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Abstract: A complex population-based solution algorithm for an uncertain decision making problem is presented. The 
uncertain version of a permutation flow-shop problem with interval execution times is considered. The 
worst-case regret based on the makespan is used for the evaluation of permutations of tasks. The resulting 
complex minmax combinatorial optimization problem is solved. The heuristic algorithm is proposed which 
is based on the decomposition of the problem into three sequential sub-problems and employs a paradigm of 
evolutionary computing. The proposed algorithm solves the sub-problems sequentially. It is compared with 
the fast middle point heuristic algorithm via computer simulation experiments. The results show the 
usefulness of this heuristic algorithm for instances up to five machines. 

1 INTRODUCTION 

Investigation of uncertain versions of decision 
making problems has a long history. Such problems 
being closer to real-world applications are more 
complex and difficult to solve. Three issues (Is) are 
crucial when considering uncertain problems: the 
representation of uncertainty (I1), the evaluation of 
arisen uncertain decision making problems (I2), and 
the determination of corresponding solution 
algorithms (I3). A variety of approaches are 
presented and discussed in the literature on all 
mentioned issues. Their particular combinations lead 
to plenty specific and mostly difficult complex 
decision making problems. It is worth noting when 
referring to issue I1 that representations of 
uncertainty in the form of probability distributions 
and the ones based on fuzzy sets and logic seem to 
be predominant (Dutt and Kurian, 2013; Aayyub and 
Klir, 2006; Klir, 2006). It is assumed that a 
probability distribution exists over the space of all 
values of corresponding random variables. This 
representation is treated as the objective one as the 
probability distribution and derivative descriptions 
can be empirically verified. Substantial difficulties 
with the determination and (or) the estimation of 
mentioned probabilistic descriptions, which require 
considerable and credible empirical data, is the main 
disadvantage of this popular representation. Other 
important drawbacks are discussed in (Kouvelis and 

Yu, 1997). For the fuzzy approach, the availability 
of experimental data on the uncertainty can be 
replaced by experts’ opinions in the form of 
corresponding membership functions. In a 
consequence, the quality of this subjective 
representation as well as of following activities 
based on it strongly depends on an expert’s quality. 
Mentioned shortcomings of both popular 
representations have motivated many researchers to 
develop other approaches which cope with the 
uncertainty more adequately. One of such an 
approach is used in the paper. The main idea of the 
evaluation of uncertainty as the second mentioned 
issue (I2) consists first of all in the substantiation 
(determinization) of the uncertainty. The main idea 
of such a substantiation consists in transformation of 
an uncertain problem into its deterministic 
counterpart. Taking the expected value for the 
probabilistic representation, when selected 
probabilistic distribution reflects the uncertainty, is a 
good example of the substantiation. Other frequently 
used operators of the substantiation can be found 
e.g. in (Yager, 1988). Having the deterministic 
problem as the result the issue I3 arises. In fact, all 
feasible solution methods and resultant solution 
algorithms can be considered, i.e. exact, 
approximate as well as heuristic ones. 

It is obvious that the choice and justification of 
the formalization approach and the solution 
algorithm for an unceratin decision making problem 
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depend strongly on the problem per se as well as its 
complexity and computational difficulty. 
Considerations in the paper are limited to the area of 
uncertain combinatorial optimization problems with 
the parametric uncertainty. It means that for a 
combinatorial optimization problem not all 
parameters are known, precise, evident or given. The 
permutation flow-shop with unlimited buffers to 
minimize the makespan is considered, e.g. (Pinedo, 
2008). It is one of the most important task 
scheduling problems with many applications mainly 
in manufacturing, production, logistic and service 
systems, but also in information and computing 
systems. Generally speaking, the problem deals in 
the execution of a finite number of complex tasks by 
a finite number of executors (machines, processors). 
Each task requires the carrying-out of the same 
number of operations, being parts of tasks, which 
equals the number of executors. The exact mapping 
of executors to operations within tasks is given. A 
permutation of tasks is sought minimizing defined 
criterion for a given execution times of operations 
by corresponding executors. The completion time of 
the last task last operation in the permutation plays 
often a role of such criterion. An assembly process 
of a product performed along a production line is a 
good example of the investigated flow-shop 
problem. Then, the order of carried-out products 
should be determined to minimize the total 
production time. The non-deterministic versions of 
flow-shop without full information on execution 
times are also a subject of many research works, e.g. 
(Pinedo and Schage, 1982; Kouvelis et al, 2000; 
Averbakh, 2006; Kasperski and Zielinski, 2008). 

