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Abstract: Fuzzy set theory has been extensively incorporated in the original Analytical Hierarchical Process (AHP) with
an aim to better represent human judgments in comparison matrices. One of the most popular technique in
the domain of Fuzzy AHP is Fuzzy Extent Analysis method which utilizes the concept of extent analysis
combined with degree of possibility to calculate weights from fuzzy comparison matrices. In original AHP,
where the comparison matrices are composed of crisp numbers, Satty proposed that Eigen Vector of these
comparison matrices estimate the required weights. In this research we perform a comparison analysis of
these two approaches based on a data set of matrices with varying level of inconsistency. Furthermore, for
the case of FEA, in addition to degree of possibility, we use centroid defuzzification and defuzzification by
using the mid number of triangular fuzzy number to rank the final weights calculated from fuzzy comparison
matrices.

1 INTRODUCTION

Analytical Hierarchy Process (AHP) proposed by
(Saaty, 1980) is a methodology for structuring, mea-
surement and synthesis (Forman and Gass, 2001)
which utilizes pairwise comparisons to derive ratio
scales indicating the preferences of the decision mak-
ers among different alternatives and associated crite-
ria. These comparisons are recorded in a comparison
matrix and processed to determine the corresponding
weights of the given criterion as well as available al-
ternatives. The normalized weighted sum provides a
weight associated with each available alternatives and
thus help decision maker to choose the best decision.

In the literature, two different scales are used to
record pairwise comparisons i.e. scale based on crisp
numbers (scale of 1-9) and scale based on fuzzy num-
bers. The original method uses the scale of 1-9
in which decision maker preferences of weak, nor-
mal and strong are represented by some number in
the given scale and recorded in comparison matri-
ces. Afterwards, weights are calculated from well-
defined mathematical structure of consistent matrices
and their associated eigenvectors ability to generate
true or approximate weights (Saaty, 1980).

However, this approach has found some criti-
cism on the premises that crisp numbers disregards
the vagueness of human language thus implying that
vague linguistic variables (i.e., weak, strong, etc.)

cannot be represented with a ratio scale based on crisp
numbers and may lead to wrong decisions in the de-
cision analysis process (Tsaur et al., 2002).

Fuzzy set theory introduced by (Zadeh, 1965)
has been used frequently in the literature to repre-
sent vagueness of human thought. It represents the
belongingness of an object to a set by means of
membership functions which ranges from zero to one
and has found many applications over the past many
years. Some of the fields which utilize fuzzy sets in-
clude health care (Kilic et al., 2004), system modeling
(Uncu et al., 2004; Uncu et al., 2003), supplier selec-
tion (Kahraman et al., 2003), control theory (Takagi
and Sugeno, 1985), capital investment (Tang et al.,
2005) etc.

Fuzzy numbers are introduced as part of fuzzy set
theory, which takes the form of a set of real numbers
with a convex and continuous membership function of
bounded support. These numbers can be used to accu-
rately represent linguistic scales incorporating vague-
ness and uncertainties of human mind. Fuzzy AHP is
simply an extension of the original AHP with human
preferences recorded in the form of fuzzy numbers
and hence the resulting comparison matrix formed is
also composed of fuzzy numbers. However, to ex-
tract weights from these fuzzy comparison matrices
require additional treatment as the arithmetic opera-
tions of fuzzy numbers is different from crisp num-
bers. To address this issue, various algorithms have
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been proposed over the years with an aim to process
these fuzzy comparison matrix and extract weights.
Some of the most popular algorithms are given by
(Van Laarhoven and Pedrycz, 1983; Boender et al.,
1989; Buckley, 1985; Deng, 1999). Readers are re-
ferred to (Büyüközkan et al., 2004) and (Ataei et al.,
2012) for a comprehensive review of literature on
FAHP algorithms and its applications.

Among these FAHP algorithms, Fuzzy Extent
Analysis (FEA) method (Chang, 1996) is the most
frequently used FAHP algorithm (Ding et al., 2008).
It utilizes the concept of extent analysis combined
with degree of possibility to calculate weights from
fuzzy comparison matrices. However, this method
has been criticized (Wang et al., 2006) mainly due to
the way fuzzy numbers are compared using degree of
possibility. Over the last five years around hundred
research articles have been published on how to com-
pare fuzzy numbers which shows that there is no gen-
eral consensus on a single method to rank and order
fuzzy numbers (Zhü, 2014). Therefore, in our anal-
ysis in addition to the original method of degree of
possibility, we will also use Centroid Defuzzification
(Ross, 1995) and defuzzification by simply using the
mid number of the triangular fuzzy number.

