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Abstract: This paper presents AHR, a formal framework for combinatorial test design that is Agile, Human-centred and
Refinement-oriented. The framework (i) allows us to reuse test plans developed for an abstract level at more
concrete levels; (ii) has human-centric interface providing queries and alerts whenever the specified test plan
is incomplete or invalid; (iii) involves analysis of the testing constraints within combinatorial testing.

1 INTRODUCTION

Combinatorial Test Design (CTD) is an effective
methodology for test design of complex software sys-
tems. In CTD systems are modelled via a set of pa-
rameters, their respective values and restrictions on
the value combinations, cf. (Nie and Leung, 2011;
Zhang et al., 2014). The main challenge of CTD is to
optimise the number of test cases, while ensuring the
coverage of given conditions. One of the most stan-
dard coverage requirements is pairwise testing (Nie
and Leung, 2011), where every (executable) pair of
possible values of system parameters is considered.
Experimental work shows that using tests sets with
exhaustive covering of a small number of parame-
ters (such as pairwise testing) can typically detect
more than 50-75% of the bugs in a program, cf. (Tai
and Lei, 2002; Kuhn et al., 2004). This testing ap-
proach can be applied at different phases and scopes
of testing, including end-to-end and system-level test-
ing and feature-, service- and application program
interface-level testing.

The CTD approach is model-based, i.e., test plans
are derived (manually or automatically) on the basis
from a model of the system under test (SUT) and its
environment. Therefore, while using this approach,
a considerable time have to be spend on generating
the infrastructure for testing (including the model of
SUT) instead of hand-crafting individual tests. This
implies that only behaviour encoded in the model can
be tested.

Moreover, in many cases different behaviours
need to be tested at different stages of the develop-
ment cycle. This leads to the need for handling multi-

ple abstraction levels and a systematic way of bridg-
ing between them. However, to provide an adequate
model with an sufficient abstraction remains a strictly
human activity, which heavily relies on the human
factor. One barrier in the adoption of MBT in in-
dustry is the steep learning curve for modelling no-
tations, cf. (Grieskamp, 2006). Another barrier is
the lack of state-of-the-art authoring environments.
In this work, we aim is to provide the corresponding
semi-automatic support for the tester and help min-
imise the number of human errors as well as their im-
pact on the system-under-test.

We propose AHR, a formal framework for the
construction of combinatorial models within multi-
ple levels of abstraction. The main idea is defining
explicit refinement relations between elements of the
model at different abstraction levels. This core fea-
tures of our framework are (i) the reuse of test plans
developed for an abstract level at more concrete lev-
els; (ii) human-centric interface providing queries and
alerts to testers to help them analyse whenever the
specified test plans, model and/or constraints are in-
complete or invalid. One of the AHR goals is to
provide a sufficient support to the tester by semi-
automatic analysis of the model and the test plans.

Outline: The rest of the paper is organised as fol-
lows. In Section 2 we discuss the related work and the
corresponding motivation for the AHR development.
Section 3 presents the background on CTD. Section 4
provides the formal definitions that build the core of
AHR to support CTD within multiple abstraction lev-
els. In Section 5 we discuss a use case for the frame-
work application. In Section 6 we summarise the pa-
per and propose directions for future research.
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2 RELATED WORK

The advantage of MBT is that the testers can con-
centrate on system model and constraints instead of
the manual specification of individual tests. There
are many approaches on model-based testing, e.g.,
(Dalal et al., 1999; Grieskamp, 2006). Utting et al.
presented a taxonomy of MBT approaches in (Ut-
ting et al., 2012). There are also many approaches
on CTD, cf. (Zhang et al., 2014; Segall et al., 2012;
Farchi et al., 2014; Farchi et al., 2013; Kuhn et al.,
2011). However, most of them focus on the ques-
tion how to generate test cases from a model in the
most efficient way also achieving full coverage of
the required system properties by the generated test
cases. In our approach, we combine the ideas of CTD
with the idea of a step-wise refinement of the system
trough the development process, also following agile
modelling practices and guidelines (Hellmann et al.,
2012; Talby et al., 2006). Agile software development
process focuses on facilitating early and fast produc-
tion of working code (Turk et al., 2005; Rumpe, 2006;
Hazzan and Dubinsky, 2014) by supporting iterative,
incremental development, where with each iteration
we refine the system step by step.

