
MCM Analyzer: A Fuzzy Logic-based Offloading Decision Trade-off
for Mobile Cloud Computing

Gustavo Mascarenhas Kath and Daniel Antonio Callegari
FACIN - Faculdade de Informática, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre/RS, Brazil

Keywords: Fuzzy Logic, Mobile Cloud Computing, Offloading.

Abstract: Mobile cloud computing is an emerging solution for remote data processing and offloading. However,
simply sending all data to the cloud is sometimes inviable because of security, network and cost issues.
Consequently, there should be a trade-off between local and remote processing of data. Hence, an important
issue to mobile solutions relies on developing a way to determine which sets of information can be
processed locally by the device and which sets of information could be sent to the cloud for remote
processing. This paper presents a fuzzy logic-based decision module for mobile cloud computing that can be
added to an Android application. Our proposal analyses execution data in real time and helps resolving the
local-remote decision trade-off. Experimental results show our proposal offers a promising approach when
dealing with such scenarios.

1 INTRODUCTION

Mobile Cloud Computing is an emerging computing
paradigm that leverages cloud computing resources to
smart mobile devices. It uses cloud storage services for
providing online storage, and cloud processing services
for augmenting processing capabilities of such mobile
devices. Processing capabilities of mobile devices are
extended by outsourcing computational intensive
components of the mobile applications to cloud data
centers (Orsini, et. al., 2015).

Although executing heavy tasks on cloud
infrastructure could be beneficial, always delegating
execution to remote servers might not be
advantageous and, in some cases, more resources are
spent sending and receiving jobs over the network
(Shiraz et. al. 2013).

Nevertheless, we have seen that the batteries on
such devices currently do not withstand too long for
some real world scenarios (Cuervo et. al, 2010). For
this reason, the mobile device should be intelligent
enough to decide whether outsourcing computation
is beneficial or not for a particular scenario.

Because solving this tradeoff is often based on
previous experience or on a set of heuristics and it is
subject to the designer or programmer's judgment
(Orsini, et. al., 2015), we believe fuzzy logic offers a
promising point of departure.

The classical methodology on knowledge

representation uses conventional logic, which is
often inefficient when dealing with uncertainty and
vagueness – it does not provide an adequate model
for reasoning on approximate information. Fuzzy
Logic provides an efficient conceptual base for
dealing with the problem of knowledge
representation in uncertain and imprecise
environments. It also can be used as a decision
mechanism (Zadeh, 1965) (Cox, 1995).

Our solution is composed of two main parts: the
Mobile Cost Monitor (MCM) and the MCM
Analyzer modules.

The MCM module is added to an Android
application and it automatically collects several
variables for later decision. In this sense, MCM acts
as a software profiler or “context monitor”. Then,
the results are evaluated by the MCM Analyzer
module, which fuzzyfies the input variables – such
as execution time, CPU, memory usage, connectivity
and battery level – applies a set of fuzzy rules, and
then defuzzyfies a final variable indicating the
favored result. The following sections present our
proposal in more detail.

2 MOBILE COST MONITOR

The Mobile Cost Monitor (MCM) is a software
component designed to monitor a running Android

180
Kath, G. and Callegari, D.
MCM Analyzer: A Fuzzy Logic-based Offloading Decision Trade-off for Mobile Cloud Computing.
In Proceedings of the 18th International Conference on Enterprise Information Systems (ICEIS 2016) - Volume 2, pages 180-185
ISBN: 978-989-758-187-8
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

application and collect data such as CPU usage,
memory usage, networking status, processing time
and battery charge. MCM was developed as a
module that can be added as a library to Android
applications. Its purpose is to collect information
about the overall execution of both the device and
the application that it is integrated to. MCM requires
Android version 2.3.3 (Gingerbread) or later.

2.1 Data Collected by MCM

MCM collects 18 different variables and their
respective values about the device and the running
application, e.g. battery level, temperature and
status; network type, status, signal level, inbound
and outbound traffic; shared and private memory
amounts; low memory flag; and app and general
CPU usage. Some values are acquired directly from
the Android's API; others are internally computed
based on historical data.

In order to capture information, MCM must be
added to a host application as a class library. Then,
the app developer decides the monitoring scope and
creates an instance of the Monitor class. In the
beginning of the desired application scope, the
developer calls the Monitor's start method. MCM
then starts collecting data in a configurable regular
basis. The Monitor's stop method should be called at
the end of the desired monitoring scope. This
architecture encapsulates all functionality for the
final development team.

3 MCM ANALYZER MODULE

MCM Analyzer is a software component that can be
attached to the output of MCM in order to process
the monitored data. MCM Analyzer was built to help
evaluating whether processing should be executed
locally by the device or else by the cloud
infrastructure, i.e., in a remote environment.