A specific junction of the mentioned three issues 
I1, I2 and I3 is proposed in the paper to solve the 
uncertain optimal decision making problem 
(optimization problem). Namely, it is assumed that 
execution times of tasks by machines are uncertain 
(not fully known). However, the information on their 
ranges in the form of intervals is only given. The 
uncertainty in execution times cause 
straightforwardly the uncertainty of the criterion 
being the deterministic evaluation of the flow-shop 
problem considered. The regret based approach is 
proposed to make possible the evaluation of 
resultant optimization problem. The notion ‘regret’ 
assesses the difference between the value of criterion 
for fixed realization (scenario) of uncertain 
parameters and the optimal value of criterion – for a 
given decision (optimization variable). The 
application of the regret based approach is 
recommended for the interval uncertainty (Kouvelis 
and Yu, 1997; Aissi et al, 2009), however, resulting 

deterministic combinatorial optimization problem is 
extremely complex and difficult. As it has been 
pointed out, the regret requires substantiation of the 
criterion evaluating a decision with respect to all 
feasible scenarios of uncertainty to have the 
deterministic evaluation of a decision. In the paper, 
the substantiation via maximization is proposed 
which expresses the utmost pessimism od a decision 
maker (in fact, a decision algorithm) with respect to 
scenarios of uncertainty (execution times for the 
considered flow-shop) which can occur but are not 
known while making a decision. It leads to worst-
case i.e. robust decisions on the one hand but safe 
decisions on the other hand. The solution algorithm 
determined on such a basis will perform well 
irrespective of the actual scenario of uncertainty. 
However, it can work fairly when medium scenarios 
of uncertainty will take place. The substantiation via 
averaging seems to be more adequate for such cases 
which, however, can give poor results for extreme 
scenarios of uncertainty. The substantiation via 
maximization is used hereinafter. 

In the paper, a bespoke hybrid heuristic solution 
algorithm is proposed to solve the uncertain problem 
(issue I3). As it is presented in following sections, 
the consequent unceratin flow-shop is extremelly 
difficult combinatorial optimization problem, at least 
NP-hard one. The rechearches have been focused on 
developing of time-effective solution algorithms 
appropriated for real-world applications. A hybrid 
heuristic algorithm is the result of presented 
investigations. The evolutionary computing as an 
important paradigm of the computational 
intelligence has been employed as the basis for the 
developed algorithm. 

The uncertain flow-shop problem has been firstly 
stated in (Kouvelis and Yu, 1997). Then it has been 
investigated in some works. Its NP-hardness was 
proved in (Kouvelis et al, 2000) where a branch-
and-bound algorithm and a heuristic procedure 
based on a local improvement were also developed. 
Particular attention has been paid in this paper to the 
elaboration of approximate and heuristic time-
efficient solution algorithms. Some computational 
complexity properties were also investigated in 
(Kasperski et al, 2012) for the case with discrete 
bounded and unbounded scenario sets. The case of 
the problem with only two tasks and m machines 
was presented in (Averbakh, 2006) where a linear-
time algorithm is given. The evolutionary heuristic 
algorithm for the case of three machines was 
considered in (Ćwik and Józefczyk, 2015). 

