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Abstract: With the increase in the number of existing ontologies, ontology integration becomes a challenging task. A 
fundamental step in ontology integration is ontology matching, which is the process of finding 
correspondences between elements of different ontologies. For large-scale ontology matching, some authors 
developed a divide-and-conquer strategy, which partitions ontologies, clusters similar partitions and restricts 
the matching process to ontology elements of similar partitions. Works related to this strategy considered only 
a single ontology aspect for clustering. In this paper, we proposed a solution for ontology matching based on 
Bayesian Cluster Ensembles (BCE) of multiple aspects of ontology partitions. We partition ontologies 
applying Community Detection techniques. We believe that BCE of multiple aspects of ontology partitions 
can provide an ontology clustering that is more precise than the clustering of a single aspect. This can result 
in a more precise matching.

1 INTRODUCTION 

In the World Wide Web (WWW), developers create 
web pages with information that humans can 
interpret. Nevertheless, the underlying meaning of the 
information is not sufficiently explicit to be machine-
interpretable. In order to overcome this difficulty, the 
World Wide Web Consortium (W3C) is developing 
technologies related to the Semantic Web, an 
extension of the WWW, in which information 
semantics of a domain becomes explicit with the use 
of ontologies. Ontologies are formal specifications 
about a knowledge domain, with logical descriptions 
about real-world entities, which enable the inference 
of rules. The Linked Open Data (LOD) Project 
specifies the best practices in the publication of 
ontologies. Recent statistics (Schmachtenberg, Bizer 
and Paulheim, 2014) indicate an increase in the 
number of published ontologies in the LOD Cloud, 
related to a wide range of domains, e.g. Government, 
Life Sciences, User-generated Content, Media and 
Social Web. 

With the progressive number of existing 
ontologies, developed with different patterns, thus 
increasing heterogeneity, ontology integration 
becomes challenging. Ontology integration is 
necessary when enterprises need to do a merge or an 

acquisition, for example, because they have to 
integrate their heterogeneous ontologies into a single 
one. Ontology matching is the first step before 
merging the ontologies and is the process of finding 
correspondent elements in different ontologies. The 
set of correspondences is the ontology alignment. 
Euzenat and Shvaiko (2013) highlight a divide-and-
conquer strategy for large-scale ontology matching. 
Given two ontologies, this strategy fragments both 
ontologies in partitions and clusters similar partitions 
of the two ontologies. The final step is the matching 
process, which compares only the elements of the two 
ontologies that belong to the same cluster. According 
to Euzenat and Shvaiko (2013), the goal of this 
strategy is to improve the matching efficiency, 
avoiding the comparison of all ontology elements.  

Algergawy, Massmann and Rahm (2011) and 
Moawed et al. (2015) developed clustering-based 
solutions for ontology matching. To cluster ontology 
partitions, these authors considered the 
terminological content (terms of labels and 
annotations) of ontology elements of the partitions 
and applied document clustering techniques. 
However, these works did not explore other ontology 
aspects, e.g. instance-based aspect, in the clustering 
phase, which can help to increase the number of 
correct clusters and correct matching 
correspondences. 
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In this work, we propose a solution for ontology 
matching that initially partitions two ontologies using 
Community Detection techniques (Fortunato, 2010). 
In the sequence, we consider three different aspects 
of the ontology partitions: terminological content, 
topological features and instance-based aspect, also 
known as extensional aspect. For each aspect, we 
apply Independent Component Analysis (ICA) 
(Honkela, Hyvärinen and Väyrynen, 2010) for 
dimensionality reduction. ICA is a technique inspired 
in the problem of blind signal separation that applies 
linear transformations on data to obtain statistically 
independent components, reducing data to its most 
relevant features. After applying ICA, we cluster 
ontology partitions according to each aspect, 
considered separately, and find a consensus clustering 
applying Bayesian Cluster Ensembles (BCE) (Wang, 
Shan and Banerjee, 2011). Finally, we match classes 
and properties of ontology partitions that belong to 
the same consensual cluster.  

This paper has the following structure: in section 
2, we explain BCE; in section 3, we review the related 
works; in section 4, we explain our methods; in 
section 5, we outline the expected results. Since this 
work is an ongoing project, we plan to present its 
results and conclusions in future publications.  

2 BAYESIAN CLUSTER 
ENSEMBLES 

Cluster Ensembles techniques combine clustering 
solutions (base clusterings), obtained by different 
algorithms, into a consensual clustering, which 
captures different assumptions of the algorithms, 
making the solution more accurate and more robust 
(Wang, Shan and Banerjee, 2011).  

