
RA2DL-Pool: New Useful Solution to Handle Security of Reconfigurable
Embedded Systems

Farid Adaili1,2,3, Olfa Mosbahi1, Mohamed Khalgui1,4 and Samia Bouzefrane3

1LISI Laboratory, National Institute of Applied Sciences and Technology, University of Carthage, Tunis, Tunisia
2Tunisia Polytechnic School, University of Carthage, Tunis, Tunisia

3CEDRIC Laboratory, National Conservatory of Arts and Crafts, Paris, France
4SystemsControl Laboratory, Xidian University, Xi’an, China

Keywords: Embedded System, Component-based Approach, Reconfiguration, Security, RA2DL, Implementation,
Evaluation.

Abstract: The importance of security in software and hardware components becomes the major concern nowadays.
This paper focuses on adaptive component-based control systems following the reconfiguration architecture
analysis and design language (denoted by RA2DL). Despite of its efficiency, RA2DL component can be com-
promised due to its lack in terms of security. This paper proposes a new method for modeling the security of
RA2DL component, argues for a more comprehensive treatment of an important security aspect with several
mechanisms such as authentication and access control. In this paper, we propose a new architecture of RA2DL
where pools are containers of sets of RA2DL components characterized by similar properties. The proposed
approach is applied to a real case study dealing with Body-Monitoring System (BMS).

1 INTRODUCTION

The increasing use of the embedded and reconfigu-
ration technologies in the information systems is not
only a concern of major corporations and govern-
ments but also an interest of individual users. Due
to this wide use, many of these systems manage and
store information that is considered sensitive, such as
personal or business data. The need to have secured
components for each system that contains such in-
formation becomes a necessity rather than an option
(Mouratidis et al., 2005). The embedded components
(MS, 2008) are getting increasingly connected and are
more and more involved in networked communica-
tions. The users of these components are now able to
execute almost all the network/internet applications.
These components are also increasingly involved in
the transfer of secured data through public networks
that need protection from unauthorized access. Thus
the security requirements in embedded systems have
become critical.

Traditional security research has been focusing on
how to provide assurance on confidentiality, integrity,
and availability (Clements, 1996). However, with the
exception of mobile code protection mechanisms, the
focus of past research is not how to develop secured

software that is made of components from different
sources. Previous research provides necessary infras-
tructures, but a higher level perspective on how to use
them to describe and enforce security, especially for
component-based systems, has not received sufficient
attention from research communities so far.

The authors propose in (F.Adaili et al., 2015) a
new concept of components named RA2DL as a solu-
tion for reconfigurable AADL components composed
of controller and controlled modules. The first one is
a set of reconfiguration functions applied in RA2DL
to adapt its execution to any evolution in the environ-
ment, described by three reconfiguration forms:

(i) Form 1: Architectural level: modifies the com-
ponent architecture when particular conditions are
met. This is made by adding new algorithms, events
and data or removing existing operations in the inter-
nal behaviors of the component.

(ii) Form 2: Compositional level: modifies the
composition of the internal components (algorithms)
for a given architecture.

(iii) Form 3: Data level: changes the values
of variables without changing the component algo-
rithms, and the second one is a set of input/output
events, algorithms, and data as represented by recon-
figuration modules.

102
Adaili, F., Mosbahi, O., Khalgui, M. and Bouzefrane, S.
RA2DL-Pool: New Useful Solution to Handle Security of Reconfigurable Embedded Systems.
In Proceedings of the 11th International Conference on Evaluation of Novel Software Approaches to Software Engineering (ENASE 2016), pages 102-111
ISBN: 978-989-758-189-2
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

However, securing an RA2DL component is
not an easy task. With rapidly advancing hard-
ware/software technologies and ubiquitous use of
computerized applications (Ren and Taylor, 2005),
modern software is facing challenges that it has
not seen before. More and more software is built
from existing components which come from differ-
ent sources. This complicates analysis and com-
position, even if a dominant decomposition mech-
anism is available. Additionally more and more
software/hardware components are running in a net-
worked environment. These network connections
open possibilities for malicious attacks that were not
possible in the past. These situations raise new chal-
lenges on how to handle security so that to design a
component-based architecture that is more resistant to
attacks and less vulnerable.