As pointed out in (Pretschner, 2005), model-based
testing makes sense only if the model is more ab-
stract than SUT. Testing methodologies for complex
systems often integrate different abstraction levels of
the system representation (Broy, 2005; Spichkova,
2008). Thus, abstraction plays a key role in the pro-
cess of system modelling. An important domain in
which modelling with different levels of abstraction
is particularly beneficiary is cyber-physical systems
(CPSs). Several works proposed to use a platform-
independent architectural design in the early stages
of system development, while pushing hardware-
and software-dependent design as late as possible
(Sapienza et al., 2012; Spichkova and Campetelli,
2012; Blech et al., 2014). In our previous work
(Spichkova et al., 2015a) we suggested to use three
main meta-levels of abstraction for the CPS develop-
ment: abstract, virtual, and cyber-physical. The AHR
framework can be applied at any of these meta-levels.

In (Segall and Tzoref-Brill, 2012) a tool for sup-
porting interactive refinement of combinatorial test
plans by the tester was presented. This tool is meant
for manual modifications of existing test plans, is
align with the idea of Human-Centred Agile Test De-
sign (Zamansky and Farchi, 2015; Spichkova et al.,
2015b) where it is explicitly acknowledged that the
tester’s activity is not error-proof. This tool be a good
support for the tester, but it does not cover the follow-
ing point that we consider as crucial for development

of complex systems: refinement-based development,
where the tester is working at multiple abstraction
levels. We aim to cover this point in the proposed
AHR framework: If we trace the refinement relations
not only between the properties but also between test
plans, this might also help to correct possible mistakes
more efficiently, as well as provide additional support
if the system model is modified.

3 CTD: FORMAL BACKGROUND

In CTD a system is modelled using a finite set of sys-
tem parameters A = {A1, . . . ,An}. To each of the pa-
rameters is associated a set of corresponding values
V = {V(A1), . . . ,V(An)}.

In what follows we use the notion of interactions
between the different values of the parameters and the
notion of test coverage:

Definition 1. An interaction for a set of system pa-
rameters A is an element of the form I ⊆⋃n

1V(Ai),
where at most one value of each parameter Ai may
appear.

Definition 2. A test (or scenario) is an interaction of
size n, where n is the number of system parameters.

Definition 3. A set of tests T covers a set of interac-
tions C (denoted by T�C) if for every c ∈ C there is
some t ∈ T , such that c ⊆ t.

Definition 4. A combinatorial model E of a system
with the corresponding set of parameters A is a set
of tests, which defines all tests over A that are exe-
cutable in the system.

Definition 5. A test plan is a triple Plan = (E,C,T ),
where E is a combinatorial model, C is a set of inter-
actions called coverage requirements, T is a set tests,
and the relation T�C holds.

In the above terms, a pairwise test plan can be
specified as any pair of the form

Plan = (E,Cpair(E),T )

where Cpair is the set of all interactions of size 2
which can be extended to scenarios from E.

Example 1 . For a running example scenario, let us
consider a cyber-physical system with two robots R1
and R2 that are interacting with each other. At some
level of abstraction (let us call it Level1), a robot can
be modelled by two parameters, GM and P. Thus,

A = {GM1,GM2,P1,P2}
The system parameters GM1 and GM2 specify the
gripper modes (which can be either closed to hold an
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object or open) of robots R1 and R2 respectively. Let
us consider that at this level of abstraction the gripper
have only two modes:

V(GM1) =V(GM2) = {open,closed}
P1 and P2 represent the robots’ positions. We as-

sume at this level of abstraction that the grippers of
each robot have only three possible positions:

V(P1) =V(P2) = {pos1, pos2, pos3}
In what follows let us assume pairwise cover-

age requirements. We now specify a meta-operation
Give(A,B) to model the scenario when the robot A
hands an object to the robot B. Give(A,B) can only be
performed when the grippers of both robots are in the
same position, the gripper of A is closed and the grip-
per of B is open (where A,B ∈ {R1,R2} and A , B).
Thus, the operation Give(R1,R2) can be captured on
Level1 in the following constraint model M1

Give(R1,R2):

P1 = P2 ∧ GM1 = closed ∧ GM2 = open (1)

Without any constraints, we would require 36 tests
to cover all possible combinations of the values, but
considering the full coverage of the M1

Give(R1,R2), we
require three tests only, cf. Table 1.

At the next level of abstraction, Level2, we might
refine both A andV to obtain a more realistic model
of the system. In the next section, we introduce the
notion of parameter and value refinements, which pro-
vides an explicit specification of the relations between
abstraction levels to allow traceability of the model
modification and the corresponding test sets.

Table 1: Test set providing pairwise coverage for
Give(R1,R2) on Level1.

testID P1 P2 GM1 GM2

test1 pos1 pos1 closed open
test2 pos2 pos2 closed open
test3 pos3 pos3 closed open

4 REFINEMENT-BASED
DEVELOPMENT

Our framework is based on the idea of refinement:
a more concrete model can be substituted for an ab-
stract one as long as its behaviour is consistent with
that defined in the abstract model.

