
MR-SAT: A MapReduce Algorithm for Big Data Sentiment Analysis on
Twitter

Nikolaos Nodarakis1, Spyros Sioutas2, Athanasios K. Tsakalidis1 and Giannis Tzimas3
1Computer Engineering and Informatics Department, University of Patras, 26504 Patras, Greece

2Department of Informatics, Ionian University, 49100 Gorfu, Greece
3Computer & Informatics Engineering Department, Technological Educational Institute of Western Greece,

26334 Patras, Greece

Keywords: Big Data, Bloom Filters, Classification, MapReduce, Hadoop, Sentiment Analysis, Twitter.

Abstract: Sentiment analysis on Twitter data has attracted much attention recently. People tend to express their feelings
freely, which makes Twitter an ideal source for accumulating a vast amount of opinions towards a wide diver-
sity of topics. In this paper, we develop a novel method to harvest sentiment knowledge in the MapReduce
framework. Our algorithm exploits the hashtags and emoticons inside a tweet, as sentiment labels, and pro-
ceeds to a classification procedure of diverse sentiment types in a parallel and distributed manner. Moreover,
we utilize Bloom filters to compact the storage size of intermediate data and boost the performance of our
algorithm. Through an extensive experimental evaluation, we prove that our solution is efficient, robust and
scalable and confirm the quality of our sentiment identification.

1 INTRODUCTION

Twitter is one of the most popular social network web-
sites and launched in 2006. It is a wide spreading
instant messaging platform and people use it to get
informed about world news, videos that have become
viral, etc. Inevitably, a cluster of different opinions,
that carry rich sentiment information and concern a
variety of entities or topics, is formed. Sentiment is
defined as ”A thought, view, or attitude, especially
one based mainly on emotion instead of reason”1 and
describes someone’s mood or judge towards a specific
entity. User-generated content that captures sentiment
information has proved to be valuable and its use is
widespread among many internet applications and in-
formation systems, such as search engines.

Hashtags are a convention for adding additional
context and metadata to tweets. They are created
by users as a way to categorize their message and/or
highlight a topic and are extensively utilized in tweets
(Wang et al., 2011). Moreover, they provide the abil-
ity to people to search tweets that refer to a com-
mon subject. The creation of a hashtag is achieved
by prefixing a word with a hash symbol (e.g. #love).
Emoticon refers to a digital icon or a sequence of key-

1http://www.thefreedictionary.com/sentiment

board symbols that serves to represent a facial expres-
sion, as:-) for a smiling face2. Both, hashtags and
emoticons, provide a fine-grained sentiment learning
at tweet level which makes them suitable to be lever-
aged for opinion mining.

Although the problem of sentiment analysis has
been studied extensively during recent years, existing
solutions suffer from certain limitations. One prob-
lem is that the majority of approaches is bounded in
centralized environments. Moreover, sentiment anal-
ysis is based on, it terms of methodology, natural
language processing techniques and machine learn-
ing approaches. However, this kind of techniques
are time-consuming and spare many computational
resources. Consequently, at most a few thousand
records can be processed by such techniques without
exceeding the capabilities of a single server (Agar-
wal et al., 2011; Davidov et al., 2010; Jiang et al.,
2011; Wang et al., 2011). Since millions of tweets are
published daily on Twitter, it is more than clear that
underline solutions are not sufficient. Consequently,
high scalable implementations are required in order to
acquire a much better overview of sentiment tendency
towards a topic.

In this paper, we propose MR-SAT: a novel

2http://dictionary.reference.com/browse/emoticon

140
Nodarakis, N., Sioutas, S., Tsakalidis, A. and Tzimas, G.
MR-SAT: A MapReduce Algorithm for Big Data Sentiment Analysis on Twitter.
In Proceedings of the 12th International Conference on Web Information Systems and Technologies (WEBIST 2016) - Volume 1, pages 140-147
ISBN: 978-989-758-186-1
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

MapReduce Algorithm for Big Data Sentiment
Analysis on Twitter implemented in Hadoop (White,
2012), the open source MapReduce implementation
(Dean and Ghemawat, 2004). Our algorithm exploits
the hashtags and emoticons inside a tweet, as senti-
ment labels, in order to avoid the time-intensive man-
ual annotation task. After that, we build the feature
vectors of training and test set and proceed to a clas-
sification procedure in a fully distributed manner us-
ing an AkNN query. Additionally, we encode features
using Bloom filters to compress the storage space of
the feature vectors. Through an extensive experimen-
tal evaluation we prove that our solution is efficient,
robust and scalable and confirm the quality of our sen-
timent identification.

