
Application Splitting in the Cloud: A Performance Study

Franz Faul1, Rafael Arizcorreta1, Florian Dudouet2 and Thomas Michael Bohnert2
1Swiss Re, Zurich, Switzerland

2Zurich University of Applied Sciences, Winterthur, Switzerland

Keywords: Cloud Computing, Performance, Database, Hybrid Cloud.

Abstract: Cloud-based deployments have become more and more mainstream in recent years, with many companies
evaluating moving their infrastructure to the cloud, whether a public cloud, a private cloud, or a mix of the two
through the hybrid cloud concept. One service offered by many clouds providers is Database-as-a-Service,
where a user is offered a direct endpoint and access credentials to a chosen type of database. In this paper,
we evaluate the performance impact of application splitting in a Hybrid Cloud environment. In this context,
the database may be located in a cloud setting and the application servers on another cloud or on-premises, or
the other way around. We found that for applications with low database latency and throughput requirements,
moving to a public cloud environment can be a cost saving solution. None of the cloud providers evaluated
were able to provide comparable performance for database-heavy database applications when compared to an
optimized enterprise environment. Evaluating application splitting, we conclude that bursting to the cloud is a
viable option in most cases, provided that the data is moved to the cloud before performing the requests.

1 INTRODUCTION

With the introduction of cloud technology, many new
paradigms appeared in the the industry to exploit the
concept of on demand, pay-as-you-go resources. Ser-
vices do not need to remain in the on premise data-
center, but can be spread to an internal private cloud
or externally among different public cloud providers.
This new concept challenges the traditional IT en-
vironment and provides an unprecedented flexibility
that pushes traditional data and compute services to
their limit. In this paper the focus is on the im-
pact of the Cloud paradigm in regards to the usage
of Databases in a large enterprise context.

To measure and compare performance we investi-
gate three different scenarios involving the usage of
resources located in a cloud, either private or pub-
lic. These scenarios essentially differ with the loca-
tion of the database and compute power (i.e. internal
computing resources and external database, as well as
the counterpart with an internal database and external
cloud computing resources). To achieve more mean-
ingful results, these scenarios were run multiple times
using resources from different cloud providers, either
on premise (private cloud) or on their hosting loca-
tions (public cloud). The concept of Hybrid Cloud
is further used to evaluate the feasibility of extending
on-premises resources with remote ones from a public

cloud provider, which is a technique known as Cloud
Bursting. The main topic is not only the latency and
bandwidth results but additinally the impact of differ-
ently sized cloud resources.

This study is done in the context of Swiss Re
(Swiss Re, 2014), one of the largest reinsurance com-
panys worldwide. The core asset of reinsurance is the
know-how of past loss events in order to compute the
price for new contracts and offerings. These events
are extremely diverse and are all taken into account
in the pricing algorithms, which explains why large
amounts of data need to be fetched from databases
and computed in order to achieve cost-optimized re-
sults. Exploiting the Cloud means that the data the
computing power - or both - are moved to the cloud.

2 OBJECTIVES AND
EVALUATION
METHODOLOGY

The evaluation documented here has specific goals
within Swiss Re but was aimed to make it generic
and usable in other environments, which is why the
essential focus was on public cloud providers using
commonly available products. Additionally, private
cloud evaluation is made using an OpenStack (The

Faul, F., Arizcorreta, R., Dudouet, F. and Bohnert, T.
Application Splitting in the Cloud: A Performance Study.
In Proceedings of the 6th International Conference on Cloud Computing and Services Science (CLOSER 2016) - Volume 1, pages 245-252
ISBN: 978-989-758-182-3
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

245

OpenStack Foundation, 2014) based cloud, which is
a readily available Open-Source cloud management
software allowing for benchmark reproducibility in
other environments. In all cases we use Commodity
Hardware.

The tests were run from the following environ-
ments: Amazon Web Services, Google Cloud, the
ICC Cloud Lab and the Swiss Re environment. Fur-
ther the pricing models of two large cloud providers
used for the tests are briefly described.

