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Abstract: Demand response programs are viewed as a solution to counter the increasing demand in energy consumption, 
as well as a way to combat the stochastic nature of renewable sources within the current grid infrastructure. 
In order to apply an efficient demand response program, it is first necessary to understand the power 
consumption behaviours within a power grid system. Obtaining large quantities of consumer power 
consumption data will al-low the ability to tailor a demand response program to efficiently implement control 
decisions in real-time. The programs are a cost effective alternative to high priced spinning reserves and 
energy storage. The focus of data collection will be on dense urban environments, which provide a number 
of factors that can be evaluated as they relate to an efficient demand response program. The island of Oahu 
was the location of a pilot program to test the feasibility of large data collection and storage. A smart metering 
device collected high resolution data, which was transmitted to a server where load forecasting and peak 
shaving decisions could be calculated. The design of the pilot system and initial results of the large data 
collection are discussed.

1 INTRODUCTION 

American utility companies are currently trying to 
meet increased energy demand with an aging, and 
sometimes overloaded, power infrastructure. The 
American Society of Civil Engineers (ASCE) 
estimates that the current power grid would need a 
$107 billion investment to remain operational 
(Halsey, 2012). A main concern for utilities is the 
need to meet the expected increase in energy demand 
after 2020. A suggested option to alleviate this 
pressure is to integrate more renewable energy 
sources into the consumer sector of the grid system. 
However, the stochastic nature of renewable sources 
combined with the use of an aging infrastructure 
creates logistical issues that must be solved before 
efficient renewable energy penetration can be 
accomplished. The ASCE has suggested using real 
time forecasting and smart grid implementation to 
better manage power loads to create a more reliable 
and efficient power delivery system (ASCE, 2013). 

Distributed generation (DG) can be a reliable and 
cost efficient solution for customers in dense urban 
centres. Installing renewable energy sources at DG 
sites allows for a more environmentally friendly 

alternative to fossil fuels (IRENA, 2013). Hybrid 
renewable systems being used as distributed 
generation (DG) provide a way for utility companies 
to move peak loads and deliver reliable power 
transmission (Salameh and Davis, 2003). 

However, with more DG generation becoming 
interconnected into the current grid infrastructure, 
and DG sources potentially feeding power back into 
the current grid system, utilities will need to be able 
to better monitor different points within the grid to 
ensure grid stability. Advances in technology will 
only reduce the cost of renewable energy 
infrastructure, allowing for increased renewable 
energy penetration and interconnection into the 
existing grid. It will be necessary to collect large 
amounts of data that can be processed and analysed, 
which will grant the capability to analyse real time 
grid states and predict future occurrences. Processing 
the large amounts of data related to power 
consumption will lead to the creation of efficient 
demand response algorithms that can better manage 
and shift loads based on consumer activity. 

Utilities companies must become power brokers 
with the ability to manage energy production on both 
the supply and demand side of the power grid. In the 
following sections, this paper will discuss the 

232
Sariri, S., Schwarzer, V. and Ghorbani, R.
Utilization of the Internet of Things for Real-time Data Collection and Storage of Big Data as it Relates to Improved Demand Response.
DOI: 10.5220/0005878002320242
In Proceedings of the International Conference on Internet of Things and Big Data (IoTBD 2016), pages 232-242
ISBN: 978-989-758-183-0
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



implementation of a pilot system with devices (smart 
meters) that can collect large amounts of data for 
large scale computational processing. System 
analysis of the grid states can create energy 
management strategies through demand response 
programs, thus creating a cost effective and reliable 
environment as it relates to the power grid. 

1.1 A Smarter Grid 

The transition to a “smarter” grid will grant utilities 
the ability to become more proactive in how they 
manage power supply in the transmission 
infrastructure. In the past, utility companies have 
needed to increase spinning reserves, and invest in 
generators with faster start up times to counter 
intermittent generation created by renew-able energy 
sources (NREL 2012, Wesoff 2013, IRENA 2013). 
Demand response is an option to alleviate the issues 
that come with renewable energy penetration, and are 
an alternative to costly large scale energy storage 
(IRENA 2013, Barai et al., 2015). Even though there 
has been research into the feasibility of renewables 
into the current grid infrastructure, utilities and 
policymakers find themselves still requiring ways to 
understand the benefits and drawbacks of demand 
response programs (Lew et al., 2013, FERC, 2008). 