The rest of the paper is organized as follows: in
Section 2 we discuss related work and in Section 3 we
present how our algorithm works. After that, we pro-
ceed to the experimental evaluation of our approach in
Section 4, while in Section 5 we conclude the paper
and present future steps.

2 RELATED WORK

Early opinion mining studies focus on document level
sentiment analysis concerning movie or product re-
views (Hu and Liu, 2004; Zhuang et al., 2006) and
posts published on webpages or blogs (Zhang et al.,
2007). Respectively, many efforts have been made to-
wards the sentence level sentiment analysis (Wilson
et al., 2009; Yu and Hatzivassiloglou, 2003) which
examines phrases and assigns to each one of them a
sentiment polarity (positive, negative, neutral).

Many researchers confront the problem of sen-
timent analysis by applying machine learning ap-
proaches and/or natural language processing tech-
niques. In (Pang et al., 2002), the authors em-
ploy three machine learning techniques to classify
movie reviews as positive or negative. On the other
hand, the authors in (Nasukawa and Yi, 2003) in-
vestigate the proper identification of semantic rela-
tionships between the sentiment expressions and the
subject within online articles. Moreover, the method
described in (Ding and Liu, 2007) proposes a set of
linguistic rules together with a new opinion aggrega-
tion function to detect sentiment orientations in online
product reviews.

Nowadays, Twitter has received much attention
for sentiment analysis, as it provides a source of mas-
sive user-generated content that captures a wide as-
pect of published opinions. In (Barbosa and Feng,
2010), the authors propose a 2-step classifier that sep-
arates messages as subjective and objective, and fur-

ther distinguishes the subjective tweets as positive or
negative. The approach in (Davidov et al., 2010) ex-
ploits the hashtags and smileys in tweets and evaluate
the contribution of different features (e.g. unigrams)
together with akNN classifier. In this paper, we adopt
this approach and create a parallel and distributed ver-
sion of the algorithm for large scale Twitter data. A
three-step classifier is proposed in (Jiang et al., 2011)
that follows a target-dependent sentiment classifica-
tion strategy. Moreover, the authors in (Wang et al.,
2011) perform a topic sentiment analysis in Twitter
data through a graph-based model. A more recent ap-
proach (Yamamoto et al., 2014), investigates the role
of emoticons for multidimensional sentiment analysis
of Twitter by constructing a sentiment and emoticon
lexicon. A large scale solution is presented in (Khuc
et al., 2012) where the authors build a sentiment lexi-
con and classify tweets using a MapReduce algorithm
and a distributed database model. Although the classi-
fication performance is quite good, the construction of
sentiment lexicon needs a lot of time. Our approach is
much simpler and, to our best knowledge, we are the
first to present a robust large scale approach for opin-
ion mining on Twitter data without the need of build-
ing a sentiment lexicon or proceeding to any manual
data annotation.

3 MR-SAT APPROACH

Assume a set of hashtagsH = {h1,h2, . . . ,hn} and
a set of emoticonsE = {em1,em2, . . . ,emm} associ-
ated with a set of tweetsT = {t1, t2, . . . , tl} (training
set). Eacht ∈ T carries only one sentiment label
from L = H ∪ E. This means that tweets contain-
ing more that one labels fromL are not candidates
for T, since their sentiment tendency may be vague.
However, there is no limitation in the number of hash-
tags or emoticons a tweet can contain, as long as they
are non-conflicting withL. Given a set of unlabelled
tweetsTT = {tt1, tt2, . . . , ttk} (test set), we aim to in-
fer the sentiment polaritiesp = {p1, p2, . . . , pk} for
TT, where pi ∈ L ∪ {neu} and neu means that the
tweet carries no sentiment information. We build a
tweet-level classifierC and adopt akNN strategy to
decide the sentiment tendency∀tt ∈ TT. We imple-
mentC by adapting an existing MapReduce classifi-
cation algorithm based on AkNN queries (Nodarakis
et al., 2014), as described in Subsection 3.3.