The main contribution of the paper deals with 
proposing and experimentally evaluating of a time 
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effective hybrid heuristic solution algorithm for 
more than three machines. Former works on minmax 
regret problems, in general, and on minmax regret 
flow-shop problems, in particular, considered mainly 
theoretical issues for special cases, e.g. (Averbakh, 
2000; Lebedev and Averbakh, 2006; Conde, 2010; 
Volgenant and Duin, 2010; Lu et al, 2012). The 
results, which can be found there, do not allow us to 
have constructive tools for solving real-world 
problems, in general, and permutation flow-shop 
problems with interval execution times to minimize 
the makespan, in particular. The algorithm presented 
in the paper fills this gap for the uncertain flow-shop 
and refers to analogous works where time-effective 
algorithms for other minmax regret problems with 
interval uncertainty are presented, e.g. (Józefczyk, 
2008; Józefczyk and Siepak, 2013a,b; Siepak and 
Józefczyk, 2014; Averbakh and Pereira,. 2011; 
Pereira, 2016) 

To sum up, the decision making under 
uncertainty is a subject of the paper. In particular, 
the complex combinatorial NP-hard optimization 
problem is solved via hybrid heuristic population-
based solution algorithm. This algorithm can be 
treated as a complex tool of computational 
intelligence. 

The reminder of the paper is organized as 
follows. Deterministic and uncertain versions of the 
flow-shop investigated are stated in Section 2 as the 
combinatorial optimization problems. The idea for 
the solution algorithm together with the detailed 
presentation of its three component sub-algorithms 
are given in Section 3. The next section presents 
results of computer simulation experiments 
evaluating the algorithm. Section 5 with conclusions 
completes the paper. 

2 PROBLEM FORMULATION 

The flow-shop task scheduling problem is 
investigated with a set }...,,,,,{= 21 mi MMMM …M  
of m  machines which are assigned for performing n 
tasks constituting a set of tasks 

}...,,,,,{= 21 nj JJJJ …J . Each task from the set J 
needs to be sequentially carried out by all executors 
from the set M. For the permutation version of flow-
shop, which is only investigated in the paper, each 
machine executes tasks in the same order. Moreover, 
the version with unlimited buffers is considered 
which means that the task after being completed by 
the current machine can leave it and wait if 
necessary for the service by the next machine at the 

buffer located there. Let us denote by ijp  execution 
times of task j by executor i for mi ...,,2,1=  and 

nj ..,,2,1=  which form the matrix
nj
miijpp

,...,2,1
,...,2,1][

=
== . 

A part of the task performed by a single machine is 
called often an operation. Then the problem consists 
in the determination of a permutation of tasks 

)...,,...,,,( 21 nj πππππ =  to minimize the 
makespan, i.e. the completion time of the last task 
from permutation π  by the last machine. The 
current element jπ  of π  is the number of task 
executed as the jth in turn, and Π∈π  where Π  is 
the set of all !n  feasible permutations, i.e. 

}},...,,2,1{,,:{ kjnkjkj ≠∈≠= πππΠ . The 

makespan ),(max πpC  as the function of p and π  
can be written in different ways (e.g. Pinedo, 2008). 
However, the following recursive form seems to be 
the most popular. Let ),(, ππ pC

ji  be the time 
moment when ith machine finishes the execution of 
task jπ : 

],),(,),(max[=),(
1,,1,, πππ ππππ pCpCppC

jjjj iiii −−+

mi ...,,3,2= , nj ...,,3,2= . 
(1)

Moreover,  

,...,,2,1,=),(
1

,, 11
mippC

i

k
ki =∑

=
ππ π  (2)

and 

....,,2,1,=),(
1

,1,1 njppC
j

k
kj

=∑
=

ππ π  (3)

In a consequence, ),(),( ,max ππ π pCpC
nm= . The 

deterministic flow-shop task scheduling problem 
deals with the determination of such Π∈π  to 
minimize ),(max πpC . The optimal permutation π ′  
as well as the optimal makespan 

),()( maxmax π′=′ Δ pCpC  is obtained. This problem is 
NP-hard for 2>m . The polynomial optimal 
Johnson’s algorithm exists for 2=m  (Garey et al, 
1976).  