2.1 Benchmarking Methodology

Benchmarks need to be repeatable, observable,
portable, realistic and runnable. What exactly is being
tested as well as the possible limitations of the bench-
marks have to be clear. In our context, the focus is on
standardized and industry accepted test suites. As the
benchmarking suite needs to run in the cloud provided
application server, the scope was set to Java based ap-
plications. We identified two software suites which
are both meet the requirements:

TPC-C: The most industry-wide accepted bench-
marking method for TPC-Benchmark (TPC,
2014a) to evaluate Online Transaction Processing
(OLTP) applications. TPC-C generates an eas-
ily comparable metric through the simulation of
queries sent to a sample OLTP web application.
TPC provides Java bindings to run TPC-C through
a Java application, which makes it easy to inte-
grate into our testing framework. There are other
variants of TPC tests, such as TPC-E. We decided
to choose TPC-C since the TPC-C tests are still
more common as well as more write intensive (1.9
reads per 1 write) compared to the TPC-E ones
(9.7 reads per 1 write). (Chen et al., 2011)

JMeter: Is a commonly used load-testing tool devel-
oped by the Apache group. It can be customized
visually or through configuration files. JMeter is
open-source and completely written in Java. As a
very customizable tool, it is used to create specific
test-runs adapted to Swiss Re in size and complex-
ity.

While TPC-C benchmarks are made to simulate
traditional applications, typically reproducing a ware-
house storing problem, it was necessary to bench-
mark something closer to the real-life workloads in
the Swiss Re environment to validate the generic re-
sults. In this regard, real life tests based on an ap-
plication productively used in Swiss Re were built
on top of JMeter. The application chosen provides
a much more complex database structure. It is known
what queries are the most frequent ones and which

queries are more work intensive. These were chosen
to benchmark the performance of the underlying in-
frastructure. The data used was randomly generated
but followed the application guide lines.

The following section describes these two test
suites and how they are used in the framework of our
evaluation in detail.

2.2 Benchmark Details

2.2.1 TPC-C

To define industry-wide accepted transaction process-
ing and database benchmarks, the Transaction Pro-
cessing Performance Council (TPC) was founded as
a non-profit organization in 1988. TPC-C was intro-
duced by the TPC in August 1992 after a develop-
ment process of more than two years (Levine, 2014a)
(Raab, 2014).

TPC-C is a benchmark for OLTP workloads. It
was developed based on the old TPC-A test, which
did not work with multiple transaction types and had a
less complex database and execution structure (TPC,
2014b). TPC-C was designed to accelerate the pro-
cess of benchmarking by defining an industry-wide
accepted standard that can be easily interpreted and
compared. This was realized by working together
with 8 vendors during the design process (Levine,
2014b).

The TPC-C Benchmark consists of read- and
update-intensive transactions that simulate activities
of a complex OLTP application (TPC, 2014). It mea-
sures the number of business transactions that create
orders and uses it as comparable value when tested
against different systems. The metrics for these tests
are represented as successful business transactions per
minute (tpmC).

The specifications for the TPC-C benchmark can
be found on the official TPC website (TPC, 2014).
The current version is 5.1.1 and was defined on Febru-
ary 2010. There are already several implementa-
tions available to use. OLTP Benchmark provides an
out of the box implementation that allows the fine-
grained setting of TPC-C configurations. This in-
cludes the distribution between the different queries
used in TPC-C. In this setup, the default settings were
used.

During the test, TPC-C simulates the OLTP work-
load of an artificial wholesale supplier company. The
Database Setup consists of 9 separate tables as ex-
plained in figure 1. No views are used in the setup.

The test consists of five types of transactions: new
order, payment, order-status, delivery and stock-level
transaction. The most important type is the new or-

CLOSER 2016 - 6th International Conference on Cloud Computing and Services Science

246

Figure 1: TPC-C Table Structure.

der, which enters a complete order in a single database
transaction. It was designed to simulate the variable
workload found in productive OLTP environments.

The payment transaction lowers the customer’s
balance and adds it to the warehouse sales statistics.
Compared to the new order query it is lightweight.
The order status transaction gets the status of the cus-
tomer’s last order. It is a read-only transaction that
has a low execution frequency. The delivery trans-
action processes a batch of 10 new, not yet processed
orders. It is not executed very frequently, and can take
a little longer than the others, as each order requires a
read and write operation. The stock-level transaction
is used to determine the number of recently sold items
that are now below a certain threshold. It is a heavy
read-only transaction.

