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Abstract: This note explores the current framework of information theory to quantify the amount of semantic content of
a given message is sent in a given communicative exchange. Meaning issues have been out of the mainstream
of information theory since its foundation. However, in spite of the enormous success of the theory, recent
advances on the study of the emergence of shared codes in communities of autonomous agents revealed that the
issue of meaningful transmission cannot be easily avoided and needs a general framework. This is due to the
absence of designer/engineer and the presence of functional/semantic pressures within the process of shaping
new codes or languages. To overcome this issue, we demonstrate that the classical Shannon framework can be
expanded to accommodate a minimal explicit incorporation of meaning within the communicative exchange.

1 INTRODUCTION

The exploration of the emergence of communication
has been a hot topic of research recent years (Hurford,
1989; Nowak, 1999; Cangelosi, 2002; Komarova,
2004; Niyogi, 2006; Steels, 2003). In particular, the
emergence of shared, non-designed codes between
autonomous agents pushed by selective pressures has
been a source of interesting results (Nowak, 1999;
Steels, 2001). In most of these studies, codes emerge
among agents by the need to communicate things
about the world they are immersed in. These agents
are autonomous, therefore, no designer or engineer
is explicitly behind the communicative exchanges en-
suring the correct transmission and interpretation of
the message. The role of code designer is taken by
evolution and its associated selective pressures. These
selective pressures apply at different levels: the stan-
dard information-theoretic level –the physical coding
and transmission of the events of the world shared by
the autonomous agents– and the semantic/functional
level. By this semantic/functional level we refer to
the content of the message, which, in turn, can be
split in two parts: 1) The relevance of the event to be
transmitted, a crucial issue in a selective framework
and 2) the proper referentiation of such event during a
communicative exchange (Corominas-Murtra, 2013)
-see figure (1). Both dimensions of the communica-
tive phenomenon will lead the functional response of
the agent and its potential success through the selec-
tive process. It is worth observing that these seman-
tic/functional issues are totally absent in standard in-
formation theory (Hopfield, 1994).

⇤⇤

⇤⇤

⇤⇤

⇤⇤

a)

b)

c)

d)

BA BA

BA
BA

Figure 1: The two problems of Shannon’s Information con-
cerning the simplest meaning transmission: Blindness of it
to i) internal hierarchy of relevance of events and ii) Ref-
erentiality conservation. We have a communication sys-
tem consisting on three objects Ω = {x1,x2,x3} appearing,
for the sake of simplicity, with equal probabilities, namely
p(x1) = p(x2) = p(x3) =

1
3 . The appearance of an object

is coded in some way by the coder agent A , passes through
the channel Λ and is decoded by the decoder agent B , which
gives a referential value to the signal received. Standard
mutual information does not distinguish between a) and b).
However, if we assume that the information contained in x1
is larger than the others, the same communication mistake
involving this object should be penalised higher in the over-
all information transfer. In c) and d) we depict the referen-
tiality problem. Mutual information is blind to referential-
ity mistakes. Only d) represents a perfect communication
schema where all semantic aspects are respected. In this pa-
per we derive the information-theoretic functional that ac-
counts for the internal hierarchy of relevance of events. By
accounting the semantic value or weight of each event to be
coded and sent through the channel, we derive the proper
functional able to distinguish between a) and b).

In this article we present a minimal incorpora-
tion of the semantics of elements in a given infor-
mation/theoretic functional, quantifying the amount
statistical bits properly transmitted plus the average
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semantic content of them in a given communicative
exchange between two autonomous agents. This pro-
vides a solution to problem 1) pointed out above con-
cerning meaning/functional issues in standard infor-
mation theory: The relevance of the event to be trans-
mitted -see figure (1). In this new framework informa-
tion becomes a 2-dimensional entity: on the one hand,
one has the classical Shannon information and, on the
other hand, one has the semantic information which
is carried by those statistical bits. The sum of both is
the total information transmitted, the amount of bits
which will be taken into account for the selective pres-
sures, presented in equation (11). Point 2), concern-
ing the conservation of the referential value, stems
from the conception of the dual nature of the commu-
nicative sign, a primitive kind of Saussurean duality
(Saussure, 1916; Hopfield, 1994; Corominas-Murtra,
2013) which considers the signal and the reference
as the fundamental unit to be conserved in a commu-
nicative exchange. The incorporation of such duality
in a consistent information-theoretic framework has
been already addressed in (Corominas-Murtra, 2013).
Crucially, this approach did not take into account any
meaning quantification, and this is the target of this
work.