Rest of the paper is organized as follows. In Sec-
tion 2, a brief overview of fuzzy arithmetic and FEA
method will be provided. In section 3 the set up used
for the experimental analysis will be discussed. Later
in section 4, the results of the experimental analysis
will be presented. Paper will be finalized with some
concluding remarks as well as future research direc-
tions in section 5.

2 FUZZY EXTENT ANALYSIS

As discussed before, one of the major challenges
faced in AHP is to employ a weighing scale which
accurately represents expert opinions in the form
of comparison ratios while taking into account the
inherent vagueness of human thought. Note that
this vagueness is neither random nor stochastic
(Ataei et al., 2012) and fuzzy numbers are helpful in
capturing this imprecision. The construction of fuzzy
numbers are such that it represents the linguistic
variables with a set of possible values each having its
own membership degree and thus aids in capturing
this vagueness. There are many different types of
fuzzy numbers, however in this paper we will use
a triangular fuzzy number which is represented
through [l m u] and membership function µM defined
as follows and graphically illustrated in Figure 1;

µM(x) =





x
m−l − l

m−l , x ∈ [l m]
x

m−u − u
m−u , x ∈ [m u]

0, otherwise
(1)

Figure 1: Membership function of Triangular Fuzzy Num-
ber.

Let (l1 m1 u1) and (l2 m2 u2) then the basic fuzzy
arithmetic operations are summarized as follows;

• Addition:
(l1 m1 u1)⊕ (l2 m2 u2) = (l1 + l2 m1 +m2 u1 +u2)

• Multiplication:
(l1 m1 u1)� (l2 m2 u2) = (l1.l2 m1.m2 u1.u2)

• Scalar Multiplication:
(λ λ λ)� (l1 m1 u1) = (λ.l1 λ.m1 λ.u1)

• Inverse:
(l1 m1 u1)

−1 ≈ (1/u1 1/m1 1/l1)

Fuzzy Extent Analysis (FEA) proposed by
(Chang, 1996) is one of the most popular technique in
the literature to calculate weights from fuzzy compar-
ison matrices. In the original Extent Analysis method,
provided we have X = {x1,x2, · · · ,xn} as an object set
and G = {g1,g2, · · · ,gn} as a goal set, then for each
object, extent analysis for each goal gi is performed.
Applying this theory in fuzzy comparison matrix, one
can calculate the value of fuzzy synthetic extent with
respect to the ith object as follows;

Si =
m

∑
j=1

M j
gi
⊗
[

n

∑
i=1

m

∑
j=1

M j
gi

]−1

(2)

Where
m

∑
j=1

M j
gi
=

(
m

∑
j=1

l j,
m

∑
j=1

m j,
m

∑
j=1

u j

)
(3)

In the original AHP, while using the scale of 1-9,
we can calculate the final weights through the pro-
cess explained above. However, for the case where
fuzzy triangular numbers are employed in the judg-
ment scale, the result would be a fuzzy triangular
weight value as indicated in Equation 3.

As opposed to the straight forward ordering of
crisp numbers, ordering of the fuzzy numbers are not
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that simple. In fact, over the last couple of years
many articles have been published discussing this is-
sue and as of today there is no widely accepted tech-
nique (Zhü, 2014) to rank and order fuzzy numbers.
In the FEA technique proposed by (Chang, 1996), a
method known as degree of possibility is proposed for
ordering as well as defuzzifying weights calculated
from Equation 3

In this approach, a pair wise comparison is carried
out for every fuzzy weight with other fuzzy weights
and the corresponding degree of possibility of being
greater than other fuzzy weights is determined. The
minimum of these possibilities is used as the overall
score for each criterion i. That is to say by applying
the comparison of the fuzzy numbers, the degree of
possibility is obtained for each pair wise comparison
as follows:

V (M2 ≥M1) = hgt(M1∩M2) = µM2(d) =




1, if m2 ≥ m1

0, if l1 ≥ u2
l1−u2

(m2−u2)−(m1−l1)
, otherwise.