Let assume now that crisp values of execution 
times ijp  are not known and given. Instead, 
intervals for ijp  with possible values of 
corresponding execution times are available as only 
information of these times. Namely, 

ijijijijij ppppp ≤∈ ],,[ . Now, matrix p called a 
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scenario is an element of the Cartesian product of all 
scenarios ],[...],[

11 mnmnij pppp ××=P , i.e. P∈p . 

The vagueness of p makes it impossible to directly 
use the makespan ),(max πpC  as the evaluation 
function of π . The approach based on regret is 
applied. The regret  

),(min),(
)(),(

maxmax

maxmax

σπ
π

σ
pCpC

pCpC

Π∈
−=

′−
 (4)

is the difference between the value of makespan and 
the optimal value of the makespan for fixed p. It is 
calculated for current p and π . The regret requires 
substantiation according to scenarios. The worst-
case with respect to p has been chosen in the form of 
the maximization which gives the criterion 

)],(min),([max)( maxmax σππ
σ

pCpCz
p Π∈∈

−=
P

. (5)

Consequently, the uncertain version of the flow-shop 
task scheduling consists in finding such optimal 
permutation ∗π  that 

⎟
⎠
⎞⎜

⎝
⎛ −=

∈∈∈
)],(min),([maxmin)( maxmax

* σππ
σπ

pCpCz
p ΠΠ P

(6)

for given M, J, ,..,,2,1,, ,,
mipp jiji

=  nj ..,,2,1= . 

3 SOLUTION ALGORITHM 

The problem (6) called hereinafter P is NP-hard 
even for 2=m  (Lebedev and Averbakh, 2006). It is 
easy to see that (6) is composed of three nested 
optimization sub-problems: 
– SP1: inner minimization of ),(max σpC  with 
respect to permutation σ , being the deterministic 
flow-shop, 
– SP2: maximization with respect to feasible 
scenarios p, i.e. searching for so called worst-case 
scenario, and at the same time calculating the value 
of criterion for SP3, 
– SP3: outer minimization with respect to 
permutation π . 

The majority of results presented in the 
corresponding literature refer to cases where SP1 is 
easy, i.e. solvable by polynomial algorithms as well 
as worst-case scenarios as the solution of SP2 can be 
determined either in an intuitional way or by the 
reduction to easy optimization problems. 
Nevertheless, it is not a case of this paper’s problem.  

Now, the problem (6) is a composition of 
individually difficult optimization sub-problems 

making P extremely difficult issue. In a 
consequence, it is easy to justify the lack of any 
approximate algorithm for P (Ćwik and Józefczyk, 
2015). So, heuristic algorithms are only possible to 
solve problem P in a reasonable time. Such an 
heuristic algorithm called ALG is proposed in the 
paper. To develop it, some simplifications have been 
assumed while solving SP1-SP3. First of all, SP1-
SP3 are solved independently and successively by 
corresponding individual sub-algorithms. As the 
result, we have admittedly a heuristic algorithm but 
working in a reasonable and acceptable time. The 
main idea for the algorithm ALG solving P is based 
on the assumption that SP3 is solved by known 
metaheuristics with the dedicated way of calculating 
the value of )(πz  being the criterion for the 
metaheuristics. Let us present the sub-algorithms 
successively. 

3.1 Sub-algorithm for SP1 

The solution of SP1 is replaced by its lower bound 
in the form 

)minmin(max

)(

1
,

,
,11

,

1

1
,,1,1

LBmax,

∑∑∑
+=≠

==

−

===
++=

m

ki
li

l
nl

n

j
jk

k

i
jinjmk

ppp

pC

 (7)

where first and third elements of the maximum 
reflect respectively the following properties:  
– at least one task needs to be processed on all 
machines indexed from 1 to k – 1 before the kth 
machine starts processing operation, unless 1k = , 
– after ith machine completes the processing, there is 
at least one task that needs to be processed on 
machines indexed from k + 1 to m, unless k m= . 

We can take the highest value with respect to all 
machines as the fact that (7) holds for all machines. 
The details on this lower evaluation of )(max pC′  can 
be found in (Ćwik and Józefczyk, 2015). Such a 
form of the lower bound is used by the procedure 
calculating approximate value of (5) in SP2.  