The inclusion of meaning can be performed
through any justified quantification to the elements of
the world. In selective scenarios, meaning/functional
quantification may be understood as emerging from a
kind of language game, in Wittgenstein’s interpreta-
tion (Wittgenstein, 1953; Kripke, 1982; Steels, 2001).
This game would combine the interaction between the
environment and the autonomous agents with the in-
teraction among the autonomous agents themselves.
In a primary approach, one can attribute the meaning
quantification out of this language game to be tied to
the relevance of the functional response to the events
to be coded and transmitted. In general, and follow-
ing Wittgenstein’s footsteps, no absolute measure of
meaning quantification is assumed to be achievable,
and such a quantification, if possible, must be the out-
come of an agreement/consensus among the agents
under the conditions imposed by evolutionary pres-
sures. We point out that, in formal systems, stan-
dard approaches developed to quantify the amount of
information of abstract objects beyond the statistical
framework can provide solid formal background for
meaning quantification. As paradigmatic examples,
the approach to semantic information proposed by
Yehoshua Bar-Hillel and Rudolf Carnap over logical
systems (Carnap, 1953) or the theory of Algorithmic
Complexity to quantify the amount of information
required to describe a formal object (Kolmogorov,
1965; Chaitin, 1966; Li, 1997; Cover, 2001). To bet-

ter grasp the intuition behind this paper, let us stop a
while with an example of Bar-Hillel and Carnap’s se-
mantic information theory (Carnap, 1953). Roughly
speaking, the main idea underlying their approach
stems from the following observation: let us imag-
ine that we have a world made of two variables p,q
and that the ’state’ of the world is given by formulas:

p, q, p∨q, p∧q.

Now assume that the sender transmits events from the
world, as long as the formulas are satisfied, i.e., their
truth values, at a given point in time are 1. Undoubt-
edly, p∧q will contain much more information about
the state of the world than p∨ q. This happens be-
cause the conditions under which p∧ q is satisfied
are much more restrictive than the ones than satisfy
p∨q. This is classic work from (Carnap, 1953). Now
imagine that what we have a receiver which decodes
the message of the sender after a presumably noisy
channel. How much of the semantic information has
been transmitted? In other words, even p ∨ q and
p∧ q may have the same probability of appearing –
and therefore, the same weight in the computation
of the statistical information– is there a way to take
into account that p∧q contains more information, in
terms of message content? As pointed out above, if
the sender/receiver system is autonomous, being able
to perform such a distinction can make a difference
in terms, for example, survival chances in selective
scenarios.

Nevertheless, it is worth to emphasise that the
choice of the semantic framework is incidental, and
it remains deliberately open. A final word of cau-
tion is required: the presented results are tied to the
range of applicability of standard information the-
ory, and therefore concern closed systems, and as
such, extremely simple abstractions of real scenarios.
Nonetheless, it demonstrates that in such controlled
cases, transmission of meaning is affordable from a
consistent, information-theoretic viewpoint.

2 TOTAL INFORMATION
TRANSMISSION

2.1 Quantification of Meaning

In general, we have a finite set of objects Ω =
{x1, ...,xN} and a function Q,

Q : Ω−→ R+, (1)

such that Q(xk) is the information content of xk. We
will have in mind the following schema: Two au-
tonomous agents A and B immersed in a shared
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world whose events/objects are members of the set
Ω= {x1, ....,xN}. Agents exchange information about
Ω. Objects in Ω = {x1, ...,xN}, appear following a
given random variable XΩ ∼ p. Every object xk ∈ Ω
will thus appear with probability p(xk). The entropy
of such an ensemble of objects will give us the min-
imal amount of information to describe the statistical
behaviour of XΩ, namely:

h(XΩ) =− ∑
xk∈Ω

p(xk) log p(xk).

As it is standard in information theory, XΩ is an infor-
mation source sending h(XΩ) bits to the information
channel -we follow the communication schema pro-
vided in figure (1).

2.2 Total Information of an Ensemble of
Objects

Total information of an ensemble of objects.- How
much of semantic information is sent, in average, if
we consider XΩ as an information source? To answer
this question, we first define the vector φ, whose ele-
ments φ(xk) are defined as:

φ(xk)≡−
p(xk) log p(xk)

h(XΩ)
. (2)

Then, the amount of semantic information sent by XΩ
as an information source is:

〈Q〉φ = ∑
xk∈Ω

φ(xk)Q(xk), (3)

namely, the average semantic information× per bit of
the information source defined by XΩ. In other words:
The amount of semantic bits carried by statistical bits;
or how much meaning can you send, in average, hav-
ing the ensemble of objects Ω which is sampled using
XΩ.