Facing the new challenges for security of reconfig-
urable RA2DL-based systems, we propose new solu-
tions allowing the required authentification for the ac-
cess control to components under a set of constraints
such as the limitation in memory. These solutions are
supported by a new concept called pool which is a
container that gathers networked RA2DL under se-
curity constraints. The container allows the control of
any operation allowing the reconfiguration of RA2DL
components as well as the access to local algorithms
and data.

The current paper is organized as follows: We
discuss in Section 2 the originality of the paper by
studying the state of the art. Section 3 describes the
background of RA2DL. Section 4 defines the new ex-
tension for secured RA2DL components. We expose
in Section 5 the case study: Body-Monitoring Sys-
tem (BMS) and how the implementation is performed
to secure RA2DL. Section 6 concludes the paper and
gives some perspectives as a future work.

2 STATE OF THE ART

In this section, we present a state of the art of se-
cured component-based design approaches. In (Br-
ereton and Budgen, 2000), the authors present a clas-
sification of component-based systems by describing
software components as independent units that inter-
act to form a functional system. A component does
not need/have to be compiled before it is used. Each
component offers services to the rest of the system
and adopts a provided interface that specifies the ser-
vices that other components can use.

The authors in (Ren and Taylor, 2005) present a
treatment of an important security aspect, access con-
trol, at the architecture level and modeling of secu-

rity subject, resource, privilege, safeguard, and policy
of architectural constituents. The modeling language,
Secure xADL, is based on the existing modular and
extensible architecture description language.

In (Cai et al., 2000), the authors propose a QA
(Quality Assurance) model for component-based soft-
ware which covers component requirement analy-
sis, component development, component certifica-
tion, component customization, and system architec-
ture design, integration, testing and maintenance. An
extension of the Component Object Model (COM),
Distributed COM (DCOM), is a protocol that enables
software components to communicate directly over a
network in a reliable, secure, and efficient manner.
DCOM is designed for use across multiple network
transports, including internet protocols such as HTTP.
When a client and its component reside on different
machines, DCOM simply replaces the local interpro-
cess communication with a network protocol. Neither
the client nor the component is aware of the changes
of the physical connections.

In (elena Rugina et al., 2006), Rugina and al.
present an iterative dependency-driven approach for
dependability modeling using AADL. This approach
is a part of a complete framework that allows the gen-
eration of dependability analysis and evaluation mod-
els from AADL models to support the analysis of soft-
ware and system architectures in critical application
domains.

AADL and OSATE tools can be used to validate
the security of systems designed using MILS4 archi-
tecture (Hansson et al., 2008). The work in (J. Alves-
Foss and Taylor, 2006) uses two mechanisms to mod-
ularize or divide and conquer in secure systems:
partitions, and separation into layers. The MILS ar-
chitecture isolates processes in partitions that define a
collection of data objects, code, and system resources
and can be evaluated separately. Each partition is di-
vided into the following three layers: Separation Ker-
nel Layer, Middleware Service Layer and Application
Layer each of which is responsible for its own secu-
rity domain and nothing else.

In (Jürjens, 2002), the author presents the exten-
sion UMLsec of UML that allows to express security
relevant information within the diagrams in a system
specification. UMLsec is defined as an UML profile
using the standard UML extension mechanisms. In
particular, the associated constraints give criteria to
evaluate the security aspects of a system design by re-
ferring to a formal semantic of a simplified fragment
of UML.

In (Bernstein, 2014), Bernstein define a Docker
(www.docker.com) is an open source project provid-
ing a systematic way to automate the faster deploy-

RA2DL-Pool: New Useful Solution to Handle Security of Reconfigurable Embedded Systems

103

ment of Linux applications inside portable contain-
ers. Basically, Docker extends LXC with a kernel-
and application-level API that together run processes
in isolation: CPU, memory, I/O, network, and so on.
Docker also uses namespaces to completely isolate an
applications view of the underlying operating envi-
ronment, including process trees, network, user IDs,
and file systems.

Docker containers are created using base images.
A Docker image can include just the OS fundamen-
tals, or it can consist of a sophisticated prebuilt appli-
cation stack ready for launch. When building images
with Docker, each action taken (that is, command ex-
ecuted, such as apt-get install) forms a new layer on
top of the previous one. Commands can be executed
manually or automatically using Dockerfiles.