3.1 Feature Description

In this subsection, we present in detail the features
used in order to build classifierC. For each tweet we

MR-SAT: A MapReduce Algorithm for Big Data Sentiment Analysis on Twitter

141

combine its features in one feature vector. We apply
the features proposed in (Davidov et al., 2010) with
some necessary modifications to avoid the production
of an exceeding amount of calculations, thus boosting
the running performance of our algorithm.

3.1.1 Word and N-Gram Features

We treat each word in a tweet as a binary feature. Re-
spectively, we consider 2-5 consecutive words in a
sentence as a binary n-gram feature. Iff is a word
or n-gram feature, then

wf =
Nf

count(f)
(1)

is the weight off in the feature vector,Nf is the num-
ber of timesf appear in the tweet andcount(f) de-
clares the count off in the Twitter corpus. Conse-
quently, rare words and n-grams have a higher weight
than common words and have a greater effect on
the classification task. Moreover, we consider se-
quences of two or more punctuation symbols as word
features. Unlike what authors propose in (Davidov
et al., 2010), we do not include the substituted meta-
words for URLs, references and hashtags (URL, REF
and TAG respectively) as word features (see and Sec-
tion 4). Also, the common word RT, which means
”retweet”, does not constitute a feature. The reason
for omission of these words from the feature list lies
in the fact that they appear in the majority of tweets
inside the dataset. So, their contribution as features
is negligible, whilst they lead to a great computation
burden during the classification task.

3.1.2 Pattern Features

This is the main feature type and we apply the pattern
definitions given in (Davidov and Rappoport, 2006)
for automated pattern extractions. We classify words
into three categories: high-frequency words (HFWs),
content words (CWs) and regular words (RWs). A
word whose corpus frequency is more (less) thanFH
(FC) is considered to be a HFW (CW). The rest of
the words are characterized as RWs. In addition, we
treat as HFWs all consecutive sequences of punctu-
ation characters as well as URL, REF, TAG and RT
meta-words for pattern extraction. We define a pat-
tern as an ordered sequence of HFWs and slots for
content words. The upper bound forFC is set to 1000
words per million and the lower bound forFH is set
to 10 words per million. Observe that theFH andFC
bounds allow overlap between some HFWs and CWs.
To address this issue, we follow a simple strategy as
described next. Assumef r is the frequency of a word

in the corpus; iff r ∈
(

FH ,
FH+FC

2

)
the word is clas-

sified as HFW, else iff r ∈
[

FH+FC
2 ,FC

)
the word is

classified as CW.
We seek for patterns containing 2-6 HFWs and 1-

5 slots for CWs. Moreover, we require patterns to
start and to end with a HFW, thus a minimal pattern
is of the form [HFW][CW slot][HFW]. Additionally,
we allow approximate pattern matching in order to
enhance the classification performance. Approximate
pattern matching is the same as exact matching, with
the difference that an arbitrary number of RWs can be
inserted between the pattern components. Since the
patterns can be quite long and diverse, exact matches
are not expected in a regular base. So, we permit
approximate matching in order to avoid large sparse
feature vectors. The weightwp of a pattern featurep
is defined as in Equation (1) in case of exact pattern
matching and as

wp =
α ·Np

count(p)
(2)

in case of approximate pattern matching, whereα =
0.1 in all experiments.

3.1.3 Punctuation Features

The last feature type is divided into five generic fea-
tures as follows: 1) tweet length in words, 2) num-
ber of exclamation mark characters in the tweet, 3)
number of question mark characters in the tweet, 4)
number of quotes in the tweet and 5) number of cap-
ital/capitalized words in the tweet. The weightwp of
a punctuation featurep is defined as

wp =
Np

Mp · (Mw+Mng+Mpa)/3
(3)

whereNp is the number of times featurep appears
in the tweet,Mp is the maximal observed value of
p in the twitter corpus andMw,Mng,Mpa declare the
maximal values for word, n-gram and pattern feature
groups, respectively. So,wp is normalized by averag-
ing the maximal weights of the other feature types.