The total information we get, in average, from the
ensemble of objects Ω, to be named H(Ω,XΩ), will
thus be:

H(Ω,XΩ) = h(XΩ)+ 〈Q〉φ, (4)
i.e., the statistical information per event plus the aver-
age amount of semantic information carried by such
statistical information. Notice that the derivation we
provided for the total information differs from the
one given by Gell-mann and Lloyd and Ay et al
(Gell-mann, 1996; Ay, 2010). Although inspired in
Gell-mann and Lloyd’s definition, the definition here
provided better fits in a broad information/theoretic
frame where transmission is taken into account. To
have a consistent framework accounting for trans-
mission, it is necessary to weight the semantic con-
tent with the informative contribution of a given sig-
nal/object to the overall information content. As we

shall see in the following lines, this is crucial get
consistent results when, for example, the channel is
totally noisy and all information is destroyed. The
framework here presented will be able to cope with
the natural assumption that, in these cases, both the
semantic and statistic information transmitted must be
zero. The ontological discussion between these two
approaches, even interesting from the epistemologi-
cal and formal viewpoint, exceeds the scope of this
paper.

Now we proceed our construction by defining

q(xk)≡
Q(xk)

h(XΩ)
,

from which we can rewrite H(Ω,XΩ) as:

H(Ω,XΩ)≡ h(XΩ) ∑
xk∈Ω

φ(xk)(1+q(xk)) . (5)

We observe that another approach would be
to consider H(Ω,XΩ) a two-dimensional vector
H(Ω,XΩ) ≡ 〈h(XΩ),〈Q〉φ〉, thereby highlighting the
two-dimensional character of the approach. We take
the definition provided in equation (4) for the sake of
simplicity.

2.3 Transmission of Semantic and
Statistic Information

Formally, we have an ensemble of objects Ω whose
behaviour is described by XΩ. This is the informa-
tion source. Agents A and B sharing the world made
by the objects of Ω transmit messages about it among
them. Information provided by the source XΩ is coded
in some way by agent A , and agent B assign the re-
ceived message to a given object xi ∈Ω, being this as-
signment process depicted by the random variable X ′Ω.
We say that X ′Ω is the reconstruction of XΩ made by
agent B . The communication channel between agents
A and B is described by the matrix Λ

Λ(xk,x j)≡ p(X ′Ω = x j|XΩ = xk).

For simplicity, we will simply write p(x j|xk). Like-
wise, we will refer to the join probability p(XΩ =
xk,X ′Ω = x j) simply as p(xk,x j) and, to the conditional
probability p(XΩ = x j|X ′Ω = xk) simply as p′(x j|xk).
We finally note that X ′Ω follows the probability distri-
bution p′ defined as:

p′(xk) = ∑
xi∈Ω

p(xk|xi)p(xi).

Having all the ingredients properly defined, we first
put Shannon information in a suitable way to work
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with, namely:

I(XΩ : X ′Ω) = = ∑
xk,x`∈Ω

p(xk,x`) log
p(xk,x`)

p(xk)p′(x`)

= ∑
xk∈Ω

p(xk)D(p(X ′Ω|xk)||p′),

where

D(p(X ′Ω|xk)||p′)≡ ∑
x`∈Ω

p(x`|xk) log
p(x`|xk)

p′(x`)
,

is the Kullback-Leibler (KL) divergence between dis-
tributions p(X ′Ω|xk) and p′ (Cover, 2001). The KL
divergence D(p(X ′Ω|xk)||p′) can be interpreted as the
information gain agent B has from observing xk, in
statistical terms. The KL divergence is non-negative
and, in this particular problem, is bounded as follows:

0 ≤ D(p(X ′Ω|xk)||p′)

= ∑
xi∈Ω

p(xi|xk) log
p(xk,xi)

p′(xi)
− log p(xk) (6)

≤ − log p(xk).

In this framework, p(xk)D(p(X ′Ω|xk)||p′) is the av-
erage contribution of xk to the mutual information.
Thus, the ratio φ′(xk), defined as:

φ′(xk)≡ p(xk)
D(p(X ′Ω|xk)||p′)

h(XΩ)
, (7)

depicts the average fraction of bits from the source XΩ
coded by agent A due to xk that are properly transmit-
ted. By defining the vectors φ≡ (φ(x1), ...,φ(xN)) and
φ′ ≡ (φ′(x1), ...,φ′(xN)), one can completely describe
the effect of the channel Λ as a transformation of the
vector φ:

φ→ φ′. (8)
Understanding the effect of the channel as the trans-
formation depicted in equation (8) creates a compact
and intuitive way to express the effect of the channel
over all the information-theoretic functionals that we
will derive. From equations (6,7) we observe that, for
any xk ∈Ω,

0≤ φ′(xk)≤ φ(xk). (9)
Notice that, in general, φ′ is not a probability. Now,
we observe that we can rewrite the usual mutual in-
formation among XΩ and X ′Ω, I(XΩ : X ′Ω), in terms of
φ and φ′:

I(XΩ : X ′Ω) = h(XΩ) ∑
xk∈Ω

φ′(xk),

and consistently, the standard noise term h(XΩ|X ′Ω)
(Cover, 2001), can be expressed as:

h(XΩ|X ′Ω) = h(XΩ) ∑
xk∈Ω

(φ(xk)−φ′(xk)).

