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Abstract: The maritime traffic is significantly increasing in the recent decades due to its advantageous features related 
to costs, delivery rate and environmental compatibility. The Vessel Traffic System (VTS), mainly using radar 
and AIS (Automatic Identification System) data, provides ship’s information (identity, location, intention and 
so on) but is not able to provide any direct information about the way in which ships are globally positioned, 
i.e. randomly distributed or grouped/organized in some way, e.g. following routes. This knowledge can be 
useful to estimate the mutual distances among ships and the mean number of surroundings vessels, that is the 
number of marine radars in visibility. The AIS data provided by the Italian Coast Guard show a Gamma-like 
distribution for the mutual distances whose parameters can be estimated through the Maximum-Likelihood 
method. The truncation of the Gamma model is a useful tool to take into account only ships in a relatively 
small region. The result is a simple one-parameter distribution able to provide indications about the traffic 
topology. The empirical study is confirmed by a theoretical distribution coming from the bi-dimensional 
Poisson process with ships being randomly distributed points on the sea surface. 

1 INTRODUCTION 

Maritime traffic is strictly connected to economic 
growth: the international shipping industry is 
responsible for delivering about 90% of all trade 
worldwide (with 7 to 9 billion of tons loaded per 
year), and it is vital for bulk transport of raw material, 
oil and gas. The linear regression between the 
economic growth of the nations in the Organisation 
for Economic Cooperation and Development (OECD) 
shows a 4% increase of imports and exports for a 1% 
increase in the Gross Domestic Product (GDP). So, 
marine transportation is an integral, although 
sometimes less visible, part of the global economy. 

The marine transportation system includes a 
network of specialized vessels, as well as the ports 
they visit and transportation infrastructure from 
factories to terminals to distribution centres to 
markets. Maritime transportation is a necessary 
complement to other modes of freight transportation, 
and it has the peculiar advantage of lower damaging 
emissions. In fact, shipping is emitting about 2.7% of 
the global greenhouse gases (GHG) (versus 93.7 % of 
road) and its energy consumption is about 1.4% 
(versus 2.6% of rail, 13.5% of air, 82.5% of road 
transport). For many commodities and trade routes, 
there is no direct substitute for waterborne commerce. 

On other routes, such as some coastwise or short-sea 
shipping or within inland river systems, marine 
transportation may provide a substitute for roads and 
rail, depending upon cost, time and infrastructure 
constraints. Other important marine transportation 
activities include passenger transportation (ferries 
and cruise ships), national defence, fishing and 
resource extraction as well as navigational service, 
including tugs. 

The number of vessels in the world commercial 
fleet is about 110000 (for comparison, the number of 
operating commercial planes are is about 19% of this 
figure: roughly one commercial plane for five 
commercial vessels), 41% are cargo (general cargo, 
tankers, bulk/combined vessels, containers vessels), 
42% "non-cargo" (fishing, passengers, tug boats etc.) 
and 17% military, for a global gross tonnage of the 
order of 650 millions (Bosch, et al., 2010). A much 
larger number of leisure (or pleasure, recreational) 
boats is sailing near the shores: only in the USA, this 
fleet is about 70000 vessels between 12 and 20 m and 
11000 over 20 m. If we consider also these pleasure 
boats, even forgetting the billions of smaller leisure 
boats worldwide, the spatial distribution of marine 
traffic increases significantly in the areas close to one 
or more ports. 

Since  the  marine   navigation   is   a   potentially 
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dangerous activity for the people involved as well as 
for the environment, a more efficient and a more 
controlled navigation is required to lower the risks 
and to increase the overall maritime safety. 

To get these achievements, the Vessel Traffic 
Service (VTS) has been introduced by the 
International Maritime Organization (IMO) in 1985 
and then updated in 1997 with the Resolution 
A.857(20). The VTS is a service implemented by a 
Competent Authority, designed to improve the safety 
and efficiency of vessel traffic and to protect the 
environment (IMO, 1997). 

Unlike the Air Traffic Control (ATC) which 
directs aircrafts through controlled airspace (ICAO, 
2001), VTS only provides guidelines for procedures 
and manoeuvres in a crowded marine area, as well as 
information requested by the crew. Hence, outside the 
harbour waters the VTS has no any authority to 
impose speed and route to follow which are 
demanded to the captain’s decision. 