The North American Electric Reliability   
Corporation categorized demand response as a 
“subset” of Demand-Side Management (DSM), 
which looks to create efficient energy programs 
focused on the consumer end (node) of power 
consumption (NAERC, 2007). Many current grid 
infrastructures have a utility generating energy at a 
plant, and sending it through a network to the 
consumer (Energy.gov 2015). In a demand response 
program, the consumer has a direct connection to the 
utility, whether it be through Direct Control Load 
Management (DCLM), or and Interruptible Demand. 
DCLM involves the utility having the ability to 
remotely turn on/off, or cycle devices within a home, 
or business, thereby reducing demand on the 
consumer side. Interruptible demand is an agreement 
between the consumer and the utility where the utility 
can request that a consumer curtail their energy use 
during peak hours, or have the ability to remotely trip 
devices within the consumers property as long as 
notice is given be-forehand. In exchange, a consumer 
will receive discounts and/or credits towards their 
energy bills.  

Because demand response is relatively new 
solution to controlling peak loads, large data 
collection with high sampling rates will be necessary 
to provide as much detailed data as possible. The 

necessity for large amounts of data comes from the 
fact that there is still a lack of experience with long 
term demand response programs (O’Connell et al., 
2014).  

Demand response for a large urban area is hard to 
model as it is complex and multi-layered, so data is 
needed to properly simulate demand response in a 
densely populated area (O’Connell et al., 2014). To 
better understand the factors that affect demand 
response programs, data relating to consumer 
behaviours, as well as external factors such as 
weather, price sensitivity, and the changing of 
seasons must be obtained, and researched. An outline 
of the demand response logic as it pertains to the pilot 
system is displayed in Figure 1. 

 

Figure 1: The system demand structure for a data collection 
system is presented. A cloud based platform will store and 
analyze data collected from a home, or business, in real-
time, allowing for quick control decisions in demand 
response programs.  

Devices that measure power consumption have 
been used in research, however, most studies do not 
offer high frequency data with the resolution to detect 
small transient changes. Current research on the pilot 
system collects and analyses data at higher 
resolutions. A 1Hz resolution, or better, will provide 
a good sampling rate for large data collection and the 
ability to see transient patterns in power usage, such 
as the warming of a stove, or the brightness of a 
television. Results from the pilot system have shown 
that different devices such as a stove top, or a water 
heater, create a specific power profile signature when 
their power draw is monitored. This signature can be 
thought of as a “power fingerprint.” Having the 
ability to determine device usage from power data 
allows cost efficiency in power monitoring because 
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rather than installing a power monitoring meter on 
each device within a building, software can instead 
analyse and determine which devices on a property 
are in use based on the power signatures found within 
an aggregate power data set for an entire home, or 
business.  

Power producers will be able to monitor a home, 
or business, and understand which devices can be 
cycled during peak loads to relieve grid pressure, 
especially in high energy consumption areas like 
urban centres where large percentages of a population 
tend to live. In order to accomplish this, a device is 
needed to record a consumer’s power usage. A pilot 
program has been created at the University of Hawai’i 
that currently involves monitoring aggregate power 
usage from 20 homes on the island of Oahu using a 
smart power meter (SPM). The components, 
challenges and scalability of the pilot system will be 
discussed, as well as future work pertaining to 
demand response programs, which will be discussed 
in the following sections. 

1.2 Related Research 

The study and feasibility of demand response as it 
relates to power grids is ongoing, and the pilot 
program looks to contribute to that research in the 
areas of large data collection, storage and analysis 
(FERC 2008, NAERC 2007). 

Demand response programs allow for increased 
peak load reduction as well as the ability to balance 
supply and demand of energy in power grids (FERC, 
2008). Stability and load shifting are two factors that 
are important in maintaining grid stability, which can 
be accomplished through demand response programs. 
Cost efficiency is another benefit of demand response 
because there is no need to maintain spinning reserves 
and large power storage infrastructure (NREL 2012). 