In BCE, given n data points to be clustered, Wang, 
Shan and Banerjee (2011) assume that each data point 
participates in all consensual clusters, in different 
proportions, given by probabilities. BCE is based on 
a probabilistic generative process, which considers 
that the consensual clusters generate the base 
clusterings. Figure 1 illustrates the generative process 
of BCE. Matrix B represents the base clusterings and 
matrix C refers to the consensual clusters. In matrix 
B, the lines represent seven data points, given by xi (i 
= 1,…,7). There are three base clusterings, given by 
λi, which are the columns of B. The entries of B are 
the base clusterings’ labels. In the generative process, 
these labels are drawn from probabilistic distributions 
related to the consensual clusters (matrix C). The 
labels   of   the   base   clusterings    follow    discrete 

distributions. 
In the example of figure 1, let us consider that λ1 

for x1 was generated by the consensual cluster 2. 
Then, according to column 1 and line 2 of C, we have 
a probability of 0.1 that x1 is in cluster 1. Following 
the same discrete distribution, the probability that x1 
is in cluster 2 is 0.1 and the probability of x1 being in 
cluster 3 is 0.8. Given that 0.8 is the highest 
probability for λ1 (column 1 of C), considering the 
two consensual clusters, we conclude that the 
consensual cluster 2 generated x1 and that x1 has label 
3. 

The goal of BCE is to infer the consensus 
clustering with Bayesian Inference, such that the base 
clusterings are the observed data. As figure 1 shows, 
the inference process of BCE follows the inverse 
direction of the generative process. BCE infers the 
degree of membership Ɵ of each data point to the 
consensual clusters and infers the consensual label z 
assigned to the data points, considering α and β as 
probabilistic parameters of the model. Wang, Shan 
and Banerjee (2011) made an experiment with 
scientific datasets to compare BCE to other Cluster 
Ensembles techniques and clustering algorithms, e.g. 
Hypergraph Partitioning Algorithm and K-means. 
Wang, Shan and Banerjee (2011) measured the 
clustering accuracy, considering the number of data 
points correctly assigned to a cluster, based on a gold 
standard. BCE outperformed the other techniques and 
algorithms in most of the cases. 

3 RELATED WORKS 

Algergawy, Massmann and Rahm (2011) and 
Moawed et al. (2015) used the Vector Space Model 
(VSM) (Manning, Raghavan and Schütze, 2009) and 
clustered ontology partitions solely based on their 
terminological content, not considering different 
aspects that partitions have. Considering multiple 
aspects for clustering can help finding additional 
correct clusters, which can increase the number of 
similar ontology elements grouped in the same 
cluster, helping to improve the precision of the 
matching results. 

Ferrara et al. (2015) found a consensus clustering 
based on the co-occurrence of ontology elements in 
the same cluster in different clustering solutions. 
Ferrara et al. (2015) did not apply BCE, which can 
provide more accurate clustering results than other 
Cluster Ensembles techniques (Wang, Shan and 
Banerjee, 2011). This accuracy can improve the 
ontology clustering result, influencing on the 
ontology alignment by increasing its precision. 
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Figure 1: Bayesian Cluster Ensembles. 

Moawed et al. (2015) applied Latent Semantic 
Analysis (LSA) (Landauer, Foltz and Laham, 1998) 
for dimensionality reduction. However, according to 
Honkela, Hyvärinen and Väyrynen (2010), ICA was 
able to reveal more relevant features in document 
collections than LSA.  We intend to extend the results 
of ICA to ontologies, by finding more relevant terms 
also in ontology partitions.  

Thus, we propose a solution that applies BCE and 
ICA with the goal of bridging the gaps of the related 
works. 

4 METHODS 

Our proposed solution (figure 2) has four steps: 
community detection to partition the ontologies into 
communities; community clustering based on 
multiple aspects; consensus clustering of multiple 
aspects with BCE; matching ontology elements of 
consensual clusters. 