In addition to being a “VTS target”, all ships of 
300 gross tonnage (or more) engaged on international 
voyages and all cargo ships of 500 gross tonnage (and 
upwards) even if not engaged on international 
voyages, and finally all passenger ships, are required 
to carry on an Automatic Identification System (AIS) 
transponder (SOLAS, 2002), (IMO, 2001) capable of 
automatically exchange relevant information about 
the ship (radio call sign, IMO identification number, 
vessel name and type, position, heading, course, 
speed, destination, navigational status and more) with 
other ships and with coastal stations, providing a kind 
of  Automatic Dependent Surveillance. The primary 
use of AIS is to permit each equipped ship to "see and 
be seen" by other ships. Concerning the related radio 
link, AIS uses the VHF region: Channel A 161.975 
MHz, Channel B 162.025 MHz, with a particular self-
organized time-division multiple access to the radio 
channel, for short, SO-TDMA. The maximum 
distance in this ship-to-ship radio communication is 
limited by propagation over sea of the used waves 
and, depending on the environment and VHF antenna 
height, it is about 20 nautical miles (one nautical mile 
- N.M. or nm or n mi - equals 1852 m), while marine 
radars, operating in the microwave region, are 
generally propagation-limited to about half this 
figure. The aforementioned autonomous operation of 
vessels, however, does not help to achieve a well-
organized marine traffic and, based on raw AIS or 
radar data, little can be said – in general – about the 
overall way in which ships are positioned in a given 
area and about the distribution of their mutual 
distances. The type of ship, and its destination, are 
only available for AIS-equipped vessels, the model 

proposed in this paper is aimed to infer some 
characteristics of all marine traffic for every type of 
vessels, including non-cooperating ones whether they 
are VTS or coastal radar targets. 

The knowledge of the mutual distances, for 
example, can be useful to evaluate the minimum 
safety separation as well as, more important from the 
scientific point of view, the mean numbers of marine 
radars (Briggs, 2004) in visibility that can interfere 
with the on-board radar of a given ship (Galati, et al., 
2015). Such visibility results can also be useful to 
evaluate the load of the AIS radio channels for 
applications such as performance analysis and 
installation planning of coastal AIS stations.  

In this paper we build up a statistical model of the 
mutual distances between pairs of ships focusing on 
six areas of the Mediterranean sea, see Figure 1. The 
model has been derived from real-world AIS data 
provided by the Italian Coast Guard for the week Feb 
23th – Mar 1st, 2015. The data analysis has shown that 
the mutual distance among ships follows a Gamma-
like statistical distribution. In order to make the model 
more general and not AIS-data dependent, we have 
estimated the parameters for the empirical Gamma 
distribution through the Maximum-Likelihood 
estimation. Finally we have considered a conditioned, 
i.e. truncated, distribution in order to take into 
account the horizon for radar and VHF visibility. 

In Chapter 2 the AIS data provided by the Italian 
Coast Guard are presented, with the related statistical 
analysis in which the parameters of the Gamma and 
Generalized Gamma models are estimated. 

Chapter 3 considers the truncation of the 
distribution of the mutual distances in order to 
evaluate the mean number of ships in a given region, 
for example for radar applications. A simplified 
truncated model with only one parameter has been 
developed for the mutual distances. The relationship 
between the model parameters and the topology of the 
traffic has been investigated. To confirm the 
empirical work, a more general theoretical Poisson-
like model has been treated. 

2 THE MARINE TRAFFIC 
MODEL 

In this section the statistical model for the mutual 
distances is derived from the AIS data. 

2.1 AIS Data and their Distribution 

The General Command of  the  Italian  Coast  Guard 
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kindly provided the AIS data for the week Feb 23th – 
Mar 1st, 2015 related to six areas: (1) Central Adriatic, 
(2) Otranto Canal, (3) Central Tyrrhenian, (4) 
Messina Strait, (5) Canal of Sicily and (6) 
Dardanelles/Bosporus (see Figure 1). 