3.2 Bloom Filter Integration

Bloom filters are data structures proposed by Bloom
(Bloom, 1970) for checking element membership in
any given set. A Bloom filter is a bit vector of length
z, where initially all the bits are set to 0. We can map
an element into the domain between 0 andz− 1 of
the Bloom filter, usingq independent hash functions
h f1,h f2, ...,h fq. In order to store each elemente into

WEBIST 2016 - 12th International Conference on Web Information Systems and Technologies

142

the Bloom filter,e is encoded using theq hash func-
tions and all bits having index positionsh f j(e) for
1≤ j ≤ q are set to 1.

Bloom filters are quite useful and they compress
the storage space needed for the elements, as we can
insert multiple objects inside a single Bloom filter. In
the context of this work, we employ Bloom filters to
transform our features to numbers, thus reducing the
space needed to store our feature vectors. More pre-
cisely, instead of storing a feature we store the index
positions in the Bloom filter that are set to 1. Never-
theless, it is obvious that the usage of Bloom filters
may impose errors when checking for element mem-
bership, since two different elements may end up hav-
ing exactly the same bits set to 1. The error probabil-
ity is decreased as the number of bits and hash func-
tions used grows. As shown in the experimental eval-
uation, the side effects of Bloom filters are negligible
and boost the performance of our algorithm.

3.3 kNN Classification Algorithm

In order to assign a sentiment label for each tweet in
TT, we apply akNN strategy. Initially, we build the
feature vectors for all tweets inside the training and
test datasets (FT andFTT respectively). Then, for each
feature vectoru in FTT we find all the feature vectors
in V ⊆ FT that share at least one word/n-gram/pattern
feature withu (matching vectors). After that, we cal-
culate the Euclidean distanced(u,v),∀v∈V and keep
the k lowest values, thus formingVk ⊆ V and each
vi ∈ Vk has an assigned sentiment labelLi ,1≤ i ≤ k.
Finally, we assignu the label of the majority of vec-
tors inVk. If no matching vectors exist foru, we as-
sign a ”neutral” label. We buildC by adjusting an
already implemented AkNN classifier in MapReduce
to meet the needs of opinion mining problem.

3.4 Algorithmic Description

In this subsection, we describe in detail the senti-
ment classification process as implemented in the
Hadoop framework. We adjust an already imple-
mented MapReduce AkNN classifier to meet the
needs of opinion mining problem. Our approach con-
sists of a series of four MapReduce jobs, with each job
providing input to the next one in the chain. These
MapReduce jobs are summarized in the following
subsections3.

3Pseudo-codes are available in a technical report in
http://arxiv.org/abs/1602.01248

3.4.1 Feature Extraction

In this MapReduce job, we extract the features, as de-
scribed in Subsection 3.1, of tweets inT andTT and
calculate their weights. The output of the job is an
inverted index, where the key is the feature itself and
the value is a list of tweets that contain it.

TheMap function takes as input the records from
T andTT, extracts the features of tweets. Afterwards,
for each feature it outputs a key-value record, where
the feature itself is the key and the value consists of
the id of the tweet, the class of the tweet and the
number of times the feature appears inside the sen-
tence. TheReducefunction receives the key-value
pairs from the Map function and calculates the weight
of a feature in each sentence. Then, it forms a listl
with the format< t1,w1,c1 : ... : tx,wx,cx >, whereti is
the id of thei-th tweet,wi is the weight of the feature
for this tweet andci is its class. For each key-value
pair, the Reduce function outputs a record where the
feature is the key and the value is listl .

3.4.2 Feature Vector Construction

In this step, we build the feature vectorsFT andFTT
needed for the subsequent distance computation pro-
cess. To achieve this, we combine all features of a
tweet into one single vector. Moreover,∀tt ∈ TT we
generate a list (training) of tweets inT that share at
least one word/n-gram/pattern feature.