The fictional company has a configurable number
of warehouses that serve a district. Each warehouse
serves 10 districts. Each district again has 30000 cus-
tomers. The warehouses keep stock for the 100000
different items the company sells. Each warehouse
has a defined number of terminals. This is a represen-
tation of workers in the warehouses who process the
orders made by the customers. (TPC, 2014)

2.2.2 JMeter as a Test Suite

Apache JMeter is an open source software, a 100%
Java application designed to load test functional be-
haviours and measure performance. It was originally
designed for testing web applications but has since ex-
panded to other test functions (Apache, 2014).

The wrapper supports the remote start of differ-
ent predefined tests that run in the JMeter application.
The idea behind JMeter is that the user creates test
cases (i.e. specific queries) which can then be exe-
cuted on different machines. The results of these test
cases are the metrics defined.

The tests were split up in single steps with differ-
ent specifications.

All the tests are set up to have 10 Threads which
run in parallel. The amount of query executions in a

Table 1: Description of the different JMeter tests.

Test name Description
Small Simple query with a return of 1 row

and a size of 773 Bytes
CCAS Multiple queries on 5 different tables

and return 30 rows of a total size of
1667 Bytes

RuleSet Multiple queries on 3 different tables
and return 864 rows of a total size of
46440 Bytes

StressTest Simple query with a return of 3250
rows and a size of a total size of
17579 Bytes

Account Simple query on one table with 8000
rows returned in a total size of
422936 Bytes

single thread varies per tests.
• 5,000 Small tests
• 10,000 CCAS tests
• 10,000 RuleSet tests
• 20,000 StressTest tests
• 5,000 Account tests

For the JMeter tests, a part of a database structure
which is currently in use in an application at Swiss
Re has been chosen. The content of the tables in the
database structure is randomized. The database con-
sists of approximately 60 tables and has a hierarchical
structure. The structure can be split into two sections,
the rule section and the reference data section. They
are connected via mapping entities. On this overview
all the tables which are used in the test queries and
their relations are displayed. The JMeter test cases
for all tests are performed with queries.

2.2.3 Application

The cloud deployable web application is written in
Java 6 and optimized for Tomcat. All the interac-
tions are done using three different servlets. One for
triggering the TPC-C tests and two for the SQL and
HTTP JMeter tests. The application is self-contained
and can be easily deployed to the various cloud
providers using provided APIs. The result of the tests
can be downloaded directly through the application.
Tomcat was chosen because it is the most promi-
nent application server (Salnikov-Tarnovski, 2014).
It is lightweight, available on all the selected cloud
providers and is easy to install. The configuration is
the same on all the environments (default configura-
tion as of version 7).

MySQL is available on all the evaluated public
cloud providers as a service (SaaS model) with the

Application Splitting in the Cloud: A Performance Study

247

Figure 2: High level table structure overview.

possibility of choosing the size of the VM backing the
database. We chose to evaluate this service model as
it is what a typical customer would do if they simply
wanted a database running on the Cloud. On the other
hand, the MySQL service was manually installed on
the ICC Lab, as there is no MySQL-as-a-Service com-
ponent on this purely IaaS Cloud. The default config-
uration as of version 5.6 was selected.

2.3 Expected Issues

It is expected that when connecting to the database
through the internet, the throughput will be much less
than in a LAN. This is not only due to the lower band-
width, but also due to the higher latency between the
application and the database. The latency has a high
impact when, like a heavy database reliant applica-
tion, many calls to the database are done. If packages
could be grouped, the impact of the latency could be
lowered and the performance increased. An example
impact of latency can be found in table 2 showing ex-
pected impact.

Unpredictability of results is also one of the ex-
pected issues, which is why each test will be repeated
several times over multiple days to evaluate the vari-
ance, if any, of our results.

These issues are expected, and it will come as no
surprise that an application connecting to a distant
database will be slower. Despite this, it is still im-
portant to measure how much these applications are
slowed down and in which cases they remain usable
and economically viable.