3.2 Sub-algorithm for SP2 

The purpose for SP2 is to calculate the value of 
function z for the worst-case scenario. For many 
minmax regret problems, it is enough only to 
consider extreme point scenarios while searching the 
worst-case scenarios, i.e.: 

}),{(, ijpijpijpji ∈∀ . (8)
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Calculation of max ( , )C p π  can be easily 
substituted with the determination of length of the 
longest path between 

11,v π  and , nmv π  in a directed 
graph G (V,A) defined by the solution π where V 
and A are set of vertexes and arcs, respectively. Each 
vertex , jiv π  corresponds exactly to an individual 

execution time of task jπ  executed by machine i. 
Therefore, its weight is equal to , jip π . Set A consists 
of arcs connecting vertices corresponding to 
subsequent operations of the same task 

),( ,1, jj ii vv ππ + , for 0 < i< m) and of operations 
performed subsequently on the same machine 

),(
1,, +jj ii vv ππ , for 1< j< n). Assuming that processing 

times of operations are unknown, all possible paths 
between 

11,v π  and , nmv π  represent all possible ways of 

calculating max ( , )C p π . Therefore, we can associate 
each of those paths with a separate scenario. Let us 
denote path r as a sequence of vertices that belong to 
it. Then, we can construct scenario rp  as follows: 

}.for,

for,:{

rvpp

rvpppp

ijijij

ijijijij
r

∉=∧

∈==
 (9)

As it has been shown in (Ćwik and Józefczyk, 
2015), this way we can limit the search from 
checking all 2mn  extreme points scenarios to 

( )
( ) ( )

2 !
1 ! 1 !

m n
m n

⎛ ⎞+ −
⎜ ⎟⎜ ⎟− −⎝ ⎠

 paths that exist in G. Then, a simple 

enumeration has been applied for such decreased 
number of paths, which consists in checking all 
feasible paths. This approach turned out effective 
only for three machines ( 3=m ). Therefore, the 
heuristic time-effective procedure is now proposed 
to enable its applicability for more than three 
machines. The idea is as follows. For each vertex , jiv π  
in graph G, we construct a path from vertex 

11,v π . 
Obviously, there is only one possible path for i = 1 or 
j = 1. Therefore, the construction is trivial. For i > 1 
and j > 1, we can see that the path to , jiv π  needs to 
contain one of the two vertices: 1, jiv π− , 

1, jiv π −
. 

Assuming that the path to each of them has already 
been constructed, we add the last vertex , jiv π  and 
choose the path which yields a greater value of z as a 
constructed path for vertex , jiv π . After processing all 
the vertexes in such a manner, the procedure returns 
constructed path for , nmv π  together with the 

corresponding value of z denoted as z~ . In a 
consequence, sub-algorithm for SP2 comprising this 
procedure is summarized by the following pseudo-
code. 
Input: Graph G(V,A) generated by 
feasible solution π . 

Output: Heuristic value of )(πz  denoted 

as )(~ πz . 
1: Set empty matrix cp 
2:  for ni ≤  
3:   for mj≤  
4:    if i==1 or j==1 
5:     cp[i][j]:= p_r(v[1][1],v[i][j]) 
6:    else: 
7:     prev1 := cp[i-1][j] 
8:     prev2 := cp[i][j-1] 
9:     c1 := prev1 + v[i][j] 
10:    c2 := prev2 + v[i][j] 
11:    if z(c1)>z(c2): 
12:     cp[i][j]:=c1 
13:    else: 
14:     cp[i][j]:=c2 
15:    endif 
16    endif 
17:  endfor 
18: endfor 
19: return ])][[(~ mncpz  

3.3 Sub-algorithm for SP3 

A standard simple evolutionary algorithm has been 
applied for solving SP3 as it has been presented in 
(Ćwik and Józefczyk, 2015).   

The values of permutation π  play directly a role 
of a chromosome. Due to the complexity of ( )z π , 
the outcome of the sub-algorithm for SP2 in the 
form of )(~ πz  is used as the fitness function.  