Initially, the Map function separates for each fea-
ture f the tweets that contain it into two lists,training
and test respectively. Also, for eachf it outputs a
key-value record, where the key is the tweet id that
containsf and the value consists off and weight of
f . Next, ∀v ∈ test it generates a record where the
key is the id ofv and the value is thetraining list.
TheReducefunction gathers key-value pairs with the
same key and buildsFT andFTT. For each tweett ∈ T
(tt ∈ TT) it outputs a record where key is the id oft
(tt) and the value is its feature vector (feature vector
together with thetraining list).

3.4.3 Distance Computation

In MapReduce Job 3, we create pairs of matching vec-
tors betweenFT andFTT and compute their Euclidean
distance.

For each feature vectoru∈ FTT, theMap function
outputs all pairs of vectorsv in training list of u. The
output key-value record has as key the id ofv and the
value consists of the class ofv, the id of u and the
u itself. Moreover, the Map function outputs all fea-
ture vectors inFT . TheReducefunction concentrates
∀v ∈ FT all matching vectors inFTT and computes

MR-SAT: A MapReduce Algorithm for Big Data Sentiment Analysis on Twitter

143

the Euclidean distances between pairs of vectors. The
Reduce function produces key-value pairs where the
key is the id ofu and the value comprises of the id of
v, its class and the Euclidean distanced(u,v) between
the vectors.

3.4.4 Sentiment Classification

This is the final step of our proposed approach. In this
job, we aggregate for all feature vectorsu in the test
set, thek vectors with the lowest Euclidean distance
to u, thus formingVk. Then, we assign tou the label
(class)l ∈ L of the majority ofVk, or theneulabel if
Vk = /0.

The Map function is very simple and it just dis-
patches the key-values pairs it receives to theReduce
function. For each feature vectoru in the test set, the
Reduce function keeps thek feature vectors with the
lowest distance tou and then estimates the prevailing
sentiment labell (if exists) among these vectors. Fi-
nally, it assigns tou the labell .

4 EXPERIMENTS

In this section, we conduct a series of experiments to
evaluate the performance of our method under many
different perspectives. Our cluster includes 4 comput-
ing nodes (VMs), each one of which has four 2.4 GHz
CPU processors, 11.5 GB of memory, 45 GB hard
disk and the nodes are connected by 1 gigabit Ether-
net. On each node, we install Ubuntu 14.04 operating
system, Java 1.7.051 with a 64-bit Server VM, and
Hadoop 1.2.1.

We evaluate our method using two Twitter
datasets (one for hashtags and one for emoticons) we
have collected through the Twitter Search API4 be-
tween November 2014 to August 2015. We have
used four human non-biased judges to create a list
of hashtags and a list emoticons that express strong
sentiment (e.g #bored and:)). We performed some
experimentation to exclude from the lists the hash-
tags and emoticons that either were abused by twit-
ter users or returned a very small number of tweets.
We ended up with a list of 13 hashtags and a list of
4 emoticons. We preprocessed the datasets we col-
lected and kept only the English tweets which con-
tained 5 or more proper English words5 and do not
contain two or more hashtags or emoticons from the
aforementioned lists. Moreover, during preprocess-
ing we have replaced URL links, hashtags and ref-

4https://dev.twitter.com/rest/public/search
5To identify the proper English word we used an avail-

able WN-based English dictionary

erences by URL/REF/TAG meta-words as stated in
(Davidov et al., 2010). The final hashtags dataset con-
tains 942188 tweets (72476 tweets for each class) and
the final emoticons dataset contains 1337508 tweets
(334377 tweets for each class). In both datasets, hash-
tags and emoticons are used as sentiment labels and
for each sentiment label there is an equal amount
of tweets. Finally, in order to produce no-sentiment
datasets we used Sentiment140 API6 (Go et al., 2009)
and a dataset which is publicly available7. We fed
the no hashtags/emoticons tweets contained in this
dataset, to the Sentiment140 API and kept the set
of neutral tweets. We produced two no-sentiment
datasets by randomly sampling 72476 and 334377
tweets from the neutral dataset. These datasets are
used for the binary classification experiments.