Similar research is being done on smart meters to 
collect and analyse data. A group from the University 
of Bath investigated the use of smart metering devices 
in combination with voltage control techniques. Their 
re-search focused on analysing the consumer side of 
demand response as a way to create cost efficiency 
for a consumer as well as a tool to restore grid system 
faults and maintain transmission stability. The Lon 
Local Operating System (LonWorks) and ZigBee 
Wireless Network Standard were two suggestions for 
creating a system of communication between smart 
meters and controllers to handle real-time data (Gao 
and Redfern, 2011). 

A research group in Europe proposed the use of 
local area networks (LAN) and wireless local area 
networks (WLAN) in combination with KNX 

communication standards as an option to set up 
communication between smart metering devices. The 
use of ZigBee and KNX components were deemed 
feasible to monitor load consumption of devices in 
order to create a timetable of shiftable loads. The load 
shifts refer to the rescheduling of device usage from 
peak hours to times that do not provide large strains 
on the grid. Real-time analysis and visualization 
would allow consumers to make the proper choices in 
energy consumption that are related to cost 
efficiency. An algorithm based on tariffs was the 
basis for the load timetables (Kunold et al., 2011). 

Researchers in Canada proposed a smart metering 
system based on load disaggregation where a power 
signal is analysed into the various device components 
that produce it. Their research focused on the factors 
that affect load disaggregation such as noisy signals, 
simultaneous loading, computational costs and 
privacy issues. They noticed that devices produced 
different power signals when cycled, for example, 
constant vs. periodic loads. To train algorithms in 
detecting a device, the research group suggested 
algorithm training based on probabilities and the 
clustering of individual devices. The research group 
deemed the definition of deferrable actions as 
necessary in their proposed system. Deferrable 
actions are those relating to devices whose utilization 
is not a priority and cycling can instead be scheduled 
at an alternative time, which would allow for load 
shedding. These devices include washer/dryers, 
ovens and dishwashers (Makonin, 2013).  

A UK-based power utility, National Grid, looked 
into the affect the power usage of certain devices had 
on the grid. They found that millions of kettles are 
cycled around 5pm, knowledge such as this allows a 
utility to know when to cycle specific loads within 
home. National Grid uses the aforementioned 
knowledge to maintain grid frequency. Aggregating 
these cycling patterns with the loads of other houses 
in a neighbourhood, or region, allow for the ability to 
maintain grid stability throughout sections of a power 
grid (National Grid, 2015). 

2 SPM PILOT SYSTEM 

Because of the island’s geography and dense 
population, Oahu provides an ideal location to 
understand renewable energy penetration into an 
existing power grid, and how it relates to demand 
response programs. Several factors allow for Oahu to 
be the location to implement the pilot system, these 
factors include high solar radiation on the island, 
access to a dense urban populations, and Oahu being 
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an isolated power grid. In 2015, the Hawaii state 
legislature voted to have 100% energy generation 
from renewable sources by 2045 (Press Release 2015, 
Namata 2015). Hawaii’s commitment to alternative 
energy sources allows for a continued study of an 
urban area with high renewable energy generation, 
and the effects of this generation on demand response. 
Because most buildings have circuit breaker boxes, a 
common interface is already in place to install the 
SPMs. The device collects data at one-second 
intervals and sends it through a local WiFi network to 
a remote cloud server using a SSH tunnel. Data 
storage, analysis, forecasting and control can all occur 
within the cloud. The server will have the ability to 
send control signals based on analysis of the power 
data to the consumer, where an installed client can 
cycle devices in accordance with demand response 
programs to reduce peak loads. Figure 2 illustrates the 
overall pilot system. 

 

Figure 2: The setup of the proposed system implements a 
SPM to monitor and transmit data from a circuit box. Data 
is then transmitted to a server for analysis. The current 
server can be scaled to cloud storage, so that more nodes 
can participate in the pilot program and provide more data 
for load forecasting analysis.  