Note that, no one in all related works deals with
secured reconfigurable components. We propose in
this paper a new concept of security of RA2DL
components to be named RA2DL−Pool that allows:
(i) Grouping of RA2DL components that have the
same similar properties. (ii) Associating to each
RA2DLPool a security mechanism like authentication
and access control mechanisms.

3 RA2DL BACKGROUND

We defined in a previous paper (F.Adaili et al., 2015)
the concept of RA2DL components as an extension of
reconfigurable AADL (Vergnaud et al., 2005) (Archi-
tecture Analysis and Design Language). RA2DL as
depicted in Figure 1 is composed of controller and
controlled modules where the first one is a set of
reconfiguration functions applied in AADL, and the
second one is a set of input/output events, algorithms,
and data. The controlled module is described by the
following four modules:

IEM (Input Events Module): This module processes
the reconfiguration of input events (IE) stored in
the IEDB database of input events. It defines and
activates at a particular time a subset of events to
execute the corresponding algorithms in RA2DL.

OEM (Output Events Module): This module pro-
cesses the reconfiguration of output events (OE)
stored in the OEDB database of output events. It
defines and activates at a particular time a subset
of events to be sent once the corresponding algo-
rithms finish their execution in RA2DL.

ALM (Algorithms module): This module processes
the reconfiguration of the active algorithms (ad-
dition or removal) at a particular time in order to
be coherent with active input and output events of

IEM and OEM. These algorithms are stored in
the ALDB database of algorithms.

DM (Data Module): This module processes the re-
configurations of data in RA2DL in coherence
with the rest of modules. It is stored in the DDB
database of data values.

We focus on three hierarchical reconfiguration
levels in RA2DL: (i) Form 1: Architectural level:
modifies the component architecture when particular
conditions are met. This is made by adding new al-
gorithms, events and data or removing existing oper-
ations in the internal behaviors of the component. (ii)
Form 2: Compositional level: modifies the compo-
sition of the internal components (algorithms) for a
given architecture. (iii) Form 3: Data level: changes
the values of variables without changing the compo-
nent algorithms.

Figure 1: Architecture of an RA2DL component.

In another extension in (Adaili et al., 2015) for
enhancing the execution of RA2DL components, a
new execution model is proposed which is composed
of three layers: (i) Middleware Reconfiguration
level that handles the input reconfiguration flows, (ii)
Execution Controller level to control the execution
and reconfiguration of RA2DL and (iii) Middleware
Synchronization level that controls and manages the
synchronization of the reconfiguration. Addition-
ally, we proposed a new approach to coordinate sev-
eral RA2DL components in a distributed architecture
based on a coordination matrix.

Because of the resource limitations in adaptive
systems, satisfying a non-functional requirement such
as security requires careful balance and trade-off with
other properties and requirements of the system such
as performance, memory usage and access rights of
the RA2DL. This further emphasizes the fact that se-
curity cannot be considered as a feature that is added
later to the design of an RA2DL component. It needs
to be considered from early stages of development
and along with other requirements. In fact, the secu-

ENASE 2016 - 11th International Conference on Evaluation of Novel Software Approaches to Software Engineering

104

rity by design approach as defined by Arnab (Ray and
Cleaveland, 2006) in software engineering ensures
that security is addressed at the point of conception
to avoid the security vulnerabilities. Considering the
characteristics of RA2DL components, major impacts
of security features in these systems are based on per-
formance, power consumption, flexibility, maintain-
ability and cost (Kocher et al., 2004). Therefore in
the design of RA2DL components, implications of
introducing security decisions should be taken into
account and analyzed. Several related works do not
provide solutions to develop security of RA2DL com-
ponents of adaptive embedded systems. The current
paper proposes new extended solutions to secure an
RA2DL component. However, in this work we want
to extend this study by considering a new architecture
of secured RA2DL-based pools.

4 NEW EXTENSION FOR
SECURED RA2DL

In this section, we enrich RA2DL by security mech-
anisms that undergo such a failure to enhance their
execution and simulation.