See Table 1a for more details. Each area was 
sampled at regular intervals of four hours from 
midnight (Galati, et al., 2015), (Galati and Pavan, 2015). 

 
Figure 1: View of the six Mediterranean areas. 

Table 1a: Main characteristics of the six areas. 

Area Point N-E 
(DMS) 

Point S-O 
(DMS) 

Total 
Surface 
[nm2] 

Sea 
Surface
[nm2] 

Sea
[%]

(1) Central 
Adriatic 

44°10’18.40’’N 
15°55’16.71’’E 

42°09’26.58’’N 
12°43’13.25’’E 22632 13600 60

(2) Otranto 
Canal 

41°12’57.47’’N 
20°01’18.74’’E 

39°31’42.97’’N 
17°12’28.32’’E 17712 12300 69

(3) Central 
Tyrrhenian 

41°07’27.98’’N 
14°40’34.17’’E 

39°46’’07.02’’N 
12°55’19.09’’E 8455 6700 79

(4)Messina 
Strait 

38°55’08.47’’N 
17°33’00.99’’E 

37°13’27.60’’N 
14°10’22.01’’E 20384 13700 67

(5) Canal  
of Sicily 

37°56’26.98’’N 
14°14’01.89’’E 

35°59’03.12’’N 
09°56’44.44’’E 30186 22800 75

(6) 
Dardenelles 
Bosporus 

41°21’26.79’’N 
31°32’03.49’’E 

39°05’16.24’’N 
24°09’53.99’’E 60112 21700 36

From the first analysis of the AIS data, we derived 
the time slot with maximum number of ships in each 
area, as shown in Table 1b. 

In the following we refer to the area with the 
highest traffic as the area with the highest number of 
ships. 

The density ݖ of en-route ships is calculated as the 
number of ships over the percentage of sea in the 
highest traffic condition. 

We extrapolated ships’ positioning information 
from the AIS data related to Table 1b (i.e. highest 
traffic condition) for each area. We used the flat earth 
approximation for distance due to the small-sized 
areas (max distance in area (6) is about 370	݊݉). 

Table 1b: Maximum number of ships per each area and their 
density ݖ. Data for the week Feb 23th – Mar 1st, 2015. 

Area 
Day and 
Time (in 

May, 2015)

Max 
number 

of ships, N 

Ships’ density ࢠ ࢙ࢎ࢙ ൨ × ି
(1) Central 

Adriatic 
Tue 24th 

04:00 285 20.88 

(2) Otranto 
Canal 

Tue 24th 
08:00 46 3.74 

(3) Central 
Tyrrhenian 

Fri 27th 
08:00 45 6.72 

(4) Messina 
Strait 

Fri 27th 
16:00 74 5.40 

(5) Canal of 
Sicily 

Fri 27th 
08:00 104 4.56 

(6) Dardenelles 
Bosporus 

Thu 26th 
12:00 53 2.44 

The number of mutual distances is: ܰ = ݊ ⋅ (݊ − 1)2  (1)

in which ݊ is the total number of ships in the area in 
a specific time slot (e.g. the highest traffic condition). 
It is worth to note that the ܰ distances are not 
statistically independent  because  they  are  “mutual” 

Area (1) – Central Adriatic 

 
Area (5) – Canal of Sicily 

 
Figure 2: Distributed traffic of Area (1) Central Adriatic 
and in-line traffic of Area (5) Canal of Sicily. The dashed 
lines highlight a possible route. 
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among ships: given ݊ ships, if only one of them is 
moved, ݊ − 1 distances do change. 

Figure 2 shows the AIS positions of the vessels 
for Central Adriatic and Canal of Sicily. 

It is known that the traffic in Central Adriatic is 
mainly made of fishing boats (88%) whose positions 
are someway randomly distributed, while in the Canal 
of Sicily are present cargos (20%) following some 
well defined (non random) routes. 