Table 2: Example calculation of latency impact.

of SQL Calls Location Lat [ms] Hours
1’000’000 Local 1 3
1’000’000 CH to CH 10 28
1’000’000 CH to NY 100 278
1’000’000 CH to SY 300 833

2.4 Tested Cloud Providers

The list of public clouds which will be evaluated is
shown in table 3. For all compute nodes, meaning
the nodes where the application server is running, we
selected the standard size available. For the databases
we chose different sizes to compare the throughput.
In the AWS cloud, 3 different database tiers have been
tested. For the Google cloud two have been chosen.

3 EXPERIMENTS

For the evaluation of the performances between the
different cloud set ups, we evaluated three different
scenarios, with a generic summary shown in Figure
3.

Figure 3: Test scenarios overview.

3.1 Test Scenarios

Scenario A is a simple comparison of the different
public cloud providers. We execute the tests on differ-
ent servers of each cloud provider with the database
provided by the same cloud provider. With this sce-
nario we can identify substantial differences between
the cloud provider with the set ups we have chosen.
We added a test where the compute and the database
layer are on the same local machine.

In scenario B we connect from a WebSphere in-
stance on premise to the different databases provided

CLOSER 2016 - 6th International Conference on Cloud Computing and Services Science

248

Table 3: Considered Cloud Platforms.

Tier Zone DB Version Price Network attachment
AWS: Database Small db.t1.micro Ireland MySQL 5.6 $0.035/h Very Low
AWS: Database Med db.m1.medium Ireland MySQL 5.6 $0.120/h Moderate
AWS: Database xLarge db.m1.xlarge Ireland MySQL 5.6 $0.495/h High
Google: D1 Std-D1-512MB europe-west1-a MySQL 5.5 $1.46/d N/A
Google: D8 Std-D8-4GB europe-west1-a MySQL 5.5 $11.71/d N/A

by the different cloud providers. With this scenario
we want to see if outsourcing the database layer to a
cloud provider is a viable option.

In scenario C a connection from AWS web servers
to Swiss Re is made. This is not a direct database
connection. The connection is made through a servlet
which makes database calls and converts the results to
JSON and sends those back as an answer. This sce-
nario aims to evaluate the feasibility of using external
compute power for compute-heavy applications with-
out moving the data.

In each case, no other user-specific application is
running during experiments.

4 RESULTS

4.1 Scenario A

As one can see from the test results of the cloud
providers, ICC in the current setup is the best per-
forming. The cloud the authors could work with in
ZHAW is infrequently used yet and can be described
as almost dedicated. It actually is a private cloud for
researchers and students rather than a public cloud.
The whole network in the ICC Lab environment is set
up with 10Gbit Ethernet and not very saturated, which
allows a very high throughput.

The communication in AWS and Google Cloud
internally is not very different. This was an unex-
pected result as AWS promotes their bigger instances
with better network connectivity. We concluded that
this result is because the network is a shared resource
and limited though Quality of Service (QoS).

Figure 4: TPCC in datacenter.

4.2 Scenario B

Figure 5: TPCC Swiss Re to different DB.

It can clearly be seen that when working with Swiss
Re internal compute nodes and external databases the
performance is almost unusable. The access through
the Internet slows the performance and in this case it
is the bottleneck. The tests were concluded without
a Coarse-grained API concept, as an additional trans-
formation from JDBC would have been required, this
is not a service provided by cloud providers.

Figure 6: TPCC Swiss Re to Cloud DB.

As figure 5 does not show the difference between
the cloud offerings well, the Oracle instance and the
ICC lab were removed in figure 6.

The same pattern as in the test from ICC in regard
to the AWS servers can be observed. The database
tier did not make a difference when connecting from
Swiss Re.

4.3 Scenario C

When very small packages are sent, the latency can
vary depending on whether traffic shaping is activated

Application Splitting in the Cloud: A Performance Study

249

Figure 7: JMeter Proxy Test with AWS.

or not. Traffic Shaping is used to improve latency
and optimize performance by delaying some pack-
ages and transferring them as a batch. The results
of the different test cases from AWS to the Swiss Re
database are compared, one can see that the latency
and the total time deviate with bigger package size.
This is expected, since the more data has to be trans-
ferred, the more packages have to be created and sent
through the Internet.