We assess the classification performance of our al-
gorithm using the 10-fold cross validation method and
measuring the harmonic f-score. For the Bloom filter
construction we use 999 bits and 3 hash functions. In
order to avoid a significant amount of computations
that greatly affect the running performance of the al-
gorithm, we define a weight thresholdw= 0.005 for
feature inclusion in the feature vectors. In essence,
we eliminate the most frequent words that have no
substantial contribution to the final outcome.

4.1 Classification Performance

In this subsection we measure the classification per-
formance of our solution using the harmonic f-score.
We use two experimental settings, the multi-class
classification and the binary classification settings.
Under multi-class classification we attempt to assign
a single label to each of vectors in the test set. In the
binary classification experiments, we classified a sen-
tence as either appropriate for a particular label or as
not bearing any sentiment. As stated and in (Davidov
et al., 2010), the binary classification is a useful ap-
plication and can be used as a filter that extracts senti-
ment sentences from a corpus for further processing.
We also test how the performance is affected with and
without using Bloom filters. The valuek for thekNN
classifier is equal to 50. The results of the experi-
ments are displayed in Table 1. In case of binary clas-
sification, the results depict the average score for all
classes.

For multi-class classification the results are not
very good but still they are way above the ran-
dom baseline. We also observe that the results with
and without the Bloom filters are almost the same.
Thus, we deduce that for multi-class classification the

6http://help.sentiment140.com/api
7https://archive.org/details/twittercikm 2010

WEBIST 2016 - 12th International Conference on Web Information Systems and Technologies

144

Table 1: Classification results for emoticons and hashtags
(BF stands for Bloom filter and NBF for no Bloom filter).

Setup BF NBF Random baseline
Multi-class Hashtags 0.32 0.33 0.08
Multi-class Emoticons 0.55 0.56 0.25
Binary Hashtags 0.74 0.53 0.5
Binary Emoticons 0.77 0.69 0.5

Table 2: Fraction of tweets with no matching vectors.

Setup BF NBF
Multi-class Hashtags 0.05 0.01
Multi-class Emoticons 0.05 0.02
Binary Hashtags 0.05 0.03
Binary Emoticons 0.08 0.06

Bloom filters marginally affect the classification per-
formance. Furthermore, the outcome for emoticons
is significantly better than hashtags which is expected
due to the lower number of sentiment types. This be-
havior can also be explained by the ambiguity of hash-
tags and some overlap of sentiments. In case of binary
classification there is a notable difference between the
results with and without Bloom filters. These results
may be somewhat unexpected but can be explicated
when we take a look in Table 2. Table 2 presents the
fraction of test set tweets that are classified as neutral
because of the Bloom filters and/or the weight thresh-
old w (no matching vectors are found). Notice that the
integration of Bloom filters, leads to a bigger number
of tweets with no matching vectors. Obviously, the
excluded tweets have an immediate effect to the per-
formance of thekNN classifier in case of binary clas-
sification. This happens since the number of tweets in
the cross fold validation process is noticeably smaller
compared to the multi-class classification. Overall,
the results for binary classification with Bloom filters
confirm the usefulness of our approach.

4.2 Effect ofk

In this subsection, we attempt to alleviate the problem
of low classification performance for binary classifi-
cation without Bloom filters. To achieve this we mea-
sure the effect ofk in the classification performance
of the algorithm. We test four different configurations
wherek ∈ {50,100,150,200}. The outcome of this
experimental evaluation is demonstrated in Table 3.
For both binary and multi-class classification, increas-
ing k affects slightly (or not at all) the harmonic f-
score when we embody Bloom filters. In the contrary
(without Bloom filters), there is a great enhancement
in the binary classification performance for hashtags
and emoticons and a smaller improvement in case of
multi-class classification. The inference of this ex-
periment, is that larger values ofk can provide a great

Table 3: Effect ofk in classification performance.

Setup k= 50 k= 100 k= 150 k= 200
Multi-class Hashtags BF 0.32 0.32 0.32 0.32
Multi-class Hashtags NBF 0.33 0.35 0.37 0.37
Multi-class Emoticons BF 0.55 0.55 0.55 0.55
Multi-class Emoticons NBF 0.56 0.58 0.6 0.6
Binary Hashtags BF 0.74 0.75 0.75 0.75
Binary Hashtags NBF 0.53 0.62 0.68 0.72
Binary Emoticons BF 0.77 0.77 0.78 0.78
Binary Emoticons NBF 0.69 0.75 0.78 0.79

Figure 1: Space compression of feature vector.

impulse in the performance of the algorithm when not
using Bloom filters.