2.2 Statistical Analysis of Inter-Ship 
Distances 

The ship-to-ship distance R can be fitted with a 
probability density function ோ݂(ݎ) having the 
following properties: 

• ோ݂(ݎ) = 0, ݎ ≤ 0 
• 	lim→ஶ ோ݂(ݎ) = 0 

A suitable candidate for this positive random 
variable is the Gamma model whose parameters may 
be related to the density of ships. According to the 
performed “Goodness of Fit” analysis the Rayleigh 
distribution (or “one parameter” Gamma) does not 
provide the best fitting because of the very different 
traffic conditions difficult to be modelled with one 
parameter. On the other hand, the Gamma density 
function (Papoulis, 1990): 

ோ݂(ݎ) = (ܾ)߁ߣ ݎ					ିଵ݁ିఒݎ ≥ 0 (2)

where Γ(ܾ) =  ାஶݕିଵ݁ି௬݀ݕ  is the Gamma 
function, having two-parameters (i.e. the scale 
parameter ߣ and the shape parameter ܾ), can be better 
matched to the empirical data. 

In order to improve the model of the AIS data, a 
third parameter ߤ can be added in Eq. (2) obtaining a 
Generalized Gamma model (Stacy, 1962): 

ோ݂ீ ாே(ݎ) = ߤ ⋅ (ܾ)߁ఓߣ ݎ					ఓିଵ݁ି(ఒ)ഋݎ > 0 (3)

The quantities ܾ, ߤ  are shape parameters. When ߤ = 1 the Generalized Gamma density function 
coincides with the Gamma model. 

These parameters can be estimated by the 
Maximum Likelihood (ML) method, which leads to a 
system of non-linear equations whose solutions are the 
values shown in Table 2 where the last column (right 
side) reports the estimated mean values ෝ݉ோ (in nm). 

The sample size for each area is varying from 990 
distances with average value of 32.8 nm (area 3) to 
40470 distances with average value of 55.6 nm (area 
1); day and time are listed in the above Table 1b. 

Table 2: Estimated parameters of the Gamma model (a) and 
of the Generalized Gamma model (b) for the six areas.  

(a) 

Area 
Gamma Model ෝࡾ 	= ࡸࡹࣅࡸࡹ࢈ ࢠ/ࡾෝ []	 ࡸࡹࣅ ࡸࡹ࢈  [ି] × ି 

(1) 2.1542 38.7 55.66 2.66 
(2) 1.9371 47.2 41.04 11.0 
(3) 2.0472 62.4 32.80 4.88 
(4) 2.4059 42.9 56.08 10.4 
(5) 1.8674 34.7 53.81 11.8 
(6) 1.5753 27.4 57.50 23.5 

(b) 

Area 
Generalized Gamma Model ෝࡾ = ડ ቀ࢈ࡸࡹ + ࣆෝࡸࡹቁࣅࡸࡹડ൫࢈ࡸࡹ൯ ࡸࡹࣅ ࡸࡹෝࣆ ࡸࡹ࢈  × [ି] ି 

(1) 0.6061 2.287 11.9 55.63 
(2) 0.8303 1.709 19.1 41.01 
(3) 0.3334 3.576 16.5 33.04 
(4) 0.3939 3.525 10.6 55.89 
(5) 0.3848 3.03 10.3 53.63 
(6) 0.7918 1.559 13.1 57.63 

For the Gamma model the ratio ෝೃ௭  	ቂ య௦௦ቃ gives an idea 
about the topology of the traffic on the considered sea 
surface (e.g. en-route or randomly distributed): a low 
ratio values correspond to a distributed, or random, 
topology (i.e. Central Adriatic, Area (1)), while 
higher values are related to a route, more regular 
topology (for example, in Otranto Canal (2), Messina 
Strait (4) and Canal of Sicily (5)). 

Moreover we observe that the ML estimation of ߤ 
leads to a system of three non linear equations where 
the µ-th power of the sample values (i.e. the measured 
distances) is present. Therefore it is necessary to find 
that value of ߤ whereby the derivative of the 
Likelihood function, ݂  is equal to zero (see Figure ,(ߤ)
3). However, as shown in Figure 3, the values of ݂  (ߤ)
in the field of practical interest, i.e. 0 <  are ,3> ߤ
close to zero, i.e. there are sub-optimal solutions 
(values of ̂ߤ) that can be considered, including ̂ߤ = 1.  

