−→p :=

−→
A } (37b)

In the special case when n,m = 1, we have the gener-
alized memory variable (38a), which can be abbrevi-
ated by the expression (38b).

{qk1 , . . . ,qkl} s.th. {(q1, . . . ,qk : C)} (38a)

{qk1 , . . . ,qkl}(q1,...,qk:C) : PARSET (38b)

The term {qk1 , . . . ,qkl}(q1,...,qk:C) : PAR provides
formalization and generalization of the more simple,
situation theoretic restricted parameters qT that are
singletons, i.e., l = 1. For restricted parameters, as
singletons, see, e.g., (Barwise and Perry, 1983) and
(Loukanova, 2014). A generalized parameter des-
ignated by a LST

GP term of the form (36a) is a com-
plex, parametric object that corresponds to a finite
set of parameters. The term (36a) represents a partly
known complex of entities, or a complex of entities
that are under-development, and which are simulta-
neously restricted and “bundled” together by the con-
straint (q1, . . . ,qk : C).

5 RELATIONS BETWEEN
SITUATIONS WITH
UNDERSPECIFICATION

As a typical example of a complex term that includes
most of the formal concepts introduced in the first
part of the paper, we use the semantic representa-
tion of the verb “stop” in two of its typical usages.
We have chosen this verb since it is a typical repre-
sentative of a class of verbs that exhibit several spe-
cific semantic phenomena. Firstly, the verb changes
its semantics depending whether it co-occurs with a

present participle clause as its complement, or with
infinitival clause. Secondly, in both usages, the se-
mantics of sentences having such a verb as their head
verb, involves shared arguments and underspecifica-
tion, which we can express with type constraints and
recursion (memory) locations that represent seman-
tic parameters. A grammatical analysis that includes
syntax-semantics interface of phrases with such verbs
is not in the space of this paper. We do not purport any
full semantic analysis of such verbs that take clausal
complements. The section offers an example for a
possible semantic representation, with the purpose of
the demonstration of the formal language LST

GP and sit-
uational concepts.

We follow a tradition to represent lexical items
that have the same orthography, but differ either in
their lexical syntax or in semantics, as alternative lex-
ical items with subscripts. Here we render the verb
“stop” to different relation constants distinguished
by their subscripts, i.e., stop1 and stop2. We give
TnamedJohn as an example of a complex term for a type,
which includes, in the scope of the λ-abstraction, an
assignment (39d) that satisfies the constraint in (39c),
as a condition for well-formedness. I.e., we assume
that in a relevant application system, the date verifies
the proposition (s |= � name,John, l,1 �). Note
that while we use linear notation in order to safe typ-
ing, and as a tradition from the predominant writ-
ing systems, there is no specific order over the λ-
abstractions and the argument roles associated with
relations, types, and functions in Situation Theory and
in the terms of its language LST

GP.

TnamedJohn ≡ (39a)

λ{s,m, l}
[
(s |= � named,m,n, l,1�) (39b)

s.th. {(n : λ{N}(s |= � name,N, l,1�))} (39c)

where {n := John}
]

(39d)

Let Tper and TnamedJohn be the following types:

TANIMATE ≡
λ{s, l,m}(s |= � animate,m, l,1�)

(40)

Tper ≡ λ{s,m, l}(s |= � person,m, l,1�) (41)

Let A be the type of activities by animate actors i,
abstracted from specific activities, actors, space-time
locations, and polarity, i.e., abstraction over polarity
denoted by a pure variable p:

A≡ λ{p1, i, l, p}(s |= � activity, (42a)
REL : arg1 : p1, (42b)
TANIMATE(s1, l) : actor : i, (42c)
LOC : Loc : l, POL : Pol : p�) (42d)
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and d be the relation between individuals i, locations
l, and polarities p, such that i is or is not (expressed
by p) drinking tea at l:

d ≡ λ{i, l, p}� drink, drinker : i, (43a)
liquid : tea, (43b)
Loc : l, Pol : p� (43c)

Now, we can represent the interpretation of an utter-
ance of the sentence “John stopped drinking tea.” by
rendering it into the LST

GP-term T1, as in (44a).