The initial population is constructed via the 
random generation of N permutations 
(chromosomes). The solution of the middle interval 
metaheuristics (MIH) is the basis for generation of a 
half of the population. Namely, a MIH-based 
permutation undergoes (N/2) – 1 independent 
random mutations to have in total (N/2)–element 
part of the initial population. The remainder of the 
initial population is filled with random permutations 
generated uniformly from the search space. MIH 
consists in the brute conversion of the uncertain 
interval problem into its deterministic counterpart by 
assuming the middles of intervals as deterministic 
processing times, i.e. 2/)(MIH

ijijij ppp += .  

The order crossover operator (Goldberg, 1989) 
has been employed to avoid the generation of 
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unfeasible permutations, so no repair algorithm is 
required. This operator is characterized by parameter 

crossP  being the probability of crossing over two 
selected chromosomes. Accordingly, 1 – crossP  is the 
probability of passing the two chromosomes to the 
next generation without any changes. The value of 
parameter requires tuning to ensure the best 
algorithm performance. 

A simple mutation operator has been also used. 
Firstly, it is randomly determined if the chromosome 
undergoes the mutation. The probability of the 
mutation mutP  is considered another parameter of the 
algorithm which is tuned. If the chromosome is 
decided to undergo the mutation, two random genes 
are swapped. 

All chromosomes from the population are 
selected to generate a new population. The 
population is sorted according to decreasing values 
of the fitness function. First two chromosomes are 
removed from the list and the result of their 
crossover is added to the new population. This 
process is repeated until the list is empty. 

The algorithm terminates when after 5 
subsequent iterations no correction is being observed 
between the best chromosomes from each 
population. The best chromosome of the last 
generation is returned as the solution π~ . The sub-
algorithm for SP3 is presented in the form of 
corresponding pseudo-code. 
Input: Matrices p  and p  of size nm×  

containing respectively lower and upper 
bounds of processing times. 
Output: Permutation π~  and value of 

criterion )~(~ πz .  
1: pop = Initialpopulation() 
2:  SortByFitFunc(pop) 
3:  repeat 
4:   nextgen = list of chromosomes 
5:   add(nextgen,pop[0]) 
6:   add(nextgen,pop[1]) 
7:   remove(pop,pop[0]) 
8:   remove(pop,pop[1]) 
9:   repeat: 
10:   ind=RemvoveFromPop(pop[0],pop[1]) 
11:   Sibs = Crossover(ind[1],ind[2]) 
12:   Mutate(Sibs[1]) 
13:   Mutate(Sibs[2]) 
14:   add(nextgen,Sibs[1]) 
15:   add(nextgen,Sibs[2]) 
16:  until(pop is empty) 
17:  pop = nextgen 
18:  SortByFitFunc(pop) 
19: until (Stop condition is fulfilled) 
20: return(pop[0], ( [ ])�z pop 0 ) 

The algorithm for P referred to as ALG obtained 
after merging the described sub-algorithms solving 
SP1-SP3 is in fact hybrid heuristic population-based 
one. 

4 NUMERICAL EVALUATION 
OF THE ALGORITHM 

The algorithm proposed is evaluated via computer 
simulation experiments performed using a PC with 
Intel Core i5 CPU processor of 2,53 GHz with 4GB 
of RAM. According to our best knowledge, there are 
no benchmarks in the literature for this problem 
which could be used for the comparison. Therefore, 
the own instances have been generated in the 
following way. For each of mn uncertain parameters 
(execution times), the lower bound 

,i j
p is randomly 

generated from the finite interval [0,K] with the 
uniform distribution. The upper bound ,i jp  is then 

generated from the finite interval 
, ,

,
i j i j

p p C⎡ ⎤+⎣ ⎦
 also 

with the uniform distribution where K and C are 
parameters of the experiments. The default values of 
algorithm parameters and problem parameters have 
been assumed as: 85.0cross =P , 15.0mut =P , N = 20, 
K = 100, C = 200. 