2.1 Data Acquisition 

The data acquisition is performed by a power 
metering device at the local consumer level. The 
device can fit within a circuit breaker box, is non-
invasive, and allows for easy installation, setup and 
maintenance while delivering accurate power 
measurement, data pre-processing and server 
communication. The SPM is powered through the 
circuit breaker box. Two current transducers, one 

connected to each service drop wire within the circuit 
breaker box, measure current signals, which are 
transformed into analog voltage signals, and sent to a 
MCP3208 12 bit analog digital converter (ADC), 
which collects data at 80kSps. Images of an installed 
device are shown in Figure 3. 

 

Figure 3: A SPM meter is installed in the circuit breaker 
box of a home taking part in the pilot project. 

An Amlogic Quad Core processor computes the 
power consumption for each phase. Power is 
calculated assuming a constant voltage. The median 
power pertaining to one second of collected data is 
obtained for each phase, and sent to the cloud server 
for storage and analysing. Figure 4 describes data 
collection and transmission on the consumer level.  

 

Figure 4: Utilizing pre-existing WiFi connections within a 
home allow for a cost effective solution for data 
transmission. Circuit breaker boxes are usually located in a 
remote area of a building, so it is necessary to utilize a 
wireless connection to allow for a robust system to monitor 
and transmit data from a node. A secure SSH connection 
allows for safe and reliable transmission of data to a server 
in real-time. 

2.2 Communication 

After the power data is collected and pre-processed 
by the SPM, the data is then transmitted to a remote 
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server using a secure SSH tunnel via a local WiFi 
network. The advantage of this communication setup 
is that the SSH tunnel provides an added layer of 
security for what is confidential information. While 
the utilization of a pre-existing local WiFi connection 
takes advantage of an already existing network, thus 
eliminating the added cost of building a new 
communication infrastructure. Data is stored directly 
into a MongoDB database hosted on a cloud server. 
Because data is being sent from multiple locations, 
each data set needs to be identified by the node it 
originated from, this is accomplished when the SPM 
assigns a node identifier to each outgoing data set. 
When there is a disturbance in the WiFi connection, 
or a communication delay, the SPM will buffer until 
a connection is re-established to minimize data-loss. 
Despite the 1Hz transmission rate of the SPM, 
bandwidth and storage requirements are kept 
minimal. Each database query consists of just three 
integers, which total 24 bytes of data per second on a 
64 bit system. Households are currently transmitting 
approximately 2MB/d. The island of Oahu has a 
population of approximately 950,000, assuming 
200,000 households, 400 GB of power data would be 
sent to the servers each day at a rate of 4.63MB/s. 

2.3 Data Storage/Analysis 

The MongoDB database on the cloud server, is a 
document based open-source database. It is utilized 
as a multiuse agent that acts as a central node where 
large amounts of power data is collected, streamed 
and queried for data analysis of real-time system 
states and forecasting.  

Document based databases yield high scalability 
and data storage flexibility, which is quintessential 
for power analysis of large complex urban centres. 
Streams of real-time and recent data, as well as data 
queries for historical data must be performed as 
efficiently as possible to create predictions that will 
analyse data in real-time, thus allowing for fast and 
efficient conclusions and decisions. These 
conclusions will be utilized in future work to create 
control decisions to be sent back to the consumer 
where devices within a property can be con-trolled 
using a client. Thus granting the ability to create 
forecasts that enable efficient demand response pro-
grams to be implemented, which will reduce peak 
loads and ensure reliable power transmission within 
the grid infrastructure. 

2.4 Control 

Future work revolves around enabling the cloud 
server to analyse real-time and historic data in order 
to determine, and send control decisions for demand 
response programs. Smart control decisions enable 
the ability to better ensure grid stability and power 
transmission reliability. These commands include, 
but are not limited to, ON/OFF commands, as well as 
time constraint commands. The control clients 
executing the commands will have the ability to send 
feedback data to the cloud. The server itself can be 
utilized by the consumer as an interface to monitor 
power consumption, or override control decisions. 

3 DATA ANALYSIS 

Data collection is currently in progress using a total 
of 20 nodes and has been ongoing since August 2015. 
Participants volunteered (not compensated) to 
participate in the study and the household sizes range 
from two to six members. The backgrounds of the 
various participants are varied, however, specific 
details are kept confidential for privacy reasons. 
There was no criteria for selecting participants, the 
only requirement was that they had an accessible 
circuit breaker box within their home. 