4.1 Motivation: RA2DL-Pool

Security is an aspect that is often neglected in the de-
sign of adaptive systems. However, the use of these
systems for critical applications such as controlling
power plants, vehicular systems control, and medical
devices (Salem et al., 2015) makes security consid-
erations even more important. Also because of the
operational environment of adaptive systems and the
reconfiguration actions applied by an RA2DL com-
ponent. To allow the required security, we introduce
the concept of RA2DL−Pool as a container which is
an abstract class that offers different services dealing
with security, where each RA2DL−Pool has a level
of sensitivity of the information of its RA2DL com-
ponents. RA2DL− Pool container serves as a gen-
eral purpose holder of other components. It holds
well-defined methods for grouping RA2DL compo-
nents together. RA2DL−Pool is represented by the
following elements:

- Controller: it is the crucial part of the pool that
contains methods and represents firstly the interface
between the user and the pool, and secondly between
the pool and the RA2DL components,

- Tables: there are three kinds of tables : use
table (UT), reconfiguration table (RT) and security ta-
ble(ST),

- Database: is the database containing the sets of
RA2DL components,

- Reconfiguration Scenarios: define the set of
reconfiguration scenarios realized in pool or in its
RA2DL components. Each scenario will be applied
in relation with the three tables (UT, RT and ST),

- RA2DL: it is the RA2DL component with its
algorithms and input/output ports,

Figure 2 presents the class diagram of RA2DL−
Pool. An RA2DL− Pool container holds a set of
RA2DL components with a set of methods. This
set of components has a set of methods that describe
how to examine and add or delete components to the
RA2DL−Pool. It contains the following methods de-
scribed in Table 1.

4.2 Security Mechanisms for RA2DL

To consolidate the RA2DL technology, we will put a
set of security-mechanisms divided into two families:

4.2.1 Authentication Mechanism

This is a critical mechanism where all users must
authenticate to access to the reserved services of
RA2DL−Pool or RA2DL components. This mech-
anism is always in relation with the user table
(UT), where the columns u are the identifiers of
users (id user) and lines s represent the services
(services user). To implement the authentication
mechanism, we use RADIUS (Remote Authentica-
tion Dial-In User Service) developed by Livingston
Enterprise (Yoon et al., 2007), which is a network-
ing protocol that provides centralized Authentication,
Authorization, and Accounting (AAA) management
for users who connect and use a network service. The
principle of the authentication of an RA2DL with RA-
DIUS is as follows:

(i) the Controller executes a connection request.
UT table recovers the identification information, (ii)
the Controller transmits this information to the target
service in RA2DL, (iii) the target component receives
the connection request from the Controller, controls
and returns the configuration information required for
the user to provide or deny access, (iv). Controller
refers to the user an error message if it fails an au-
thentication.

4.2.2 Access Control Mechanism

This mechanism comes just after authentication to
control the access to the RA2DL components. Two
tables are used in this case: security and reconfigu-
ration tables. The first one is the security table ST
which contains in lines (p) all the user privileges

RA2DL-Pool: New Useful Solution to Handle Security of Reconfigurable Embedded Systems

105

Figure 2: Class diagram of RA2DL-Pool.

Table 1: RA2DL-pool Methods.

Method Description
getRA2DL () returns the number of components within the RA2DL−Pool

Component-getRA2DL(int position) returns the component at the specific position
Componentde getRA2DL () returns an array of all the RA2DL components held within the container

RA2DL-add (Component RA2DL, int position) adds RA2DL component to the container RA2DL−Pool at position
add (Component RA2DL, RA2DL constraints) necessary for layouts that require additional information

public void remove (int index) deletes the RA2DL component at position index from the RA2DL−Pool
remove (RA2DL component) deletes the RA2DL component from the container RA2DL−Pool

removeAll () removes all RA2DL components from the RA2DL−Pool container
boolean isAncestorOf (RA2DL) checks to see if the RA2DL component is a parent of container

addContainerListener (pool) registers listener as a controller of RA2DL-Pool
removeContainerListener (pool) removes listener as an interested listener of RA2DL-Pool
processEvent(RA2DLEvent e) receives all RA2DL events with this RA2DL−Pool container as its target

addNotify () creates the peer of all the components within it
removeNotify () destroys the peer of RA2DL components contained within it
Insetsgetinsets() gets the containers current insets

list() useful method to find out what is inside a container

(privilege user) and in columns (u) the (id user).
The second one is the reconfiguration table (RT)
that contains in lines (r) reconfigurations identifiers
(id recon f) and in columns (c) the identifiers of
RA2DL components (id RA2DL). This mechanism
may be represented by a triplet (S,C,Msc) where S
denotes the service, C denotes the RA2DL compo-
nent (or RA2DL-pool) and Msc that maps each pair
(C and S) to a set of access rights.