The transmitted semantic information, to be referred
to as QΩ(Λ) can be now easily derived in terms of φ
and φ′:

QΩ(Λ) = ∑
xk∈Ω

φ′(xk)Q(xk). (10)

Equation (10) quantifies the average semantic content
of the information received by agent B after being de-
coded in some way by agent A and sent through the
channel Λ. Consistently to what we have done above
with the standard mutual information, the semantic
noise or the loss of semantic information, η(XΩ|X ′Ω)
can be expressed as:

η(XΩ|X ′Ω) = ∑
xk∈Ω

(φ(xk)−φ′(xk))Q(xk).

2.4 Transmission

We are now in the position to compute the total infor-
mation transmission from agent A to agent B . This
involves the mutual information between XΩ and its
reconstruction made by agent B , X ′Ω plus the seman-
tic content that can be properly conveyed. According
to this, one has that total information transmission,
IT (XΩ,X ′Ω,Ω) is defined as:

IT (XΩ,X ′Ω,Ω) = I(XΩ : X ′Ω)+QΩ(Λ). (11)

which can be rewritten, as we did in equation (4), as:

IT (XΩ,X ′Ω,Ω) = h(XΩ) ∑
xk∈Ω

φ′(xk)(1+q(xk)) .

We observe that the above expression is identical to
the one we derived in equation (5) describing total in-
formation of an ensemble of objects, but with chang-
ing φ→ φ′. Finally, if one wants to highlight the role
of the source and the different noise contributions,
mimicking the standard formulation of information
theory, IT (XΩ,X ′Ω,Ω) can be rewritten as:

IT (XΩ,X ′Ω,Ω) = H(XΩ,Ω)−h(XΩ|X ′Ω)−η(XΩ|X ′Ω).

2.5 Properties

We finally point out some of the some of the prop-
erties of IT as defined in equation (11). We first
observe that, if the channel is totally noisy, (∀xk ∈
Ω)(φ′(xk) = 0). Indeed, in a totally noisy channel Λ,
(∀xk,x j ∈Ω)(Λ(xk,x j) = 1/N), leading to

(∀xk ∈Ω) φ′(xk) = 0,

which results, consistently, into

IT (XΩ,X ′Ω,Ω) = 0.

On the contrary, if the channel is noiseless, Λ is a
N ×N permutation matrix, namely, a N ×N matrix
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which has exactly one entry equal to 1 in each row
and each column and 0’s elsewhere It is straight-
forward to check that this leads to φ′ = φ, so that
I(XΩ,X ′Ω) = h(XΩ) and QΩ(Λ) = 〈Q〉φ, and, accord-
ingly:

IT (XΩ,X ′Ω,Ω) = H(XΩ,Ω).

We observe that there are
(N

2

)
permutation matrices,

so there are
(N

2

)
different configurations that lead to

the above result. Finally, using equation (9) we can
properly bound IT :

0≤ IT (XΩ,X ′Ω,Ω)≤ H(Ω,XΩ).

The above chain of inequalities ensures that IT has
a good behaviour concerning the intuitive constraints
one has to assume for an information measure: 1) a
totally noisy channel implies that no information is
transmitted and 2) no information is created in the
process of sending and processing.

3 DISCUSSION

We presented an information-theoretic framework
to evaluate the communication between two au-
tonomous agents which includes its semantic rele-
vance. Specifically, we derived, within the Shannon’s
paradigm, the amount of total information transmit-
ted: The standard mutual information plus a term ac-
counting for the amount of semantic bits carried by
each statistical bit. The main result of the paper, pro-
vided in equation (11) shows that it is possible to eval-
uate the transmission of message content using the
standard framework. Crucially, the specific quantifi-
cation of the content of the message is left from the
theory and remains deliberately open, giving a total
generality to the derived results. Beyond the gener-
ality of the result, it paves the way towards a rigor-
ous information-theoretic exploration of code emer-
gence in scenarios where autonomous agents develop
and evolve under evolutionary constraints. This is
the case, among others, of artificial intelligence stud-
ies based on autonomous robots or simplified biologi-
cal problems concerning the resilience and emergence
of shared codes. Further works should explore how
to match the obtained results accounting for mean-
ing transmission –without referentiality conservation
assumed– with the results provided in (Corominas-
Murtra, 2013), where the problem of referentiality
conservation –without meaning quantification– is ad-
dressed.
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