Each phase in the circuit breaker box is measured, 
and the power for each phase is plotted. Figure 5 gives 
an example of data from a node for one day. Phase 
one and two are plotted in red and black, respectively. 

It can be seen that there are unique device 
signatures throughout the day, which correspond to a 
combination of specific devices within the node. In 
the displayed example, from midnight to 7 am, the 
only signal that stands out is the refrigerator cycling, 
which is due to the fact no other major loads are 
present at the respective time interval. During the day 
air conditioning is the dominant load, which 
correlates to the heat in Oahu at mid-day. Evening 
loads are dominated by consumer electronics such as 
TV.  
Detailed power profiles over extended time periods 
grant an observer the ability to understand the energy 
needs of a consumer and predict when to schedule 
loads. Such is the case in Figure 6 where a week of 
data has been plotted. 

The node displays a clear pattern of power 
consumption throughout a week. Dominant loads 
throughout the day are shown in blue and green, 
correlating to air conditioning and dinner-related 
activities, respectively. The family exhibits a fixed 
pattern of power consumption throughout the week 
that can be used for load prediction. Air conditioning 
loads dominate the day while cooking-related 

IoTBD 2016 - International Conference on Internet of Things and Big Data

236



activities dominate evening loads. The two main load 
patterns  stemming  for  air  conditioning and cooking. 

 

Figure 5: Devices produce specific power signatures when in use. It can be observed when certain devices are cycled. The 
cycling of loads within a node displays the behaviour and patterns of a consumer that can be used to predict and schedule 
power generation. 

 

Figure 6: One week of total power consumption is plotted for one family home. Consumer pattern behaviour is evident from 
the increases in power consumption.  

are repeated daily throughout the week. Nighttime 
loads are reduced to a bare minimum because of 
inactivity at night. 

Devices show different patterns of power draw 
when plotted in the time domain, as shown in Figure 
7. 

Aiding in the study of demand response it the fact 
that each device produces a specific power signature, 
or fingerprint, when Fourier analysis is performed on 
the plotted time dependent power signal obtained by 
the SPM, which was shown in Figure 7. Fourier 

analysis can be applied to the time dependent power 
draws like those from Figure 7, which produce signals 
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with distinct characteristics as shown in Figure 8. 

To better distinguish the signals, another analysis, 
known as power spectral density analysis (PSD) was 
performed on the power signature data. PSD can 
implement Fourier based methods to plot what can be 
considered a random time signal in the frequency 
domain, allowing the ability to determine what 
frequencies within the signal contain the largest 
energy densities relative to the surrounding ambient 
signals. If periodicities exist in the spectrum, PSD 
will allow them to be observed, these periodicities can 
then be used to classify devices into categories.  

 

 

Figure 7: Two devices can be combined to create a time 
dependent plot that features both signals, in this case a 
microwave oven and a printer, however it can be seen that 
the devices were recorded at different times, so it is 
necessary to combine the signals into one aggregated 
signature. 

 
Figure 8: Once two device signals ([a]cooking stove, 
[b]vacuum cleaner [c]combined signal) are combined they 
can then be analysed in the frequency domain to better 

understand if the signals exhibit a specific characteristic 
pattern. The left column displays the time domain power 
draw while the right column shows the power draw in the 
frequency domain. 

Using PSD, transient variabilities from the time 
domain can be found in a frequency domain. Figure 9 
highlights these variabilities using the cooking stove 
and vacuum cleaner example from Figure 8. 

When PSD analysis was implemented on the 
power signatures of a cooking stove and vacuum 
cleaner, two unique signals were plotted, which can 
be seen in Figure 9. The ability to notice each device 
in  a  combined   signal   further   proves   that   specific 

 

Figure 9: The implementation of PSD granted the capability 
to observe unique device signatures that are visible in an 
aggregated signal. 

appliances can be sifted from a larger data set that 
pertains to an individual node. The analysis is 
necessary to provide accurate and efficient demand 
response programs that can specifically target certain 
devices during a day that are not in use, thus allowing 
frequency stability within a power grid to be 
maintained.  