Figure 3 presents the sequencing of the interaction
between the RA2DL components and the RA2DL-
Pool. The main goal is to show this interaction and
how to apply authentication and access control mech-
anisms.

Figure 4 highlights the activity of these two mech-
anisms and tests in order to achieve a secure RA2DL
component.

4.3 Architecture of Secured
RA2DL-based Pools

We present in Figure 5 the class diagram of the se-
cured RA2DL-based pool. This diagram represents
the architecture of RA2DL-based pools with the static
aspect of the relation between the RA2DL compo-
nents and the pool. It does not provide any informa-
tion about its behavior. The architecture of secured
RA2DL-based pools is composed of the following
distinct classes: (i) RA2DL : The main class of the
architecture, the component concerned by the secu-
rity concept, (ii) RA2DL− Pool: It is the container
of RA2DL components, (iii) Security: Is an associa-
tion between RA2DL and RA2DL-Pool which repre-
sents the security-mechanisms, (iv) RA2DL−So f t: It
is the software component of RA2DL, (v) RA2DL−

ENASE 2016 - 11th International Conference on Evaluation of Novel Software Approaches to Software Engineering

106

Figure 3: Sequence diagram.

Figure 4: Activity diagram.

Hard: It is the hardware component of RA2DL, (vi)
Algorithm: Is a set of methods to be executed by each
RA2DL component, (vii)Recon f iguration: Repre-
sents all of the reconfiguration scenarios to execute
with RA2DL, (viii) Architecture: Describes the re-
configuration scenarios that touch on the RA2DL ar-
chitecture, (ix) Structure: Describes the reconfigu-
ration scenarios that touch on the RA2DL composi-
tion or structure,(x) Data: Describes the reconfigu-
ration scenarios that touch on the RA2DL data, (xi)
EventPort: Port for input/output event of RA2DL,
(xii) DataPort: Port for input/output data of RA2DL.

4.4 Modelling and Verification

We propose in this section the modelling and verifica-
tion of the new architecture of secured RA2DL-based

pools by using UPPAAL (Bengtsson et al., 1996).
Firstly, we model the pool with its security aspect.
Secondly we check a set of properties to ensure the
security of the pool.

4.4.1 Modelling of Secured RA2DL-based Pool

The modelling of the RA2DL-based pool with the se-
curity aspect is described by the state machine pre-
sented in Figure 6.

The states of this model are described as fol-
lows: start to start the querying or the connection of
RA2DL− pool. Controller represents the first con-
tact with the pool, in this state the checking of id user
is important after verification of the password user
in the table UT . If the authentication is accepted
and the password is checked, it can go to the state
Recon f iguration which represents all the reconfig-
uration scenarios. After the verification of the fol-
lowing parameters: (i) id sr for the IDs of scenarios,
privilege user for the privilege of the user in the table
ST and (iii) id recon f for the IDs of the reconfigura-
tion in the table RT . If all of the IDs are accepted,
then the user may apply the reconfiguration in the tar-
get RA2DL component after checking the id RA2DL.
A database is associated to this level to facilitate the
reconfiguration of the RA2DL components.

4.4.2 Verification of Secured RA2DL-based Pool

We propose the following properties in order to verify
the security of the RA2DL components.