Values of criterion (6) as well as run times of 
algorithms are the basis for evaluation. The 
algorithm ALG is compared with the heuristic 
deterministic algorithm MIH. As it has been 
mentioned, MIH generates a solution to any interval 
data uncertain problem by solving the deterministic 
counterpart which is obtained by substituting all 
interval execution times of the problem with its 
interval middle points. The arisen deterministic 
problem is also NP–hard. Therefore, the NEH 
algorithm is applied as the solution tool (Nawaz et 
al, 1983). The solution of deterministic problem 

MIHπ  is returned as the solution of the uncertain 
problem together with the heuristic value of the 
criterion )(~ MIHπz  calculated by the sub-algorithm 
solving SP2. The results are presented in Tables 1–
3. Every numerical result in tables is the mean value 
of five independent instances randomly generated 
for fixed n and m from given matrices p  and p  of 
the bounds of interval processing times. Due to 
randomness of the evolutionary algorithm each 
instance is additionally repeated for this algorithm 
five times and the mean result is taken for every of 
five instances. In a consequence, every result of 
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Table 1: Computational results for m = 3. 

n MIH( )z π�  )~(~ πz  MIHT  T  
5 447.4 351.36 <0.001 0.309 
6 372.2 318.96 0.001 0.402 
7 419.8 372.16 0.001 0.600 
8 555.0 361.28 0.002 0.785 
9 639.0 405.0 0.003 1.093 

10 575.6 424.0 0.003 1.361 
11 667.6 470.8 0.004 1.294 
12 762.2 474.7 0.006 1.724 
13 730.8 473.3 0.007 1.892 
14 626.6 474.7 0.009 2.085 
15 834.8 509.5 0.011 2.459 
16 360.4 476.6 0.013 2.913 
17 839.4 510.8 0.016 3.643 
18 869.2 516.2 0.017 3.812 
19 999.6 510.0 0.021 3.876 
20 964.2 511.6 0.026 4.089 
21 1057.8 522.7 0.029 5.371 
22 918.0 538.6 0.032 5.623 
23 892.2 548.7 0.037 5.895 
24 922.8 522.3 0.040 5.273 
25 965.4 537.1 0.044 6.977 
26 1207.8 550.9 0.052 6.419 
27 886.4 540.6 0.056 8.583 
28 1252.8 553.6 0.063 8.548 
29 1433.4 559.8 0.070 8.941 
30 993.2 564.9 0.079 10.043 

Table 2: Computational results for m = 4. 

n )(~ MIHπz  )~(~ πz  MIHT  T  
5 488.6 392.4 <0.001 0.594 
6 599.6 476.1 <0.001 0.772 
7 765.8 643.4 0.002 1.147 
8 696.6 605.3 0.002 1.293 
9 667.4 548.3 0.003 1.686 

10 789.8 650.2 0.004 2.116 
11 791.6 621.2 0.005 2.941 
12 815.4 702.4 0.007 2.929 
13 1076.8 753.5 0.008 3.22 
14 906.2 723.2 0.010 3.350 
15 903.6 737.0 0.012 4.031 
16 1042.6 772.8 0.014 5.109 
17 1129.2 808.6 0.018 6.182 
18 1173.8 779.4 0.020 6.729 
19 1218 812.9 0.023 6.383 
20 1242 831.4 0.029 7.312 
21 1140.6 820.3 0.033 8.593 
22 1336.6 811.2 0.036 10.425 
23 1394.8 825.8 0.040 10.433 
24 1468.2 847.5 0.045 12.819 
25 1252.4 858.4 0.051 12.970 
26 1645.8 891.4 0.059 14.852 
27 1448.8 881.5 0.064 16.267 
28 1255.4 898.4 0.072 18.853 
29 1500.8 857.5 0.079 14.276 
30 1463.8 856.4 0.087 19.002 

Table 3: Computational results for m = 5. 

n )(~ MIHπz  )~(~ πz  MIHT  T  
5 622.4 544.7 <0.001 0.790 
6 742.2 629.8 0.002 0.987 
7 786.6 677.0 0.002 1.619 
8 917.8 790.0 0.003 1.758 
9 848.4 753.2 0.003 2.428 