4.1 Community Detection to Partition 
the Ontologies into Communities  

In the first step, we take two different ontologies O 
and O’ for matching and consider each ontology 
structure as a graph, using one of the approaches of 
Coskun et al. (2011): subjects and objects of each 
ontology correspond to nodes and predicates 
correspond to edges. We partition each of the 
ontology graphs into communities applying the 
Community Detection algorithms that had the most 
accurate clustering results in the study of Coskun et 
al. (2011): Random Walks, Fast Greedy Algorithm 

and Potts Model (Fortunato, 2010).  
We evaluate the community structure obtained by 

each of the algorithms using the modularity function 
(Fortunato, 2010). Modularity measures the 
difference between a community structure and the 
structure of a random graph, i.e. a graph with edges 
placed at random. The higher the modularity, the 
better the community structure is. For each ontology 
graph, we choose the set of communities given by the 
algorithm that provides the highest modularity. Let eii 
be the fraction of ends of edges that belong to the 
same community i. Let bi be the fraction of edges 
whose ends belong to different communities.  The 
modularity Q is: 

Q = ∑ (eiii - bi
2) (1)

4.2 Community Clustering based on 
Multiple Aspects 

In the second step, we consider each ontology 
community according to three different aspects: 
terminological, topological and extensional. For each 
aspect, we first model the ontology communities 
according to their features, calculate distances 
between communities and then cluster the 
communities based on their distances. 

4.2.1 Model and Distances for the 
Terminological Aspect 

For the terminological aspect, we extract terms of 
labels and annotations of ontology elements of each 
community, considering a community as a document. 
Then we apply removal of stop words, stemming, 
tokenization  and  use  the  VSM  for  modelling  the 
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Figure 2: Overview of the proposed solution. 

communities. We apply ICA for dimensionality 
reduction and obtain the distances that are the input 
for the clustering algorithms using the cosine distance 
(Manning, Raghavan and Schütze, 2009). Let c1 and 
c2 be two ontology communities and v	ሬሬԦ ሺc1ሻ and 
v	ሬሬԦሺc2ሻ be its vectors representations in the VSM. The 
cosine distance CD between c1 and c2 is: 

CDሺc1,c2ሻ	=	1	-		 v ሬሬԦሺc1ሻ	.		v ሬሬሬሬԦሺc2ሻ|v ሬሬԦሺc1ሻ|		|v ሬሬԦሺc2ሻ| (2)

4.2.2 Model and Distances for the 
Topological Aspect 

For the topological aspect, we represent the topology 
of each community based on three features (Albert 
and Barabási, 2002): global clustering coefficient, 
average path length and the exponent of the power 
law. We calculate the distances based on these 
features, applying the Euclidean distance (Manning, 
Raghavan and Schütze, 2009). 

Let ki be the number of edges connecting a given 
node i to its neighbours and let Ei be the number of 
edges between the neighbours of i. The local 
clustering coefficient of i, denoted by LCCi, is given 
by (3). The global clustering coefficient GCC of a 
community is the average of the LCCi of the nodes of 
the community. 

LCCi = 
2Ei

ki(ki-1)
 (3)

Given a community with N nodes and  K edges, 
the average path length L is:  

L = ln (N)
ln (K) (4)

Given a random node i of a graph, the probability 
P(k) of i having k edges is given by the power law as 
in (5), where γ is the exponent of the power law: 

P(k) = k-γ (5)
Let c1 and c2 be two communities with d features, 

whose values are given by c1z and c2z respectively, 
with z = 1,…,d. The Euclidean Distance ED is:   

ED(c1,c2) = (∑ |c1z	- c2z|z 
2)1/2 (6)

4.2.3 Model and Distances for the 
Extensional Aspect 

For the extensional aspect, we model each 
community considering each of its distinct concepts 
as a different dimension whose value is the number of 
its instances. We use ICA for dimensionality 
reduction and apply an extension of the distance 
developed by Hu et al. (2006) to calculate distances 
between ontology communities.  

Hu et al. (2006) developed a distance for 
ontologies based on the Kullback-Leibler distance. 
Hu et al. (2006) defined a probability based on the 
distance ∆(Ck), which is a distance between a concept 
Ck and an ideal concept Co that instantiates infinite 
objects. Hu et al. (2006) calculate a concept 
restriction as the inverse of the number of its instances 
and use the difference between concept restrictions to 
calculate distances between concepts. Given ∆(Ck) 
and ∆(Cj), with j≠k, Hu et al. (2006)  formulated  an 
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equation for the probability P(Ck):  

P(Ck) = 
1 -  ∆(Ck)∑ (1 - ∆(Cj))j

 (7)

Considering P(Ck), Hu et al. (2006) defined the 
distance ΔJ between two ontologies O and O’, with 
concepts Ci and C’i respectively: 

ΔJ  = ∑ PሺCiሻ log
P(Ci)
P(C'i)i  + ∑ PሺC'iሻ log

P(C'i)
P(Ci)i (8)

For the distances, we also ponder the common 
instances of a pair of .ontology communities. Let cmi 
be the number of common instances of two ontology 
communities and let ti be the total number of 
instances of the two communities. The distance ΔI 
based on the common instances is given by (9) and 
we apply the average of (8) and (9) to obtain the 
distance between two given communities of different 
ontologies. 