- Property 1: (Controller[].check id user)AND
(UT[].check passeword user): for each connection
with the pool, we should check the user authentifi-
cation by using the UT table,

- Property 2: (Reconfiguration[].check id sr)
AND (RT[].check id reconf): before the execution of
any reconfiguration scenario, it is important to check
if it is registered in the reconfiguration table (RT),

- Property 3: (Reconfiguration[].Reconfigure!
⇒ RA2DL[].check id RA2DL) AND (ST[].check
privilege user): this property concerns the verifica-
tion of the access control mechanism,

- Property 4: RA2DL[].save ⇒
Database[].check id db: each RA2DL compo-
nent should be imperatively saved in a Database
to facilitate the use of RA2DL components and to
minimize the execution time,

- Property 5: (Controller[] AND Reconfigura-
tion[] AND RA2DL[] AND Database[] AND ST[]
AND RT[] AND UT[]) not deadlock: the system is
deadlock-free.

The verification of these properties is summarized
in Table 2.

RA2DL-Pool: New Useful Solution to Handle Security of Reconfigurable Embedded Systems

107

Figure 5: Architecture of a secured RA2DL-based pool.

Figure 6: Modelling of Secured RA2DL-Based Pools.

Table 2: Verification results.

Property Result Time (sec) Memory (Mo)
Property 1 True 10.52 5.72
Property 2 True 9.12 4.82
Property 3 True 5.32 3.20
Property 4 True 13.25 6.56
Property 5 True 8.23 4.37

5 CASE STUDY AND
IMPLEMENTATION

We use as a running example in the current paper the

body-monitoring system (BMS) to evaluate the pa-
per’s contribution.

5.1 Case Study: Body-Monitoring
System (BMS)

During the last few years there has been a signifi-
cant increase in the number and variety of wearable
health monitoring devices ranging from simple pulse
monitors, activity monitors, and portable Holter mon-
itors, to sophisticated and expensive implantable sen-
sors. The Body-Monitoring System (BMS) (Huse-
mann et al., 2004) is designed as a mobile device that
is able to collect measured data and to act according to

ENASE 2016 - 11th International Conference on Evaluation of Novel Software Approaches to Software Engineering

108

instructions set by a supervisor. The system consists
of a body-monitoring network. In order to recognise
the monitored person’s state, the monitor unit con-
nects to various body sensors and i/o devices by using
either wired or wireless communication technologies.
Data from all sensors are collected, stored and anal-
ysed at real-time and, according to the analysis, ac-
tions may then be performed. A computer is used as
an interface to the body-monitoring network, and de-
veloped software allow a supervisor to configure the
monitor unit for the monitored person, to connect sen-
sors and i/o devices, define and upload instructions for
monitoring and download collected data (Figure 7).

The monitor unit software consists of a commu-
nication module (responsible for connecting and con-
trolling sensors, and for gathering and pre-processing
measured data), a storage module (for storage of col-
lected data), and a policy interpretation module re-
sponsible of controlling the behaviour of the monitor
unit according to instructions defined by a supervisor.

To secure this system, we must take into account
these steps: (i) make the grouping of RA2DL compo-
nents according to similar characteristics in RA2DL-
Pool. (ii) assign for each RA2DL-pool a security
level (depending on the degree of importance of the
RA2DL components that they contain). (iii) allocate
for each RA2DL-pool a security mechanism.

Figure 7: Overview of the Body Monitoring System
(Bielikov, 2002).

Running Example: We group the RA2DL com-
ponents of BMS system in five RA2DL-Pools as
shown in Figure 8. (i) RA2DL-Pool 1: includes
the following RA2DL components: RA2DL-G for
the Glucose detection, RA2DL-C for the chloride
detection and RA2DL-W for the water detection.(ii)
RA2DL-Pool 2: includes the following RA2DL
components: RA2DL-L for the lactate detection and
RA2DL-PH for the PH detection. (iii) RA2DL-
Pool 3: includes the following RA2DL components:
RA2DL-DM for the Diabetes mellitus detection and
the RA2DL-BP for the Blood pressure. (iv) RA2DL-
Pool 4: contains the display device which is the com-
ponent RA2DL-Mobil. (v) RA2DL-Pool 5: contains
the RA2DL-Soft for the transmission of data with a
protocol until RA2DL-Mobil.

5.2 Implementation

We present in this section the tool of the BMS sys-
tem that we developed in LISI Laboratory at IN-
SAT Institute of University of Carthage in Tunisia
and CEDRIC Laboratory at National Conservatory of
Arts and Crafts of Paris in France. We assume five
pools with their parameters such as the number of
RA2DL components in pool, Worst Case Execution
Time (WCET), the authentication and the access con-
trol mechanisms (Figure 9).