4.3 Space Compression

As stated and above, the Bloom filters can compact
the space needed to store a set of elements, since more
than one object can be stored to the bit vector. In this
subsection, we elaborate on this aspect and present the
compression ratio in the feature vectors when exploit-
ing Bloom filters (in the way presented in Section 3.2)
in our framework. The outcome of this measurement
is depicted in Figure 1. In all cases, the Bloom filters
manage to diminish the storage space required for the
feature vectors by a fraction between 15-20%. Ac-
cording to the analysis made so far, the importance of
Bloom filters in our solution is twofold. They manage
to both preserve a good classification performance,
despite any errors they impose, and compact the stor-
age space of the feature vectors. Consequently, we
deduce that Bloom filters are very beneficial, when
dealing with large scale sentiment analysis data that
generate an exceeding amount of features.

4.4 Running Time and Scalability

In this final experiment, we compare the running time
for multi-class and binary classification and measure
the scalability of our approach. Initially, we calculate
the execution time in all cases in order to detect if the
Bloom filters speedup or slow down the running per-
formance of our algorithm. The results whenk = 50
are presented in Figure 2. It is worth noted that in the

MR-SAT: A MapReduce Algorithm for Big Data Sentiment Analysis on Twitter

145

majority of cases, Bloom filters slightly boost the ex-
ecution time performance. Despite needing more pre-
processing time to produce the features with Bloom
filters, in the end they pay off since the feature vector
is smaller in size.

Figure 2: Running time.

Figure 3: Scalability.

Finally, we investigate the scalability of our ap-
proach. We test the scalability only for the multi-class
classification case since the produced feature vector
in much bigger compared to the binary classification
case. We create new chunks smaller in size that are a
fraction F of the original datasets, whereF ∈ {0.2,
0.4, 0.6, 0.8}. Moreover, we set the value ofk to
50. Figure 3 presents the scalability results of our ap-
proach. From the outcome, we deduce that our algo-
rithm scales almost linearly as the data size increases
in all cases. This proves that our solution is efficient,
robust, scalable and therefore appropriate for big data
sentiment analysis.

5 CONCLUSIONS AND FUTURE
WORK

In the context of this work, we presented a novel
method for sentiment learning in the MapReduce
framework. Our algorithm exploits the hashtags and
emoticons inside a tweet, as sentiment labels, and pro-
ceeds to a classification procedure of diverse senti-
ment types in a parallel and distributed manner. Also,

we utilize Bloom filters to compact the storage size
of intermediate data and boost the performance of our
algorithm. Through an extensive experimental evalu-
ation, we prove that our system is efficient, robust and
scalable.

In the near future, we plan to extend and improve
our framework by exploring more features that may
be added in the feature vector and will increase the
classification performance. Furthermore, we wish to
explore more strategies forFH andFC bounds in or-
der to achieve better separation between the HFWs
and CWs. Finally, we plan to implement our solution
in other platforms (e.g. Spark) and compare the per-
formance with the current implementation as well as
other existing solutions, such Naive Bayes or Support
Vector Machines.

REFERENCES

Agarwal, A., Xie, B., Vovsha, I., Rambow, O., and Passon-
neau, R. (2011). Sentiment analysis of twitter data. In
Proceedings of the Workshop on Languages in Social
Media, pages 30–38.

Barbosa, L. and Feng, J. (2010). Robust sentiment detection
on twitter from biased and noisy data. InProceed-
ings of the 23rd International Conference on Compu-
tational Linguistics: Posters, pages 36–44.

Bloom, B. H. (1970). Space/time trade-offs in hash cod-
ing with allowable errors.Commun. ACM, 13(7):422–
426.

Davidov, D. and Rappoport, A. (2006). Efficient unsuper-
vised discovery of word categories using symmetric
patterns and high frequency words. InProceedings of
the 21st International Conference on Computational
Linguistics and the 44th Annual Meeting of the As-
sociation for Computational Linguistics, pages 297–
304.