Definition 6. Let us consider two sets of system pa-
rametersA = {A1, . . . ,An} and B = {B1, . . . ,Bk}, with
k ≥ n. We define a parameter refinement from A to
B (also denoted by A  B) as a function R that

maps each parameter Ai to a set of parameters from
B, so that for two distinct parameters Ai and A j,
1 ≤ i, j ≤ n, i , j, the sets R(Ai) and R(A j) are dis-
joint.

Definition 7. For a parameter refinement R :
A B, a value refinementVR :V(A) V(B) maps
each value v ∈ V(Ai) to the corresponding set of val-
uesVR(v), where

VR(v) ⊆
⋃

B∈R(Ai)

V(B)

such that if B j ∈ R(Ai), then for every v ∈ V(Ai),
V(B j)∩VR(v) , ∅.

The above definitions do not exclude the case
where both R and VR are singleton functions, i.e.
functions that convert each element a to a singleton
{a}. For this reason we have to introduce the notion of
concretisation.

Definition 8. If there exist parameter refinement R
and value refinementVR from a set of system parame-
tersA to a set of system parameters B (where at least
one of the the functions R and VR is not a singleton
function), we say that B is a concretisation (strict re-
finement) of A with respect to R and V. We denote
this byAV B.

Example 2. Let us continue with the running example
of two interacting robots. At Level1, we have the set
of system parameters ALevel1 = {P1,P2,GM1,GM2}.
At Level2, we refine the V(GM1) and V(GM2) to
have an additional the gripper mode mid, represent-
ing an intermediate position between open and closed
(i.e., the position when the grippers are opening or
closing, but not yet completely open or closed). We
do not need to change the parameters GM1 and GM2,
but we have to extend the setsV(GM1) andV(GM2).

We also refine the abstract positions to their two-
dimensional coordinates: for i ∈ {1,2}, Pi is refined
to the tuple of two new parameters Xi and Yi, and the
elements ofV(Pi) are mapped to the tuples of the cor-
responding coordinates. Thus, at Level2 we have

ALevel2 = {X1,Y1,X2,Y2,GM1,GM2}
V(X1) =V(X2) = {x1, x2}
V(Y1) =V(Y2) = {y1,y2,y3}
V(GM1) =V(GM2) = {open,closed,mid}

To represent the concretisation from Level1 to
Level2, we specify the following relations for i ∈ {1,2}
(cf. also Figures 1 and 2):

(1) Parameter refinement GMLevel1
i  GMLevel2

i is a
singleton function. The corresponding value re-
finements are
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Figure 1: Parameter Refinement.

Figure 2: Value Refinement.

VR(open) = {open} and
VR(closed) = {closed},
where mid ∈ V(GMLevel2

i ) does not have any cor-
responding element on Level1.

(2) Parameter refinement Pi  (Xi,Yi) maps an ab-
stract position to a tuple of two-dimensional co-
ordinates, where the corresponding value refine-
ments are
VR(pos1) = {(x1,y1), (x2,y1)},
VR(pos2) = {(x1,y2), (x2,y2)},
VR(pos3) = {(x1,y3), (x2,y3)}.

Definition 9. A model refinement MR is a mapping
from the elements (conjuncts) of the constraint model
Mi specified on the abstraction level i over the set of
parametersA to the the constraint model Mi+1, spec-
ified on the next abstraction level over the set of pa-
rameters B, whereAV B.

Definition 10. A Test refinement TR is a mapping
from the set of tests over A to the set of tests over
B, whereAV B and

R :A B is a parameter refinement with the corre-
sponding value refinementVR :V(A) V(B).

The above provides a theoretical basis for tester sup-
port: given a system model based a set of parame-
ters A, the tester can specify explicit parameter and
value refinements, which in its turn induces a system
model for B and the refinement relations between sets
of tests on different abstract levels.

5 USE CASE FOR TESTER
SUPPORT

Suppose the modeller already has constructed a model
at Level1, using the parameters from our running ex-
ample on the Give meta-operation and providing the
constraint model

GM1 = closed ∧ GM2 = open (2)

where the information on the position is erroneously
omitted, because of a human error. If we generate
tests automatically, we obtain 9 tests to cover the
model, cf. Table 2. Let us consider that the tester de-
cided to limit the test set to have two tests only, e.g.,
{P1 : pos1,P2 : pos1,GM1 : closed,GM2 : open} and
{P1 : pos2,P2 : pos2,GM1 : closed,GM2 : open}.
The proposed framework would analyse these tests to
come up with the corresponding logical constraint:

GM1 = closed ∧ GM2 = open ∧
(P1 = P2 = pos1∨P1 = P2 = pos2) (3)

Table 2: Test set providing pairwise coverage for
Give(R1,R2) under constraint (2).