Figure 10 shows the connectivity test of the differ-
ent pools according to the authentication mechanisms
and also to check the configuration between the vari-
ous RA2DL components in each pool.

Running Example: The application of our ap-
proach to the BMS case study is illustrated in Table
3, where we give a security level (S.L) for the five
pools depending on the sensitivity of the comprising
components. In the BMS system, the RA2DL-pool 3
is the most secured and RA2DL-pool 1 is the less se-
cured one. Both security mechanisms are applied to
the five pools.

Table 3: Running example.

S.L Authen. AccessControl Security
Pool 1 1 No Yes Yes
Pool 2 2 Yes No Yes
Pool 3 6 Yes Yes Yes
Pool 4 5 Yes Yes Yes
Pool 5 5 Yes Yes Yes

5.3 Evaluation

This step is devoted mainly to test our approach and
evaluate the execution time. Ten assessments are ap-
plied to the two mechanisms that are focused on two
stolen: RA2DL without pool and RA2DL with pool
of the BMS system. We show in Figure 11 the re-
sults of the evaluation. We are interested in response
time gains for secured and not secured RA2DL com-
ponents.

The proposed approach has the following advan-
tages:

(a) Functionality: RA2DL component in
RA2DL− Pool are at a functional level much more
adaptable and extendable than traditional RA2DL
components.

(b) Reusability: A reusability is an important
characteristic of a high-quality RA2DL component.
Programmers should design and implement RA2DL
components in such a way that many different pro-
grams can reuse them.

RA2DL-Pool: New Useful Solution to Handle Security of Reconfigurable Embedded Systems

109

Figure 8: Object diagram of BMS.

Table 4: Comparison between Pool and Docker.

Pool Docker
Main Goal Secure RA2DL Component Lightweight virtualized environent for portable applications
Continent RA2DL component Applications
System RA2DL-Based system OS

Relationship Between Them Yes No
Security Mechanism Yes No

Figure 9: RA2DL-Pools of BMS system.

Figure 10: Test of Authentification mechanism.

(c) Maintainability: In BMS system a piece of
functionality ideally is implemented just once. It is
self-evident that this results in easier maintenance of

Figure 11: Result of evaluation.

system, which leads to lower cost, and a longer life.
We shows in Table 4 a comparative study between

our approach Pool containers and Docker containers.

6 CONCLUSION

This paper deals with new solutions for a required
security in adaptive RA2DL control based systems.
Firstly, we define a new grouping methodology
named RA2DL-Pool which has its own methods for
the grouping and security techniques. Secondly, we

ENASE 2016 - 11th International Conference on Evaluation of Novel Software Approaches to Software Engineering

110

propose two important mechanisms to control the se-
curity in pools. Finally their implementation is ap-
plied to a Body-Monitoring system (BMS). The fu-
ture work will deal with the flexibility in the network
that links different devices of RA2DL-based systems.
In addition, we will be interested either in the different
real-time aspects of RA2DL or in the run-time tests of
components once deployed on the target devices.

REFERENCES

Adaili, F., Mosbahi, O., Khalgui, M., and Bouzefrane, S.
(2015). New solutions for useful execution models
of communicating adaptive ra2dl. In Intelligent Soft-
ware Methodologies, Tools and Techniques, volume
532, pages 87–101. Springer International Publishing.

Bengtsson, J., Larsen, K., Larsson, F., Pettersson, P., and Yi,
W. (1996). Uppaal: A tool suite for automatic verifica-
tion of real-time systems. pages 232–243, Secaucus,
NJ, USA. Springer-Verlag New York, Inc.

Bernstein, D. (2014). Containers and cloud: From lxc
to docker to kubernetes. Cloud Computing, IEEE,
1(3):81–84.

Bielikov, M. (October 2002). A body-monitoring system
with eeg and eog sensors. Journal of ERCIM News
No. 49.

Brereton, P. and Budgen, D. (2000). Component-based sys-
tems: a classification of issues. Computer, 33(11):54–
62.