The same is illustrated in the Figure 2.

Figure 2: Degree of possibility.

Note that, degree of possibility for a convex fuzzy
number to be greater than k convex fuzzy numbers is
given by;

V (M ≥M1,M2, · · · ,Mk) =V [(M ≥M1) and

(M ≥M2), · · · ,(M ≥Mk)]

= minV (M ≥Mi), i = 1,2, · · · ,k
Assuming that w′i =minV (Mi≥Mk) then weight vec-
tor is given by

W ′ = w′1,w
′
2, · · · ,w′n

Normalizing the above weights gives us the final pri-
ority vector w1,w2, · · · ,wn.

Subsequent research on this methodology has pro-
posed some modifications. for example, (Wang et al.,
2006) in its review of the normalization processes in

fuzzy systems proposed that row sums should be nor-
malized by Equation 4 in order to calculate fuzzy syn-
thetic extent values. This modification will also be
part of our analysis.

Si =
∑n

j=1 li j

∑n
j=1 li j +∑n

k=1,k 6=i ∑n
j=1 uk j

,
∑m

j=1 mi j

∑n
k=1 ∑n

j=1 mk j
,

∑n
j=1 ui j

∑n
j=1 ui j +∑n

k=1,k 6=i ∑n
j=1 lk j

(4)

Therefore, our experimental analysis will include in
total following five techniques;

• FEA with degree of possibility (Original Method)

• FEA with degree of possibility including modifi-
cation to normalization (Wang et al., 2006)

• FEA with Centroid Defuzzification (Ross, 1995)

• FEA with defuzzification using mid number of the
triangular fuzzy number

• Original eigen vector method (Saaty, 1980)

3 RESEARCH METHODOLOGY

Three major control parameters are employed in the
experimental analysis to evaluate the performance of
the techniques discussed in the paper. These param-
eters include level of fuzziness (α), inconsistency of
the decision maker (β), and size of the comparison
matrices (n). By varying the levels of these control
parameters, we generate a set of matrices on which
we apply the above mentioned techniques. Note that
even though there exist some algorithms in the lit-
erature (Golany and Kress, 1993) which provides a
methodology to generate comparison matrices with
various levels of consistency levels, however these
technique are limited only for original AHP and thus
cannot be replicated for comparison matrices consist-
ing of fuzzy numbers. Therefore, in this research a
novel framework is proposed through which random
fuzzy comparison matrices can be generated for vari-
ous control parameters as required by the experimen-
tal set up.

This algorithm is step by step explained as fol-
lows;

Step 1: Assuming we have n criterion, we ran-
domly generate crisp weights w1,w2, · · · ,wn and nor-
malize them.

Step 2: Through these weights we can generate a
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perfectly consistent comparison matrix as follows

W =




w1/w1 w1/w2 · · · w1/wn
w2/w1 w2/w2 · · · w2/wn

...
...

. . .
...

wn/w1 wn/w2 · · · wn/wn




Step 3: Once the comparison matrix is generated,
each element of the matrix is converted into a trian-
gular fuzzy number [l′ m′ u′] with a fuzzification pa-
rameter α such that l′ = wi/w j−α, m′ = wi/w j and
u′ = wi/w j +α.

Step 4: As stated before, in reality human judg-
ments are rarely consistent and thus comparison ma-
trices formed through these judgments are also not
consistent. Therefore, we introduce different levels
of inconsistency in the matrices through the incon-
sistency parameter β. Depending on this parameter,
an interval [a b] is generated for each l′ of the tri-
angular fuzzy number such that a = l′ − l′(β) and
b = l′+ l′(β). Same procedure is followed to create
inconsistency intervals for m′ and u′. Afterwards, a
number is randomly selected from each one of these
intervals and is correspondingly assigned as the lower,
modal and upper value of the triangular fuzzy num-
ber i:e., [l m u]. However, once inconsistency param-
eter is increased, there is a possibility that the inter-
val [a b] generated for each element of the triangu-
lar fuzzy number intersects and the numbers are ran-
domly chosen in such a way that they violates the con-
dition l < m < u. We address this issue as follows;
Whenever the inconsistency intervals intersect, they
are shrunk in such a way that for each lower value of
the triangular fuzzy number, the right endpoint of the
interval is readjusted such that it is the mid point of
the right end point of the interval of lower value and
the left end point of the interval generated for modu-
lar number. Similarly, both end points of the inconsis-
tency interval of modular number are readjusted and
the left endpoint of the inconsistency interval of up-
per number is readjusted. Numbers randomly chosen
from these intervals will always satisfy the condition
of l < m < u. This part of the algorithm is graphically
explained below for clarity.