10 909.4 806.1 0.005 2.607 
11 1032.6 845.7 0.006 3.541 
12 1051.4 879.6 0.007 4.259 
13 1121.8 983.3 0.009 5.238 
14 1073.2 940.6 0.012 5.007 
15 1241.4 1018.6 0.014 5.668 
16 1315.8 1088.4 0.017 7.327 
17 1357.4 1099.3 0.020 9.004 
18 1453.0 1068.6 0.024 10.628 
19 1381.8 1113.3 0.028 12.190 
20 1587.6 1153.0 0.030 12.271 
21 1616.4 1148.0 0.036 16.190 
22 1630.0 1158.2 0.044 18.645 
23 1681.8 1155.0 0.046 18.397 
24 1594.6 1175.2 0.054 17.910 
25 1586.4 1180.0 0.063 20.780 
26 1875.2 1214.9 0.067 23.18 
27 1721.6 1199.9 0.074 24.570 
28 1832.2 1201.7 0.083 26.622 
29 1917.0 1237.2 0.092 32.713 
30 2163.8 1207.3 0.104 40.000 

ALG is, in fact, the mean value of 25 independent 
random instances. The values of criterion as well as 
the run times in seconds for MIH and ALG are 
respectively denoted in corresponding columns of 
tables as )(~ MIHπz  and )~(~ πz  as well as MIHT and T. 

The results confirmed the usefulness of ALG in 
comparison with MIH from both the criterion z~  and 
the computational time points of view. It is 
necessary to point out that the values of criterion (5) 

for the resulting permutations MIHπ  and π~  were 
calculated by the sub-algorithm SP2, i.e. the values 
of z~  instead of z are the basis for this comparison. It 
turned out that ALG is substantially better than 
MIH. Namely, the relative improvement calculated 
as the ratio  

)~(~
)(~ MIH

π
π
z

z
 (10)

fluctuates from 1,11 to 1.79 (except the instance for 
m = 3 and n = 16 when MIH is better). The mean 
improvement for all instances is equal to 1.36. The 
computational time of ALG is fully acceptable 
however much longer than for MIH.  
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5 CONCLUSIONS 

The complex and extremely difficult combinatorial 
optimization problem, i.e. the uncertain permutation 
flow-shop with the makespan as criterion, has been 
investigated. The case of minmax regret with 
interval execution times has been considered. The 
nested three sub-problems have been solved 
independently by heuristic sub-algorithms. The 
algorithm of the whole optimization problem as the 
consecutive composition of all three sub-algorithms 
has been compared with the MIH metaheuristics 
which is often applied for minmax regret problems 
with interval data. MIH has good properties for 
many simple optimization problems. For example, it 
is 2-approximate algorithm for the special case of 
flow-shop problem considered in the paper with only 
two machines (m = 2). Therefore, this metaheuristics 
has been chosen as the basis for comparison. It is 
worth noting that the calculation of criterion for 
SP3, i.e. for the whole problem is also NP-hard. The 
comparison uses its approximate value z~ . 
Unfortunately, the relation between z and z~  is not 
known. This issue requires more profound studies. 
The preliminary considerations show the usefulness 
of z~  as the approximate value of the criterion for 
solution π~ . Namely, four very simple instances 
have been considered for m = 3 and 4 as well as 
n = 4 and 5. These instances have been solved by 
ALG as well as their optimal solutions have been 
derived by the brute force algorithm. The relative 
differences between both results in the sense of ratio 

)(/)~(~ ** ππ zz  analogous to (10) are presented in 
Table 4. The values of criterion z~  are worse than 

*z  no more than 1.30.  
The research of this problem is now continuing. 

For example, the instances for greater m and n are 
solved as well as more effective and faster sub-
algorithm for SP3 is verified. 

Table 4: Values of )(/)~(~ ** ππ zz for different m and n. 

m\n 4 5 
3 1.21 1.13 
4 1.30 1.14 
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