Cai, X., Lyu, M., Wong, K.-F., and Ko, R. (2000).
Component-based software engineering: technolo-
gies, development frameworks, and quality assur-
ance schemes. In Software Engineering Confer-
ence, 2000. APSEC 2000. Proceedings. Seventh Asia-
Pacific, pages 372–379.

Clements, P. C. (1996). A survey of architecture descrip-
tion languages. In Proceedings of the 8th Interna-
tional Workshop on Software Specification and De-
sign, IWSSD ’96, pages 16–, Washington, DC, USA.
IEEE Computer Society.

elena Rugina, A., Kanoun, K., and Kaniche, M. (2006).
An architecture-based dependability modeling frame-
work using aadl. In In 10th IASTED International
Conference on Software Engineering and Applica-
tions SEA2006.

F.Adaili, O.Mosbahi, M.Khalgui, and S.Bouzefrane (2015).
Ra2dl: New flexible solution for adaptive aadl-based
control components. In Proceedings of the 5th In-
ternational Conference on Pervasive and Embedded
Computing and Communication Systems, pages 247–
258.

Hansson, J., Feiler, P. H., and Morley, J. (2008). Building
secure systems using model-based engineering and ar-
chitectural models. CrossTalk: The Journal of De-
fense Software Engineering, 21(9).

Husemann, D., Steinbugler, R., and Striemer, B. (2004).
Body monitoring using local area wireless interfaces.
US Patent App. 10/406,865.

J. Alves-Foss, W. S. Harrison, P. O. and Taylor, C. (2006).
The mils architecture for high assurance embedded
systems. International Journal of Embedded Systems.

Jürjens, J. (2002). Umlsec: Extending uml for secure sys-
tems development. In Proceedings of the 5th Inter-
national Conference on The Unified Modeling Lan-
guage, UML ’02, pages 412–425, London, UK, UK.
Springer-Verlag.

Kocher, P., Lee, R., McGraw, G., and Raghunathan, A.
(2004). Security as a new dimension in embedded
system design. In Proceedings of the 41st Annual De-
sign Automation Conference, DAC ’04, pages 753–
760, New York, NY, USA. ACM. Moderator-Ravi,
Srivaths.

Mouratidis, H., Kolp, M., Faulkner, S., and Giorgini, P.
(2005). A secure architectural description language
for agent systems. In Proceedings of the Fourth In-
ternational Joint Conference on Autonomous Agents
and Multiagent Systems, AAMAS ’05, pages 578–
585, New York, NY, USA. ACM.

MS, A. (2008). Security needs in embedded sys-
tems. Cryptology ePrint Archive, Report 2008/198.
http://eprint.iacr.org/.

Ray, A. and Cleaveland, R. (2006). A software architec-
tural approach to security by design. In 30th An-
nual International Computer Software and Applica-
tions Conference, COMPSAC 2006, Chicago, Illinois,
USA, September 17-21, 2006. Volume 2, pages 83–86.

Ren, J. and Taylor, R. (2005). A secure software architec-
ture description language. In Workshop on Software
Security Assurance Tools, Techniques, and Metrics,
pages 82–89.

Salem, M. O. B., Mosbahi, O., Khalgui, M., and Frey,
G. (2015). Zizo: Modeling, simulation and verifica-
tion of reconfigurable real-time control tasks sharing
adaptive resources - application to the medical project
bros. In Proceedings of the International Conference
on Health Informatics, pages 20–31.

Vergnaud, T., Pautet, L., and Kordon, F. (2005). Using the
aadl to describe distributed applications from middle-
ware to software components. In Reliable Software
Technology - Ada-Europe 2005, 10th Ada-Europe In-
ternational Conference on Reliable Software Tech-
nologies, York, UK, June 20-24, 2005, Proceedings,
pages 67–78.

Yoon, E., Lee, W., and Yoo, K. (2007). Secure pap-
based RADIUS protocol in wireless networks. In Ad-
vanced Intelligent Computing Theories and Applica-
tions. With Aspects of Contemporary Intelligent Com-
puting Techniques, Third International Conference on
Intelligent Computing, ICIC 2007, Qingdao, China,
August 21-24, 2007. Proceedings, pages 689–694.

RA2DL-Pool: New Useful Solution to Handle Security of Reconfigurable Embedded Systems

111