The local processing environment in our
scenario is the smartphone or the tablet computer.
Such devices have greater limitations when
compared to general-purpose computers. The
hardware is often simpler and, most importantly,
they run on batteries (as opposed to regular
computers, which run plugged to a power outlet).
Batteries provide considerable less energy for
computational purposes and they do not stand long
periods without recharging. Processing a large data
set is a task that can draw a lot of energy from the
battery. Moreover, some types of processing can
also increase energy consumption because a higher

frequency CPU usage directly draws more energy
from the battery (Datta, 2013).

In certain scenarios, sending the data set to be
processed by the cloud infrastructure can diminish
this issue, as computational limitations would be
lower in comparison. However, this is only possible
when the smartphone is connected to the network. In
the other hand, there is the cost of sending the data
to the servers. The device's radio also consumes a
considerable amount of energy, so that some experts
recommend us to check whether the network
connection is already established before trying to
send data as well as to compress the data to be sent
by the network infrastructure (Sharkey, 2009).

3.1 MCM Analyzer Heuristics

The MCM Analyzer module uses embedded
heuristics in order to solve the offloading tradeoff. In
order to decide which variables from MCM are
useful to our decision process (and to that extent),
we analyzed them one by one when running
experiments. We found the following variables as
the most important for our case:
Battery Level: This variable is considered critical to
the decision process. A very low battery raises the
risk to start a process, requiring more resources, and
eventually not being able to complete processing.
The remote processing time of the same information
is many times expected to lessen the use of such
resources, but we should not ignore the effort of
sending and receiving the information back.
Battery Status: This variable is important to the
decision tradeoff since we can easily determine
whether the device is connected to some power
source even when the battery level is low. However,
because USB ports provide considerable less energy
than standard power outlets, the device may inform
it is charging even though the battery level is
decreasing. In order to account for this issue we
embedded specific rules to the decision heuristics.
Network is Connected: This is a critical variable
because if the device is not connected to a network
than it is obviously impossible to rely on the remote
processing of the data. On Android devices, though,
this variable only informs whether we are connected
to some sort of networking (e.g. Wi-Fi, 3G, 4G), but
it does not tell whether the connection itself is
working properly.
Network Signal Level: This is an important
variable in our scenario since the lower is the value,
the greater is the risk in data loss during the
transmission of data to a remote processing location.

MCM Analyzer: A Fuzzy Logic-based Offloading Decision Trade-off for Mobile Cloud Computing

181

This, in turn, will probably incur the need to resend
data, as well as demand more control by the
transmission protocol, consequently increasing
energy consumption (Jung et. al. 2012).
Network Type: This is another important variable
for our decision. Mobile networks such as 3G and
4G may compromise data transmission when
compared to a generally more stable Wi-Fi
connection. In addition, the smartphone’s user may
choose whether those types of connection are
allowed or not. Finally, there is the monetary cost of
using such connections, depending on the carrier.
Network is Roaming: The importance of this
variable in our case is moderate. It is usually subject
to additional charges from the carrier.
Network Wi-Fi TX and Network Wi-Fi RX: Both
variables are relevant in choosing the processing
environment. They inform the number of bytes that
the monitored application sent and received via the
network. The use of the network infrastructure has a
direct impact on battery consumption.
PSS, Shared and Private Memory:
Although those variables are highly interrelated, we
did not find enough and meaningful information
from them that can be used for our decision tradeoff.
The values for the variables do not find influence on
information on energy consumption or connection
data.
The drawback of using too much memory locally is
that it supposedly increases the frequency of calls to
the garbage collector, which according to (Li et. al,
2013) implies significantly on resource usage and
also increases the execution time. Sending data to be
processed by the cloud could help in reducing such
cost as well as it helps in freeing memory. This
heuristic can be provided by looking at the Low
Memory Flag variable.
Available Memory: This is an important variable
for the decision. However, it is not included in the
decision heuristics because the Android API
(Application Programming Interface) informs that its
value should not be considered as an absolute value.
Due to the nature of the operating system’s kernel, a
significant portion of this amount is required for the
proper OS’s performance.
Low Memory Flag: This is a very important
variable for us, since it tells whether the system
finds itself in a state of low available memory.
Sending data for processing by the cloud is an
alternative because it tends to use fewer resources
and free memory.

Table 1: Sample rules from MCM Analyzer.

Rule MCM
variable

Favor
local
proc.

Favor
remote
proc.