John stopped drinking tea. render−−−→ T1 (44a)

John stopped to drink tea. render−−−→ T2 (44b)

where T1, T2 are the terms in (45a)–(45h) and (46a)–
(46k), respectively:

T1 ≡ (sd |= � stop1, A0 : arg0 : j,
A1 : arg1 : a1,

Loc : ld , Pol : 1�)

(45a)

s.th. (sd , j, ld : Tper), (45b)
(sd , j, ld : TnamedJohn), (45c)
(a1, j, lb,1 : A), (45d)
(sd |= � a1, [i] : j, [l] : lb, [p] : 1�),

(45e)

(sd |= � a1, [i] : j, [l] : la, [p] : 0�),
(45f)

(sd |= lb ≺ ld),(sd |= ld ≺ la)} (45g)
where {a1 := d} (45h)

T2 ≡ (46a)
(sd |= � stop2, A0 : arg0 : j, (46b)

A1 : arg1 : a1, A2 : arg2 : a2, (46c)
Loc : ld , Pol : 1�) (46d)

s.th. (sd , j, ld : Tper),(sd , j, ld : TnamedJohn), (46e)
(a1, j, lb,1 : A),(a2, j, la,1 : A), (46f)
(sd |= � a1, [i] : j, [l] : lb, [p] : 1�), (46g)
(sd |= � a1, [i] : j, [l] : la, [p] : 0�), (46h)
(sd |= � intends, j,P, ld ,1�), (46i)
(sd |= lb ≺ ld),(sd |= ld ≺ la)} (46j)

where (46k)
{a2 := d, (46l)

P := (a2 : λ{A}(s f |= � A, [i] : j,
[l] : la, [p] : 1�))} (46m)

6 FUTURE WORK

Our target is development of Situation Theory and
its formal languages, like LST

GP introduced in this pa-
per, for enhanced theoretical developments and ap-
plications. By (36a), we introduced a new kind
of LST

GP terms, which extend the formal language in
(Loukanova, 2015). Informally said, by the denota-
tional and algorithmic semantics (the formal appara-
tus of which is outside the subject of this paper) of the
LST

GP terms, we also extend the informational coverage
introduced in the original Situation Theory, e.g., (Bar-
wise and Perry, 1983), (Devlin, 2008), (Seligman and
Moss, 2011), and (Loukanova, 2014). Denotationally,
the terms (36a) designate complex sets of parameters,
which, via the binding operators where and suchthat,
are memory networks of constrained parametric ob-
jects. Information carried by terms such as (32a), re-
spectively (32b), and (36a) is computed according to
an algorithm, by mutual recursion, represented by the
recursion system of assignments, via the scope of the
operator where. The scope of the operator suchthat
introduces constraints over the parameters and the al-
gorithm.

Generalized recursion terms, introduced here, pro-
vide a formal introduction of more complex restricted
parameters than the ones in classic Situation Theory.
The assignment sequences in such terms formalize,
and generalize, the situation theoretic notion of pa-
rameters and their anchoring to more specific objects.
The Acyclicity Constraint 1 provides a formal tech-
nique for computational representation of information
with acyclic algorithmic steps.

This paper demonstrates the informational rich-
ness and fine-granularity of Situation Theory and
its potentials for applications via formal languages.
E.g., the formal language LST

GP provides formal tech-
niques for (1) investigation of informational richness
of mathematical model-theory of Situation Theory,
and (2) useful applications that usually rely on formal
language, via syntax-semantic interface between for-
mal syntax and informational structures (Loukanova,
2010). Subjects such as formal reduction calculi, the-
ory of LST

GP, distinctions between denotational and al-
gorithmic semantics of LST

GP in Situation Theoretical
models are beyond the scope of this paper. Such top-
ics will be presented in future work. Furthermore, we
investigate in details the differences in expressiveness
between the formal language of Situation Theory in-
troduced in (Loukanova, 2015) and the language LST

GP

introduced in this paper, which is richer. E.g., the
restricted recursion terms in (32b) generalize the re-
cursion terms introduced in (Loukanova, 2015). The
language in (Loukanova, 2015) provides a basis for
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proving proper inclusion in it of the functional, formal
language introduced in (Moschovakis, 2006), which
is different, future work.
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