 
Figure 3: The derivate of the Likelihood function for the 
estimation of the Generalized Gamma parameter ߤ. The ̂ߤெis obtained posing ݂(ߤ) = 0. 
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The use of ̂ߤ = 1 simplifies the model leading 
back to the Gamma model that looks more convenient 
than its generalization (see also in the following). 

In order to validate the estimated parameters ܾெ,̂ߤெ,  መெ the Kolmogorov-Smirnov test and the ߯ଶߣ
test (Papoulis, 1990) should be applied with the null 
hypothesis being (resp. for the Gamma and the 
Generalized Gamma distribution): ܪ:	(ݎ)ܨ = (ݎ)ܨ	:ܪ     or     (ݎ)ோܨ = ோீܨ ாே(ݎ) 

However, since the ܰ distances are not 
independent, the tests reject too often the null 
hypothesis ܪ (Gleser & Moore, 1983), and cannot be 
effectively applied in the present case. However, a 
visual inspection gives a fairly good idea of the 
goodness of fit of the measures mutual distances with 
these distribution. In fact, in Figure 4a-f the 
histograms of distances for all areas are presented 
with the overlapped Gamma and Generalized Gamma 
estimated models. 

 
Figure 4a: Histogram and densities of ܴfor Areas (1). 

 
Figure 4b: Histogram and densities of ܴfor Areas (2). 

 
Figure 4c: Histogram and densities of ܴfor Areas (3). 

 
Figure 4d: Histogram and densities of ܴfor Areas (4). 

 
Figure 4e: Histogram and densities of ܴfor Areas (5). 

 
Figure 4f: Histogram and densities of ܴfor Areas (6). 

In some cases, e.g. Areas (3) and (5), the 
Generalized Gamma model is not the best fit because 
the third parameter ߤ improves the fitting only 
locally. Hence, the Gamma model with parameters ߣ 
and ܾ will be used in the remaining part of this paper. 

3 VISIBILITY 

In the previous section we have shown that the 
distances between pairs of ships can be modelled with 
a random variable ܴ distributed according to a 
Gamma model with parameters ܾ and ߣ. 

It can be useful to consider, for a generic ship, the 
mean number of vessels in the surroundings within a 
specific area. This need refers to the VHF 
communications as well as to the radar interferences 
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due to solid-state marine radars on board nearby other 
vessels (Galati, et al., 2015). In the radar case the 
optical horizon – with the 4/3 earth propagation 
model – and the heights of ships must be considered 
in order to compute the maximum distance at which 
two on-board radars may interfere. This radar horizon 
is related to the heights of on-board radars ݄ and ݄ 
as shown in Figure 5. 

 
Figure 5: Radar visibility between ships ݇and ݅. 

In standard atmosphere, making use of the equivalent 
earth radius ݎ = ସଷ 	௧ݎ ≅ 8500	݇݉, the horizon ܴ results: ܴ = ܴ + ܴ ≅ ඥ2ݎ ∙ ൫ඥ݄ + ඥ݄൯ (4)

The antenna height is not included in AIS data, 
hence we had empirically estimated the relation 
between the length (as provided by AIS) of the ship 
and the radar antenna height (Galati, et al., 2015). For 
example, if we consider two cargos with their radar 
antenna at 30 m above sea level, the optical horizon 
is about ݎெ = 35	݊݉, while it becomes ݎெ =10	݊݉ for small and pleasure boats, with antenna 
heights of the order of 4 m. In this section we focus 
only on the latter case (ݎெ = 10	݊݉). 

Let’s consider an all-sea circular section with 
diameter ݎெ. It is possible to calculate the average 
number of ships randomly distributed in this circular 
sea surface through the probability that the mutual 
distances among them should not exceed ݎெ: ܲሼܴ ≤ ெሽݎ = 1Γ(ܾ)න ݁ି௧ݐିଵ݀ݐ௫

 = ,ܾ)ߛ (5) (ݔ

where ߛ(ܾ,  is the Incomplete Gamma Function (ݔ
(Abramowitz & Stegun, 1964) with ݔ = ߣ ⋅  .ெݎ
The parameters ܾ and ߣ have been estimated with the 
Maximum Likelihood method for each area (Table 2). 
Multiplying the probability in Eq. (5) by the total 
number of ship in the area (்݊ை்) we obtain the 
expected number of ships inside the related area. ݊௦௦ = ܲሼܴ ≤ ெሽݎ ⋅ ்݊ை் (6)