testID P1 P2 GM1 GM2

test1 pos1 pos1 closed open
test2 pos1 pos2 closed open
test3 pos1 pos3 closed open
test4 pos2 pos1 closed open
test5 pos2 pos2 closed open
test6 pos2 pos3 closed open
test7 pos3 pos1 closed open
test8 pos3 pos2 closed open
test9 pos3 pos3 closed open

The AHR framework checks whether the coverage is
achieved by the above two tests, and provide the cor-
responding alert to the tester along with the message
that the constraint models (2) and (3) are semantically
unequal, (3) is a stronger constraint than (2). Let us
consider that the tester changes the constraint model
to (3) and select an additional test {P1 : pos3,P2 :
pos3,GM1 : closed,GM2 : open}.
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Next, the system model is refined as presented in
Example 2. Based on the specification of the system
parameters concretisation, the framework provides
the following suggestion for the refinement of the
constraint model MGive(R1,R2). To increase the read-
ability and the traceability of the refinement steps, we
the suggestion is provided in two forms: as the con-
structed constraint model, cf. (4) and as a mapping
from the models on the previous and the current ab-
straction levels, cf. Table 3.

X1 = X2 ∧ Y1 = Y2 ∧
GM1 = closed ∧ GM2 = open (4)

Table 3: Model refinement for Give(R1,R2).

Level1 Level2
P1 = P2 X1 = X2 ∧ Y1 = Y2

GM1 = closed GM1 = closed
GM2 = open GM2 = open

Depending on the semantics we give to the spatial
constrains in our model, we accept this suggestion or
adapt it. If we assume that the robot R1 can give an
object to the robot R2 when their grippers have the
same abstract coordinates, we accept this suggestion
and the framework proceeds with the refinement of
the tests. However, we might also assume at Level2
that the robots’ grippers cannot have the same coordi-
nates (except a collision situation), and that the robot
R1 can give an object to the robot R2 when their grip-
pers are at the same level, but their x-coordinates have
to be different. In this case the constraint model has to
be specified on Level2 as presented by (5) and Table 4.

X1 , X2 ∧ Y1 = Y2 ∧
GM1 = closed ∧ GM2 = open (5)

Table 4: Corrected model refinement for Give(R1,R2).

Level1 Level2
P1 = P2 X1 , X2 ∧ Y1 = Y2

GM1 = closed GM1 = closed
GM2 = open GM2 = open

For the corrected model (5), AHR generates 6 tests to
achieve the coverage (cf. Table 5), and suggest the
following mapping between sets of tests:

testLevel1
1  {testLevel2

1 , testLevel2
2 }

testLevel1
2  {testLevel2

3 , testLevel2
4 }

testLevel1
3  {testLevel2

5 , testLevel2
6 }

Traceability not only between the modification in the
system parameters but also between constraint models
and between test plans, helps to correct possible mis-
takes more efficiently, as well as provides additional

Table 5: Test set providing coverage for Give(R1,R2) on
Level2 under the constraint (5).

testID X1 X2 Y1 Y2 GM1 GM2

test1 x1 x2 y1 y1 closed open
test2 x2 x1 y1 y1 closed open
test3 x1 x2 y2 y2 closed open
test4 x2 x1 y2 y2 closed open
test5 x1 x2 y3 y3 closed open
test6 x2 x1 y3 y3 closed open

support if the system model is modified. For exam-
ple, if on some stage a new constraint is identified that
the meta-operation Give(R1,R2) is not possible when
the robots’ grippers are in the position pos2, the re-
quired changes in the models and the corresponding
test plans for all concretisations of the model can be
easily identified. Moreover, the AHR framework also
allows analysis of several branches of the refinement.

6 CONCLUSIONS

This paper presents our ongoing work on human-
centred testing. We propose a formal framework
for combinatorial test design that is Agile, Human-
centred and Refinement-oriented.1 The framework

• allows us to reuse test plans developed for an ab-
stract level at more concrete levels;

• has human-centric interface providing queries and
alerts whenever the specified test plan is incom-
plete or invalid;

• involves analysis of the testing constraints.

We integrate the ideas of refinement-based develop-
ment and the agile CTD, aim at increasing of the read-
ability and understandability of tests, to conform with
the ideas of human-oriented software development,
cf. (Spichkova et al., 2013; Spichkova, 2013).

A further future work direction is an implementa-
tion of a tool prototype for the proposed framework.
To this end we plan to connect the prototype with
the environment of IBM Functional Coverage Uni-
fied Solution, cf. (Segall and Tzoref-Brill, 2012; Wo-
jciak and Tzoref-Brill, 2014), which is a tool for test-
oriented system modelling, focused on model based
test planning and functional coverage analysis.

1The second author was supported by The Israel Science
Foundation under grant agreement no. 817/15.
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