Figure 10 displays the FFT and PSD analysis of 
another device combination. The first row of each 
afore-mentioned figure displays the power signals in 
the time domain for the devices, the FFT for the 
respective power signals in row two, and the PSD 
analysis in row three. 

From Figure 10 it can be determined that 
magnitude is a variable that can be utilized when 
identifying devices in a large set of power data. 
Because the cooking stove had a power magnitude 
that was ten times that of the LCD TV when plotted 
in the time domain, analysis from the FFT and PSD 
reiterated this fact, proving magnitude as tool for 
device identification when analysing time dependent 
data in the frequency domain. 

Self-learning algorithms, such as artificial neural 
networks (ANN), can be taught to detect power 
fingerprints in large data sets such as those shown in 
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Figures 5 and 6. Knowing which devices are in use, 
and when, will allow for scripts installed on a server 
to calculate optimal load schedules to cycle devices, 
such as water heaters and heating, ventilation, and air 
conditioning (HVAC) units within a node (Ahmad et 
al., 2016). Being able to distinguish when, and how 
often, a consumer uses a device will enable a power 
provider the ability to shed peak loads while not 
creating an interruption to a consumer’s power usage. 
The capability to cycle a load can be automated, so 
that a client within a home can obtain decision signals 
from a cloud based server and implement the signals 
in real-time. 
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Figure 10: The first set displays the signal analysis for a 
cooking stove, the second for a LCD TV, and the third for 
the sum of the two signals. The green circle shows the 
location of a specific attribute of the cooking stove PSD 
signal in the aggregate, while the purple displays the 
attributes pertaining to the LCD TV. 

The results show that it is possible to determine 
which devices are consuming power at a given time. 
It is also clear that large quantities of data from a node 
permit the observation of consumer patterns as they 
relate to power usage. Combining the historical and 
real-time power data from multiple nodes within a 
section of the grid, allows a power producer to 
understand the needs of the consumer while providing 
efficient load management. However, it should be 
noted that the observed data can be sensitive as it 
displays patterns and behaviours of consumers, which 
must remain confidential to protect privacy. 

4 SCALABILITY 

A large and flexible database is necessary for bulk 
amounts of data being collected from an urban centre. 
MongoDB is a “NoSQL” cloud database where large 
data collection will be stored and analysed when the 
pilot system is scaled. 

A “NoSQL”, or “non SQL” database is an 
alternative to the relational databases that use the 
Structured Query Language (SQL). There are 
alternative “NoSQL” databases such as Apache 
Cassandra and Couchbase, but recent studies have 
shown MongoDB to be more efficient in terms of 
reduced latencies when it came to read and update 
workloads (Scalability Benchmarking 2015, 
Olavsrud 2015, Bhattacharjee 2014, McNulty 2014). 
MongoDB contains a document database 
architecture, which provides the flexibility needed for 
scalability as the pilot system grows to include more 
nodes.   

The use of a single server would lead to scalability 
issues as more data is collected and processed, 
MongoDB overcomes these issues with the potential 
to add more servers to accommodate large data as 
well as the utilization of automatic sharding, meaning 
that data is spread throughout multiple servers. 
Automatic sharding permits data to be accessed 
easier, and managed faster (Cattell, 2010). MongoDB 
utilizes a flexible data model, which allows the 
opportunity for easier development and scalability. 

4.1 Data Security 

Analysing data will grant the ability to understand the 
behaviour of a consumer, and as the pilot system is 
scaled up to include thousands of users within an 
urban environment, it will be necessary to protect 
sensitive information. The information is sensitive 
because it can reveal what a person, or persons, are 
doing at a specific time in the day. Many activities 
can be monitored, such as a person cooking, taking a 
shower, or working on the computer. It can also be 
determined when a person is home based on their air 
conditioning and heating usage. The monitoring of 
data can even analyse the power spectrum of a 
television, allowing for the TV power signal to be 
compared to the TV signatures of known channels, 
and from there determine what TV programs a person 
is watching. Unauthorized disclosure of this 
potentially sensitive information could allow an 
unauthorized agent to study the habits and routines of 
an end-user, thus creating potential threats to the 
privacy of the consumer. 