The probability density of the random variable ܴ, 
i.e. the mutual distances among the ݊௦௦ vessels in 
the area (with 0 ≤ ܴ ≤  ெ) is given by theݎ
conditional density function of Eq. (2): 

ܴ|ݎ)݂ ≤ (ெݎ = ቐ ோ݂(ݎ)ܨோ(ݎெ) 						0 < ݎ < ெ0ݎ ݎ													 ≥ 			ெݎ (7)

This conditional density function can be 
computed using the already described and evaluated 
Gamma model. This approach uses, for the 
conditioned model, the same parameters estimated for 
the original model and therefore might be not fully 
reliable.  

Using Eq. (7) to compute the conditional density 
model from the Gamma model with parameters ܾ,  it ߣ
is readily obtained: 

ܴ|ݎ)݂ ≤ (ெݎ = ൞ߣݔିଵ݁ିఒ௫ߛ(ܾ, (ெݎߣ 		0 < ݎ < ݎ																			ெ0ݎ ≥ ெݎ (8)

In Eq. (8) we have added the third parameter ݎெ 
named truncation parameter which takes into account 
the maximum distance at which the model should be 
considered (e.g. the optical horizon).  

To estimate ܾ and ߣ in Eq. (8), having fixed the 
value of ݎெ, a closed-form solution such as the 
well-known one for the Gamma and Generalized 
Gamma distribution does not exist. The problem of 
finding the maximum for the Likelihood function has 
to be solved by a non-linear optimization method. In 
particular, we have used the Nelder-Mead algorithm 
(Nelder & Mead, 1965). 

This estimation often gives very low values for ߣ, 
as shown in Table 3 for Areas (1) – (4). 

Table 3: Estimation of ܾ, ߣ ,ߤfor ݎெ = 10	݊݉. 

Area 
Truncated Gamma Truncated Generalized 

Gamma ࢈ࣅ ࡸࡹࡸࡹ  [ି]	ࡸࡹࣅ ࡸࡹෝࣆ ࡸࡹ࢈ [ି]
(1) 1.46 9.3 × 10ିଵଶ 1.46 1 9.5 × 10ିଵସ 

(2) 1.58 2.7 × 10ିଵଶ 1.59 1 2.7 × 10ିଵଶ 

(3) 1.25 3.6 × 10ିଵଶ 1.26 1 3.7 × 10ିଵଶ 

(4) 1.02 0.012 0.19 5.25 6.9 × 10ିସ 

(5) 0.99 0.017 1.21 0.82 0.015 

(6) 1.74 0.078 0.22 7.10 0.09 

Therefore, a different model with ߣ → 0 has been 
considered for the “short range” (i.e. ݎ <  ,ெݎ
having set ݎெ = 10	݊݉) distance between a pair of 
vessels. 

If ߣ → 0 in Eq. (8), the only remaining term is ݔିଵ multiplied by a constant ܿ depending on ܾ. 
Posing ߚ = ܾ − 1 we obtain: ݂(ݎ|ܴ ≤ (ெݎ = ܿ ⋅ ఉ (9)ݔ
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The unity area condition for Eq. (9) leads to: න ܿ ⋅ ݔఉ݀ݔ = 1 ⟹ 				ܿ = ߚ + ெఉାଵಾಲݎ1  (10)

Therefore, the conditional density function for 
truncated distances with a single parameter ߚ is: 
 

ܴ|ݎ)݂ ≤ (ெݎ = ൞ߚ + ெఉାଵݎ1 ⋅ 0			ఉݎ < ݎ < 								ெݎ 0 ݎ															 ≥ ெݎ (11)

Figure 6 shows Eq. (11) for different values of ߚ 
ߚ) = 0, ߚ = 1, ߚ < 1 and ߚ > 1) with ݎெ = 10	݊݉. 