ΔI  =	1	-  cmi
ti  (9)

4.2.4 Community Clustering of each Aspect 

For each aspect, we consider its respective distances 
between pairs of ontology communities. Based on the 
distances, we apply the following clustering 
algorithms: Single-link, Complete-link, Unweighted 
Pair Group Method with Arithmetic Mean, Ward’s 
Method, Divisive Analysis, Partitioning Around 
Medoids, Expectation Maximization and K-Means. 
Thus, we have eight clustering results for each aspect 
and we choose the best clustering result, such that we 
have only one clustering result for each aspect. 

4.2.5 Selection of the Clustering Result of 
Each Aspect 

For each aspect, we compare the eight clustering 
results based on the silhouette width (Rousseeuw, 
1987), which is a measure that considers the 
separation between different clusters and the degree 
of compactness of a cluster. Let ai be the average 
distance between an element i and all the elements of 
the same cluster of i and let bi be the average distance 
between element i and the elements of the nearest 
cluster. The silhouette width S is given by (10). For 
each aspect, we select the clustering result with the 
highest silhouette width. These selected clustering 
results are the input for the next step. 

S = 
bi -	ai

max (bi,ai)
 (10)

 

4.3 BCE of Multiple Aspects 

In the third step, we take the selected clustering result 
of each aspect and apply BCE to find a consensus 
clustering. The selected clustering results are the 
observed data, based on which we infer the consensus 
clustering using BCE.  

4.4 Matching between Ontology 
Elements of Consensual Clusters 

In the fourth step, we apply matching techniques to 
the ontology classes and properties of ontology 
communities of the same consensual cluster. We plan 
to use syntactic, structural and semantic techniques, 
comparing the matching results to a benchmark, 
publicly available on the web or provided by experts. 
Given an alignment A and a benchmark result B, we 
evaluate the matching result with regard to recall (R), 
precision (P) and F-measure (F) (Euzenat and 
Shvaiko, 2013): 

R(A,B) =  
|B∩A| 

|B|
 (11)

 

P(A,B) =  
|B∩A| 

|A|
 (12)

 

F(A,B) =  
2PR 
P + R

 (13)

5 EXPECTED RESULTS 

According to Wang, Shan and Banerjee (2011), BCE 
provided a more accurate clustering than the 
clustering obtained by other algorithms applied 
separately. We believe that we can extend these 
results to ontologies, with BCE of multiple ontology 
aspects providing a more precise ontology clustering 
than the clustering of each ontology aspect. In our 
comparative evaluation, we plan to apply the 
silhouette width to compare the ontology clustering 
result of BCE with the clustering results of each 
ontology aspect.   

A more precise ontology clustering of BCE can 
imply in more ontology elements grouped together 
that are similar, which can result in a more precise 
matching. We plan to compare the matching metrics 
(recall, precision and F-measure) that result from the 
use of BCE with the matching metrics that result from 
the clustering of each aspect.  

Since BCE finds a consensus among different 
clustering solutions, BCE tends to find fewer clusters 
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than the sum of clusters of all clustering solutions. In 
the divide-and-conquer strategy, less clusters imply in 
less comparisons during the matching process. We 
plan to compare the number of matching comparisons 
that results from the use of BCE with the number of 
comparisons that results from the union of clusters of 
all aspects. 

To illustrate the potential contributions of our 
approach, let us consider two ontologies, O and O’, 
and two ontology communities, co and co’, taken 
from O and O’ respectively. Let us also consider that 
co has a concept C labelled “Creator” and that co’ has 
a concept C’ with the label “Author”. C and C’ are 
semantically correspondent concepts. Communities 
co and co’ have common instances and approximate 
exponents of the power law.  

Clustering the terminological aspect tend not to 
cluster co and co’, because labels’ strings of C and C’ 
are not similar. Nevertheless, the extensional and the 
topological similarities of co and co’ contribute to 
group co and co’ together. The reduced distances 
between co and co’, due to their similarities, increase 
the silhouette width. Grouping co with co’ implies in 
grouping concepts C and C’, thus helping to increase 
the matching metrics.  

Let us also consider that the community clustering 
based on the three aspects results in ten clusters and 
that BCE finds five consensual clusters. Then, we 
match the elements of five clusters instead of ten 
clusters, contributing to reduce the number of 
comparisons in the matching process.  
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