Device is charging Battery Status X
Device is discharging Battery Status X
Antenna has weak
signal

Network
Signal Level X

Antenna has medium
signal

Network
Signal Level X

Antenna has strong
signal

Network
Signal Level X

Battery charge is high Battery Level X
Battery charge is
medium Battery Level X

Battery charge is low Battery Level X
Device is connected
to mobile network

Network
Type X

Device is connected
to a Wi-Fi router

Network
Type X

Device is roaming Network is
Roaming X

4 SOLVING THE OFFLOADING
TRADEOFF

We developed a set of heuristic rules that act on the
values of the acquired variables. Table 1 presents a
sample of the rules. As we can see, some rules use
conditions with constant values, while others present
conditions with some uncertainty. Such points of
uncertainty are written in italics in Table 1.

Additionally, rules have different levels of
significance and distinct levels of interdependence.
As an example, the third rule states that “if the
device has a weak antenna signal, then we should
favor the local processing of data” (the MCM
variable Network Signal Level provides that
information).

Table 2 presents part of the decision heuristics
we developed when dealing with the inherent
uncertainty of such type of information. The
uncertainty measurements are placed in the first
column and in the first row of the table, and the
corresponding value for each rule is presented by
combining both values.

Table 3 lists sample fuzzy rules for the local and
remote execution time variables. We compare the
local and the remote processing time by evaluating
the rate between the total processing time as a
function of the volume of processed data.

ICEIS 2016 - 18th International Conference on Enterprise Information Systems

182

Table 2: Fuzzy input and output variables and terms.

Fuzzy Variable Input Terms Output Terms

Battery Level
Low Remote ++

Medium Remote +
High Local ++

Network Level
Low Local ++

Medium Remote +
High Remote ++

Network Connection False Local ++
True Remote ++

Network Type Mobile Local +
Wi-Fi Remote +

Network is Roaming False Remote +
True Local +

Battery Status Not charging Remote +
Charging Local +

Memory is Low False Local +
True Remote +

Figure 1: Interface of the testing application.

The output variables have the self-explanatory
terms Local-, Local--, Remote+ and Remote++.

Table 3: Fuzzy variables for the execution times.

Remote time
Local time

Short Medium Long

Short Local + Local ++ Local ++

Medium Remote + Remote + Local +

Long Remote ++ Remote ++ Remote ++

In order to reassure our assumption that a fuzzy
logic-based solution is applicable to such cases, we
also developed a specific app that can be used to
experiment with the heuristics that compute the final
decision between processing the data locally or
remotely by the cloud infrastructure. The app
presents a user interface that allows the developer to
experiment with the input variables for the decision
system.

The application works on the input data, then
uses the fuzzy inference engine and outputs the
“Process Location” variable, which represents the
degree to which the system “favors” the local or the
remote processing of the data. By evaluating this
output value in the range 0 to 100, one could make
the final decision by applying some threshold
interval, for example. Figure 1 shows the main
interface of the app.

By experimenting with the testing app, the team
can perform tests in order to fine-tune their
heuristics for each particular case.

5 EXPERIMENTAL RESULTS

We ran our experiments in two distinct Android
smartphones: a Samsung Galaxy S3, 1.4 Ghz, 1 GiB
RAM, running Android 4.3 and a Motorola Moto X,
1.7 GHz, 2 GiB RAM, running Android 4.4.4.

In our experiments, we found some interesting
relations among the data collected by the MCM
module. Those relations are important because if we
find a correlation between two or more variables, it
means we can reduce the monitoring overhead by
leaving the dependent variables out of the sampling.

MCM Analyzer: A Fuzzy Logic-based Offloading Decision Trade-off for Mobile Cloud Computing

183

This is very important when profiling
applications in order to make decisions since all
profiling implies both a processing and a potential
memory overhead. Thus, by using less CPU cycles,
less memory and less battery resources, we can
minimize the computational footprint of the MCM
module.

As an example, if two variables are linearly
proportional, then it may be only necessary to collect
one of them in order to make a decision based on
their values. The testing application provides an easy
to use fuzzy inference engine that enables the
development team to try several combinations of
values for the input variables. It also provides a
convenient way to fine-tune the fuzzy inference
rules for the offloading decision to a particular case.

6 RELATED WORK

During the development of this research, we found
other works and applications already available with
similar functions and ideas of MCM. We observed,
however, that much of such initiatives were only
intended for application debugging purposes (before
the application was made available to the public)
and not for real time execution scenarios as in our
case. Two examples of such initiatives are
DevScope and the Android SDK’s Dalvik Debug
Monitor Service (DDMS) (Jung et. al, 2012)
(Google, 2015).