4.4 Tests in Non-Swiss Re Environment

The TPCC tests have shown that in-cloud commu-
nications are still useable for web applications, but
expanding a private cloud with compute power from
outside and working with internal data causes a huge
performance impact. The latency for packages The
JMeter tests support the conclusions drawn with the
TPCC tests. It also shows that traffic shaping is a bad
idea when big batches of data have to be transferred.

4.5 Tests in Swiss Re Environment

Swiss Re has a stable and fast network, which has
grown over the years with huge unused potential. This
would be a good baseline for setting up a private cloud

The JMeter tests with the Servlet have shown that
small data transfer is feasible with the application in
the cloud and the database in Swiss Re. The response
time is slower than within Swiss Re but is still short
enough for applications with small data traffic. Inter-
active applications would run better than performance
dependent batch calculations.

4.6 Performance

As expected, the performance in the cloud is weaker
than the performance in the existing enterprise envi-
ronment. The split-up of applications is even more
critical than moving the combined application and
database to the cloud. The overall performance for
small applications that are not database intensive is
still sufficient (See figure 4). When the application
and the database are moved to a cloud as a package,

even moderately database-dependent applications can
be operated in a public cloud environment.

Applications that rely on the database heavily
should be operated within the internal environment.
This can be in a traditional IT setup or a private cloud.
Current enterprise environments perform a lot faster
than any of the tested cloud environments (See figure
4).

Connecting to a database hosted externally from
an internal compute resource showed one of the
biggest performance differences (See figure 6). The
throughput declined drastically. If because of a burst
in the on premise private environment, additional
compute power from an external cloud provider is re-
quired, the transport time for the data has to be con-
sidered (See table 2). However, if the application it-
self relies heavily on the database, such as in model
calculations the performance gain will not be drastic
unless everything is moved to the cloud (See figure 4
and 6).

When connecting from outside of a cloud, the dif-
ference in performance of the various database tiers
can almost be ignored (See figure 5). This only has
an impact when connecting from the cloud itself, but
also marginal (See figure 4). Tests showed that the ap-
plication does not require all of the available CPU or
memory, especially on systems with a slow network
connection and it was able to run as many requests as
possible.

5 CONCLUSION

5.1 Use Case

One reason to go to a public cloud is to lower opera-
tional effort. This can be done by letting the cloud
provider operate the infrastructure. The enterprise
just uses it as a service and take advantage of the cloud
providers economics of scale (Urquhart, 2014). This
would be mainly feasible for non-production applica-
tions, where performance and data security are not the
main focus.

For short tests and new environments made of
small applications, the cloud can help to keep Capi-
tal Expenditure (CAPEX) low, as no hardware needs
to be acquired, and the pas-as-you-go model allows
for short time bursting at a controlled price.

When moving to the cloud, it is mandatory to take
into account the initial data transfer, especially if the
use case involves temporary cloud usage, as the cost
of transfer is high. Additionally, a process needs to
be put in place to freeze the current database when
moving it to the cloud. This is not always feasible for

CLOSER 2016 - 6th International Conference on Cloud Computing and Services Science

250

production databases which can not be stopped at all,
in this case techniques such as ones used in VM Live
Migration (Svärd et al.,) can be exploited to seam-
lessly transfer hard drive and live memory data.

If because of short bursts, additional compute
power should be added to the private cloud, to create
a hybrid offering, the throughput difference between
the internal and the external compute nodes need to
be considered (See figures 5 and 6). If the bursts can
be foreseen, the data can be replicated to the cloud
and the performance loss is not as high as if the com-
pute nodes need to talk to the on premise database
through a web service, as most company do not ex-
pose their databases to the internet. However, the ad-
ditionally gained performance for database intensive
applications will be drastically lower than the ones of
the private cloud. As this would most probably be
done only in the production environment, it currently
is not recommended.

When the data is required in the cloud and on
premise, an asynchronous data replication should be
considered; this helps to keep the performance up but
could lead to data mismatch until the data is fully
transferred to the other location.