Currently, the pilot system utilizes a single server, 
however, when scaling up the system to include 
consumers from a dense urban population, a cloud 
server will be used. Once the computational and 
storage limits of the single server are reached, the 
pilot system will be scaled to cloud computational 
storage. The use of cloud services has been increasing 
due to a number of factors, some of these factors 
include; the potential for scalability, geographic 
reach, cost savings and higher availability 
(Rightscale, 2014). With the growth of cloud service 
and usage comes the need to address potential for 
security risks. 

4.2 Vulnerabilities in Cloud Security 

There are many vulnerabilities that are associated 
with cloud server use, a few will be mentioned to 
provide a foundation for future security protocols. 

4.2.1 Data Interception 

Data interception is a key concern because a large 
number of consumers will be sending sensitive data 
to a cloud server in the range of seconds. To remedy 
this, a secure shell (SSH) will implemented in the 
transfer of data from the consumer to the cloud. A 
SSH provides data encryption and the ability to 
implement a proxy for added security (ENISA, 2009). 
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4.2.2 Data Leakage 

There is potential for data within MongoDB to be 
leaked to unauthorized users, however, the 
developers of MongoDB look to actively recognize 
and address any issues relating to data leakage, which 
are usually related to versions of MongoDB that are 
outdated and unpatched. Other ways to prevent data 
leakage is using proper encryption methods, and 
recognizing when and where data is sent, so that it can 
be properly monitored. Physical protection of servers 
and personnel screening provide added security 
benefits (ENISA, 2009). 

4.2.3 Insecure or Ineffective Deletion of 
Data 

When deleting data from a cloud server, there is 
always potential that data deletion may be 
incomplete, or insufficient. To counteract any 
potential issues from data deletion, it will be 
necessary to follow proper deletion protocols related 
to the cloud server platform, and in worst case 
scenarios, insure that a disk containing sensitive data 
is destroyed. Once again, proper encryption of data 
will decrease the risk related to ineffective data 
deletion (ENISA, 2009). 
 
 
 
 

5 CONCLUSION AND FUTURE 
WORK 

Collecting, storing, and processing large amounts of 
data is necessary to understand the power 
consumption habits of consumers. A smart metering 
device was used to collect and transmit data at high 
frequencies. A SSH tunnel provided a secure channel 
to send the data to a server where large amounts of 
data could be stored and analysed. Initial data 
collection has shown that patterns in power 
consumption data can be deciphered, how-ever, 
because human behaviour can be complex it is 
necessary to continue the collection of data to see how 
external factors such as weather and global events 
affect human power consumption. A foundation to 
study human power consumption behaviour, and the 
factors affecting it, has been implemented through the 
Oahu pilot system. The continued addition of nodes 
to the system will allow a broader and more in depth 
look at consumer behaviour, which will lead to the 
creation of demand response programs to insure grid 
stability and efficiency. Future work will involve the 

scaling of the pilot system to include more nodes, 
research into security measures to protect sensitive 
data, scaling the current server to a cloud server, and 
development of pattern recognition software to 
recognize consumer power usage as it relates to 
demand response programs. 

REFERENCES 

2013 Report Card for America’s Infrastructure. ASCE, 
Reston, VA, 2013. 

The Potential Benefits of Distributed Generation and Rate 
Related Issues that may impede their Expansion. US 
Department of Energy, Washington, DC, 2007. 

Z. M. Salameh and A.J. Davis (2003) Case Study of a 
Residential-Scale Hybrid Renewable Energy Power 
System in an Urban Setting. Paper presented at the 
Power Engineering Society General Meeting, Toronto, 
Canada, 13-17 July 2003. 

Impacts of Solar Power on Operating Reserve 
Requirements. NREL, Golden, CO, 2012. 

E. Wesoff (2013, September 25) What are the Impacts of 
High Wind and Solar Penetration on the Grid?. 
http://www.greentechmedia.com. Accessed 2 Nov 
2015. 

Smart Grids and Renewables: A Guide for Effective 
Deployment. IRENA, Abu Dhabi, UAE, 2013. 