Some other initiatives are Qualcomm’s Trepn
Profiler (Qualcomm, 2015), and AppScope (Yoon,
2012). However, those profiling modules do not
focus on getting hardware specific information for
the running application but only for the device as a
whole. Such specific information cannot be obtained
via API calls because they are only available when
debugging is active.

AppScope and DevScope, in particular, focus on
the development of an energy model of the mobile
device. An energy model is a framework based on
mathematical calculations for estimating energy
expenditure of the main hardware components of a
device and therefore the total expenditure power of
the device. According to the authors, this technique
allows for a decision-making process based on
energy expenditure of certain components, as well as
the system altogether. In addition, it is also possible
to estimate the remaining battery time. Among all
related work, Qualcomm’s Trepn Profiler
application is the one that most resembles Mobile
Cost Monitor.

Nevertheless, as stated previously, because the

offloading decision in mobile cloud computing
environments is often based on expert judgment, we
suggest using approaches that better deal with
uncertainty and yet provide convenient and suitable
decision mechanisms for such scenarios.

7 CONCLUSIONS

As a model that enables ubiquitous network access
to a pool of computing and networking services,
Cloud Computing provides computational resources
in an on-demand, pay-as-you-go manner through
minimal interaction with the service provider. This
sort of utility computing infrastructure offers a
scalable environment to store and also process large
amounts of data. A solution to the offloading trade-
off may benefit from a fuzzy logic-based approach.

This paper presented MCM and MCM Analyzer
modules, as well as our investigation of variables
and potential fuzzy logic rules to address this
decision. This work offers new insights that build on
top of our previous research (Callegari et. at., 2013).

We developed different Android applications and
running scenarios, compared them and performed
several experiments in order to attest its practicality.
We verified that MCM and the decision mechanism
represent a new approach to mobile cloud computing
solutions. The next steps involve improving our
solution by adding learning capabilities. MCM runs
on Android devices and it enables the collection of
several types of information that allow the technical
team to evaluate proper scenarios where a mobile
could computing solution is feasible or even
necessary.

REFERENCES

Callegari, D. A., Jersak, L. C., da Costa, A. C., 2013.
Technical Trends and Challenges in Mobile Health - A
Systematic Review of Recent Available Literature. In
Proceedings of the 15th International Conference on
Enterprise Information Systems.

Cox, E. D., 1995. Fuzzy Logic for Business and Industry.
Charles River Media.

Cuervo, E., Balasubramanian, A., Cho, D., Wolman, A.,
Saroiu, R. Chandra, R., Bahl, P. 2010. MAUI: making
smartphones last longer with code offload. In 8th
International Conference on Mobile Systems,
Applications, and Services.

Datta, S. K., Bonnet, C., Nikaein, N., 2013. Minimizing
energy expenditure in smart devices. In IEEE
Conference on Information and Communication
Technologies.

ICEIS 2016 - 18th International Conference on Enterprise Information Systems

184

Google Inc.. Android., 2015. Debugging using DDMS.
Available: http://developer.android.com/tools/
debugging/ddms.html.

Jung, W., Kang, C., Yoon, C., Kim, D., Cha, H., 2012.
DevScope: a nonintrusive and online power analysis
tool for smartphone hardware components. In.
Proceedings of the 8th IEEE/ACM/IFIP international
conference on Hardware/software codesign and
system synthesis.

Orsini, G., Bade, D., Lamersdorf, W., 2015. Context-
Aware Computation Offloading for Mobile Cloud
Computing: Requirements Analysis, Survey and
Design Guideline. In 12th International Converence on
Mobile Systems and Pervasive Computing.

Qualcomm Inc., 2015. Trepn Profiler. Available
https://developer.qualcomm.com/mobile-
development/increase-app-performance/trepn-profiler.

Sharkey, J., 2009. Coding for Life - Battery Life, That Is,
Google I/O. Available: https://dl.google.com/io/2009/
pres/W_0300_CodingforLife-BatteryLifeThatIs.pdf.

Shiraz, M., Gani, A., Khokhar, R., Buyya, R., 2013. A
Review on Distributed Application Processing
Frameworks in Smart Mobile Devices for Mobile
Cloud Computing. In IEEE Communications Surveys
& Tutorials, vol. 15, no. 3.

Yoon, C., Kim, D., Jung, W., Kang, C., Cha, H., 2012.
AppScope: application energy metering framework for
android smartphones using kernel activity monitoring.
In Proceedings of the 2012 USENIX conference on
Annual Technical Conference.

Zadeh, L. A., 1965. Fuzzy sets. Information and Control.
8:338-53.

MCM Analyzer: A Fuzzy Logic-based Offloading Decision Trade-off for Mobile Cloud Computing

185