Figure 3: Interval formation.

Previous comparative analysis of methodologies
in the original AHP shows that level of inconsistency
and size of the matrix are two important criteria which
directly affects the performance of a certain tech-
nique. In fuzzy AHP, the weighing scale is composed
of fuzzy numbers and thus we add a third performance
evaluation criteria which is level of fuzziness. There-
fore, the aim of our analysis will be to not only in-
vestigate performance measure of each algorithm in
general but also change in performance as we change
these three parameters.

4 RESULTS AND DISCUSSIONS

The framework of our experimental analysis includes
three variables α, β and n. For the fuzzification pa-
rameter (α) three fuzzification levels are used (0.05,
0.1 and 0.15) and decision analysts can set the fuzzi-
fication level himself and conduct FAHP accordingly
as this parameter is not inherent to the problem. The
inconsistency parameter (β) indicates to the level of
inconsistency of the decision maker. For this analy-
sis we used five different levels for the inconsistency
parameter (0, 0.5, 1, 1.5 and 2). In addition, four dif-
ferent matrix sizes were considered (3, 7, 11 and 15).
Matrices having dimension 3× 3 can be regarded as
the representative of a small sized problems while ma-
trices of dimensions 7× 7 and 11× 11 are represen-
tatives for medium sized problems and 15× 15 size
matrix can be considered for larger cases.

Therefore, our experimental analysis consists of
60 different experimental conditions and for each con-
dition 10 replications are created randomly. In to-
tal the data set consists of six hundred matrices with
varying parameters of fuzzification, inconsistency and
size of the matrix. The error terms are calculated as
the root mean squared difference between the result-
ing weights calculated from the 5 different techniques
discussed in this paper and the initial weights used to
construct comparison matrices.

Through this experimental study, we can conclude
that utilizing just the mid number of a triangular
fuzzy weight can give us more accurate results (Fig-
ure 4). While the original method of degree of possi-
bility as well as the Eigen Vector approach along with
FEA method with other defuzzification techniques
performed inferior compared to using mid number of
the triangular fuzzy number.

Figure 4 shows that increase in size of the matrix
has a significant effect on the performance of all the
algorithms. However, this improved performance is
due to the fact that as we increase the size of the ma-
trix, the values of the starting normalized weights are

Comparison of Fuzzy Extent Analysis Technique and its Extensions with Original Eigen Vector Approach

177



0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

Beta 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5

n 3 7 11 15

E
rr

or
 

Experimental Parameters 

Original FEA Wang Normalization Modification
FEA with Centroid Defuzzification FEA while utilising only Mid Number
Eigen Vector Approach using Crisp Matrix

Figure 4: Experimental Analysis.

decreased and hence the final error term is also low
which depicts improvement in performance. There-
fore, this improved performance cannot be associated
with any of the FAHP algorithm.

As we increase the inconsistency factor, perfor-
mance of most of the algorithms is decreased except
for original FEA method and FEA method with mod-
ified normalization for which performance increases
as we increase the inconsistency. However, this in-
crease in performance is not enough and even at high
inconsistency levels, FEA with defuzzification using
mid number is the best performing algorithm.

5 CONCLUSIONS

In this paper, we introduced a novel experimental
analysis framework through which performance of
various FAHP technique can be analyzed. The analy-
sis revealed that the FEA method with defuzzification
using mid number outperformed the other techniques
in almost all experimental conditions.

Review of the existing literature on FAHP reveal
that there are many different algorithms proposed in
this domain. However, there is no throughout analysis
of these techniques which measure their performance
for different experimental conditions. Such a com-
parison would be invaluable for the researchers and
the practitioners of the field since it will hint which
technique might be more suitable for the problem that
they are facing.

In future we plan to conduct similar performance
analysis for other FAHP algorithms and through ex-
perimental analysis such as this, we plan to inves-
tigate differences between conventional AHP tech-
niques with Fuzzy AHP techniques.
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