5.2 Suggestions

As a remainder, the suggestions below are made ac-
cording to our findings in our tests and relative to the
use case described in the introduction. Conclusions
would be different if the application considered can
be re-engineered, as we have focused on use cases
where no changes can be performed on the database
and a JDBC connection is mandatory between appli-
cation servers and databases.

In essence, public cloud can be a cheap and fast al-
ternative, especially with low data exchange volume.
On the other hand, when performance is a strict re-
quirement, we find that a private cloud with enterprise
ready databases offers the best match.

When migrating to the cloud for development and
testing, an important characteristic to consider is that
the different tier types of databases do not have a very
big impact. An evaluation has to be conducted in-
ternally to verify if the small performance benefit or
larger offering is worth the additional price and re-
sources.

The lower performance can be accepted for ap-
plications that run small queries, but when having
database intensive applications the situation can lead
to negative feedback of the users.

In web applications which have low traffic and in
which the number of concurrent users is not too high,
a replacement of the traditional infrastructure can be

considered. For example a seasonal application, with
a relatively small number of users, is a good candi-
date for migration. The benefit is that the application
would cost less and with the few users, transaction
time with the database of less than 1 second can be
guaranteed. This time span is according to Nielsen
(Nielsen, 1993), the maximum time allowed for an
application with user interaction. This basic advice
regarding response times has been around for the last
thirty years.

Overall we conclude that development and test
systems can be easily moved to the public cloud with-
out a large impact on user satisfaction. Web appli-
cations with few database interactions could also be
considered to be moved to a public cloud. Systems
in a productive Environment which are time-critical
should not be moved to a public cloud. Adding tem-
porary computing resources for those is also not rec-
ommended.

REFERENCES

Apache (2014). Apache JMeter. Retrieved 2014-06-02,
from http://jmeter.apache.org/

Chen, S., Ailamaki, A., Athanassoulis, M., Gibbons, P. B.,
Johnson, R., Pandis, I., and Stoica, R. (2011). Tpc-
e vs. tpc-c: Characterizing the new tpc-e benchmark
via an i/o comparison study. ACM SIGMOD Record,
39(3):5–10.

Levine, C. (2014a). Standard benchmarks for database sys-
tems - tpc-c overview. Retrieved from http://www.
tpc.org/information/sessions/sigmod/sld007.htm

Levine, C. (2014b). Standard benchmarks for
database systems - what is tpc. Retrieved from
http://www.tpc.org/information/sessions/sigmod/sld
006.htm

Nielsen, J. (1993). Usability Engineering. US: Morgan
Kaufmann.

Raab, F. (2014). TPC-C – The Standard Benchmark
for Online transaction Processsing (OLTP). Retrieved
from http://research.microsoft.com/en-us/um/people/
gray/benchmarkhandbook/ chapter12.pdf

Salnikov-Tarnovski, N. (2014). Most popular ap-
plication servers. Retrieved 2014-06-02, from
http://java.dzone.com/articles/most-popular-
application

Svärd, P., Hudzia, B., Walsh, S., Tordsson, J., and Elmroth,
E. The noble art of live vm migration-principles and
performance of precopy, postcopy and hybrid migra-
tion of demanding workloads. Technical report, Tech-
nical report, 2014. Tech Report UMINF 14.10. Sub-
mitted.

Swiss Re (2014). Swiss re homepage. Retrieved from
http://www.swissre.com/

The OpenStack Foundation (2014). Openstack homepage.
Retrieved from http://www.openstack.org/

Application Splitting in the Cloud: A Performance Study

251

TPC (2014). TPC Benchmark C - Standard Specifications.
Retrieved from http://www.tpc.org/tpcc/spec/tpcc cur-
rent.pdf

TPC (2014a). TPC benchmarks. Retrieved from
http://www.tpc.org/information/benchmarks.asp

TPC (2014b). Tpc-c. Retrieved from
http://www.tpc.org/tpcc/

Urquhart, J. (2014). Apache JMeter. Retrieved 2014-06-05,
from http://www.cnet.com/news/james-hamilton -on-
cloud-economies-of-scale/

CLOSER 2016 - 6th International Conference on Cloud Computing and Services Science

252