D. Lew et al. The Western Wind and Solar Integration 
Study Phase 2. NREL, Golden, CO, 2013. 

Demand Response and Advanced Metering. FERC, 
Washington, DC, 2008. 

Demand Response Discussion for the 2007 Long-Term 
Reliability Assessment. NAERC, Atlanta, GA, 2007. 

Smart Grid (2015). http://energy.gov. Accessed 20 Oct 
2015. 

N. O’Connell et al. (2014) Benefits and challenges of 
electrical demand response: A critical review. Elsevier 
39: 686-699. 

Press Release: Governor Ige Signs Bill Setting 100 Percent 
Renewable Energy Goal in Power Sector. 
http://governor.hawaii.gov. Accessed 2 Nov 2015. 

B. Namata. (2015, June 8) New Law requires 100-percent 
renewable energy in Hawaii by 2045. http://khon2.com. 
Accessed 21 Oct 2015. 

Scalability Benchmarking: MongoDB and NoSQL Systems. 
USA, Pleasanton, CA, 2015. 

R. Cattell (2010) Scalable SQL and NoSQL Data Stores. 
ACM 39.4: 12-27. 

Cloud Computing Trends: 2014 State of the Cloud Survey. 
RightScale, Santa Barbara, CA, 2014. 

National Grid (2015) Frequency Response Services. 
http://www2.nationalgrid.com/uk/services/balancing-
services/frequency-response. Accessed 22 Nov 2015. 

C. Gao and M.A. Redfern (2011) A Review of Voltage 
Control in Smart Grid and Smart Metering 
Technologies on Distribution Networks. Paper 
presented at the 46th International Universities’ Power 

Utilization of the Internet of Things for Real-time Data Collection and Storage of Big Data as it Relates to Improved Demand Response

241



Engineering Conference, Soest, Germany, 5-8 
September 2011. 

I. Kunold et al. (2011) A System Concept of an Energy 
Information System in Flats Using Wireless 
Technologies and Smart Metering Devices. Paper 
presented at the 6th IEEE International Conference on 
Intelligent Data Acquisition and Advanced Computing 
Systems: Technology and Applications, Prague, Czech 
Republic, 15-17 September 2011. 

S. Makonin (2013) The Cognitive Power Meter: Looking 
Beyond the Smart Meter. Paper presented at the 26th 
IEEE Canadian Conference of Electrical and 
Computer Engineering (CCECE), Regina, Canada, 5-8 
May 2013. 

T. Olavsrud (2015, November 24) 9 MongoDB success 
stories. http://www.cio.com/article/3008114/open-sour 
ce-tools/9-mongodb-success-stories.html. Accessed 10 
Dec 2015. 

A. Bhattacharjee (2014, May 8) NoSQL vs SQL – Which is 
a Better Option?. https://blog.udemy.com/nosql-vs-sql-
2. Accessed 11 Dec 2015. 

E. McNulty (2014, July 1) SQL VS. NOSQL- What you 
Need to Know. http://dataconomy.com/sql-vs-nosql-
need-know/. Accessed 10 Dec 2015. 

Cloud Computing: Benefits, risks and recommendations for 
information security. ENISA, Crete, Greece, 2009. 

A. Halsey (2012, August 1) Aging power grid on overload 
as U.S. demands more electricity. https:// 
www.washingtonpost.com/local/trafficandcommuting/
aging-power-grid-on-overload-as-us-demands- more-
electricity/ 2012/ 08/ 01/ gJQAB5LDQX _story.html. 
Accessed 23 Feb 2016. 

G.R. Barai et al. (2015) Smart metering and functionalities 
of smart meters in smart grid – a review. Paper 
presented at the Electrical Power and Energy 
Conference (EPEC), London, ON, Canada, 26-28 
October 2015. 

A. Ahmad et al. (2016) Smart cyber society: Integration of 
capillary devices with high usability based on Cyber-
Physical System. Future Generation Computer 
Systems, Volume 56, March 2016, pp. 493-503. 
 
 

IoTBD 2016 - International Conference on Internet of Things and Big Data

242