Davidov, D., Tsur, O., and Rappoport, A. (2010). Enhanced
sentiment learning using twitter hashtags and smileys.
In Proceedings of the 23rd International Conference
on Computational Linguistics: Posters, pages 241–
249.

Dean, J. and Ghemawat, S. (2004). Mapreduce: Simplified
data processing on large clusters. InProceedings of
the 6th Symposium on Operating Systems Design and
Implementation, pages 137–150.

Ding, X. and Liu, B. (2007). The utility of linguistic rules in
opinion mining. InProceedings of the 30th Annual In-
ternational ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 811–
812.

Go, A., Bhayani, R., and Huang, L. (2009). Twitter senti-
ment classification using distant supervision.Process-
ing, pages 1–6.

Hu, M. and Liu, B. (2004). Mining and summariz-
ing customer reviews. InProceedings of the Tenth

WEBIST 2016 - 12th International Conference on Web Information Systems and Technologies

146

ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pages 168–177.

Jiang, L., Yu, M., Zhou, M., Liu, X., and Zhao, T. (2011).
Target-dependent twitter sentiment classification. In
Proceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies - Volume 1, pages 151–160.

Khuc, V. N., Shivade, C., Ramnath, R., and Ramanathan, J.
(2012). Towards building large-scale distributed sys-
tems for twitter sentiment analysis. InProceedings of
the 27th Annual ACM Symposium on Applied Com-
puting, pages 459–464.

Nasukawa, T. and Yi, J. (2003). Sentiment analysis: Cap-
turing favorability using natural language processing.
In Proceedings of the 2Nd International Conference
on Knowledge Capture, pages 70–77.

Nodarakis, N., Pitoura, E., Sioutas, S., Tsakalidis, A. K.,
Tsoumakos, D., and Tzimas, G. (2014). Efficient mul-
tidimensional aknn query processing in the cloud. In
Database and Expert Systems Applications - 25th In-
ternational Conference, DEXA 2014, Munich, Ger-
many, September 1-4, 2014. Proceedings, Part I,
pages 477–491.

Pang, B., Lee, L., and Vaithyanathan, S. (2002). Thumbs
up?: Sentiment classification using machine learning
techniques. InProceedings of the ACL-02 Conference
on Empirical Methods in Natural Language Process-
ing - Volume 10, pages 79–86.

Wang, X., Wei, F., Liu, X., Zhou, M., and Zhang, M. (2011).
Topic sentiment analysis in twitter: A graph-based
hashtag sentiment classification approach. InPro-
ceedings of the 20th ACM International Conference
on Information and Knowledge Management, pages
1031–1040.

White, T. (2012).Hadoop: The Definitive Guide, 3rd Edi-
tion. O’Reilly Media / Yahoo Press.

Wilson, T., Wiebe, J., and Hoffmann, P. (2009). Recogniz-
ing contextual polarity: An exploration of features for
phrase-level sentiment analysis.Comput. Linguist.,
35(3):399–433.

Yamamoto, Y., Kumamoto, T., and Nadamoto, A. (2014).
Role of emoticons for multidimensional sentiment
analysis of twitter. InProceedings of the 16th Inter-
national Conference on Information Integration and
Web-based Applications & Services, pages 107–
115.

Yu, H. and Hatzivassiloglou, V. (2003). Towards answering
opinion questions: Separating facts from opinions and
identifying the polarity of opinion sentences. InPro-
ceedings of the 2003 Conference on Empirical Meth-
ods in Natural Language Processing, pages 129–136.

Zhang, W., Yu, C., and Meng, W. (2007). Opinion retrieval
from blogs. InProceedings of the Sixteenth ACM Con-
ference on Conference on Information and Knowledge
Management, pages 831–840.

Zhuang, L., Jing, F., and Zhu, X.-Y. (2006). Movie re-
view mining and summarization. InProceedings of
the 15th ACM International Conference on Informa-
tion and Knowledge Management, pages 43–50.

MR-SAT: A MapReduce Algorithm for Big Data Sentiment Analysis on Twitter

147