If ߣ → 0 (cfr. Table 3) the Gamma model leads to 
Eq. (11) and, if ߚ ≅ 0 (cfr. Table 4), the model 
converges to the uniform distribution in (0,  ெ) asݎ
shown in Figure 6. 

For the six marine areas the ML estimation of the 
parameter ߚ is shown in Table 4 with ݎெ = 10	݊݉. 

Table 4: Estimation of ߚfor ݎெ = 10	݊݉. 

Area ࢼࡸࡹ 
(1) 0.461 

(2) 0.589 

(3) 0.257 

(4) 1.95 × 10ି 

(5) 6.1 × 10ି଼ 

(6) 0.455 

From Table 4 we can find very low values for  ߚ 
in areas (4) and (5), those where the traffic is strongly 
channelized. This suggests that strongly channelized 
areas generally correspond to low ߚ. In fact if the 
ships are placed in line, the mean value of the mutual 
distances increases making less sharp the slope of the 
density function for low values of R. 

 
Figure 6: Conditional density model ݂(ݎ|ܴ ≤ ߚ ெ)forݎ = 0, ߚ = 1, ߚ < 1and ߚ > 1with ݎெ = 10	݊݉.  

Figure 2 shows the traffic condition for the 
Central Adriatic and the Canal of Sicily, the former 
with ߚ greater than the latter because of the more 
randomly distributed vessels in Central Adriatic, as 
previously noticed. 

It is worth to note that in area (6) ߚ is comparable 
with the one in Central Adriatic although the area 
provides a main route. This effect is due to the 
presence in area (6) of two different seas (Aegen and 
Sea of Marmara) as well as of Dardanelles, one of the 
world's narrowest strait used for international 
navigation, with the likely effect of strongly 
distorting the behaviour of ships’ distances with 
respect to the open sea. In general, the sea percentage 
in Table 1 also gives an idea about the reliability of 
the ߚ values. 

3.1 General Poisson’s Model  

To corroborate the results we considered another 
theoretical model for marine traffic starting from the 
bi-dimensional Poisson distribution in which the 
ships are placed uniformly in a square with side ܮ. 
Conditioning the maximum distance to ݎெ (with ݎெ ≪  ܴ we obtained the conditional density of (ܮ
for 0 < ܴ < ܮ ெ whose limit forݎ → ∞ is shown in 
Eq. (12) (details are not shown here for the sake of 
brevity): lim→ஶ ோ݂(ݎ|ܴ < 	(ெݎ = ெଶݎݎ2  (12)

Such a limit represents the condition for which the 
range of distances we are interested is much less than ܮ, as in the previous paragraph where ݎெ =10	݊݉ ≪ ܮ ≈ 200	݊݉. 

The limit found in Eq. (12) represents the traffic 
uniformly distributed in a interval with edge ݎெ ߚ that is the case of ,ܮ≫ = 1 in Eq. (11). 

If ߚ → 1 the traffic is Poisson distributed, if ߚ →0 there is a kind of traffic regularity possibly due to 
one or more routes. In Table 4 the values of ߚ do not 
reach the unity because the land imposes a constraint 
to the positions, hence on the distances. 

The case of ߚ > 1 is not realistic for marine traffic 
since it imposes a mandatory minimal distance among 
ships as shown in Figure 6 where the density for low 
value is almost zero. This case may be useful to model 
other situations such as, possibly, the air traffic. 

4 CONCLUSIONS 

The empirical analysis of the AIS data has led to a 
Gamma model for the mutual distances among ships, 

f(
r|R

 <
 r

M
A

X
)
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with the Generalized Gamma model being not the 
best solution to fit the data. We estimated the 
parameters of the models through the ML method. 

Considering the application related to the 
interferences between marine (navigation) solid-state 
radars, we have truncated the Gamma model to a 
maximum distance ݎெ in order to take into account 
only the ships inside the horizon. 

The truncation has led to a more convenient one-
parameter distribution whose parameter ߚ is related 
to the topology of the traffic in the area of interest. 

The relation between ߚ and the traffic topology 
has been confirmed, at a very first extent, by the study 
of a general Poisson model with only one-parameter, 
that is ߚ, in addition to the truncation limit ݎெ. 
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