
A Framework for Parameterized Semantic Matchmaking and Ranking
of Web Services

Fatma Ezzahra Gmati1, Nadia Yacoubi Ayadi1, Afef Bahri2, Salem Chakhar3 and Alessio Ishizaka3
1RIADI Research Laboratory, National School of Computer Sciences, University of Manouba, Manouba, Tunisia

2MIRACL Laboratory, High School of Computing and Multimedia, University of Sfax, Sfax, Tunisia
3Portsmouth Business School and Centre for Operational Research & Logistics, University of Portsmouth, Portsmouth, U.K.

Keywords: Web service, Semantic Similarity, Matchmaking, Ranking, Performance.

Abstract: The Parameterized Semantic Matchmaking and Ranking (PMRF) is a highly configurable framework support-
ing a parameterized matching and ranking of Web services. The paper introduces the matching and ranking
algorithms supported by the PMRF and presents its architecture. It also evaluates the performance of the
PMRF and compares it to the iSeM-logic-based and SPARQLent frameworks using the OWLS-TC4 datasets.
The comparison results show that the algorithms included in PMRF behave globally well in comparison to
iSeM-logic-based and SPARQLent.

1 INTRODUCTION

The matchmaking is a crucial operation in Web ser-
vice discovery and selection. The objective of the
matchmaking is to discover and select the most ap-
propriate Web service among the different avail-
able candidates. Different matchmaking frame-
works are now available in the literature (Chakhar
et al., 2014)(Chakhar et al., 2015)(Doshi et al.,
2004) (Klusch and Kapahnke, 2012)(Samper Zapa-
ter et al., 2015)(Sbodio et al., 2010)(Sharma et al.,
2015)(Sycara et al., 2003) but most of them present
at least one of the following shortcomings: (1)
use of strict syntactic matching, which generally
leads to low recall and low precision rates; (2) use
of capability-based matchmaking, which is proven
(Doshi et al., 2004) to be inadequate in practice; (3)
lack of customization support; and (4) lack of ac-
curate ranking of matching Web services, especially
within semantic-based matching.

The objective of this paper is to present the Pa-
rameterized Matching-Ranking Framework (PMRF),
which uses semantic matchmaking, accepts capabil-
ity and property attributes, supports different levels of
customization and generates a ranked list of matching
Web services. Hence, the proposed system can deal
jointly with the previous shortcomings. The compar-
ison of PMRF to iSeM-logic-based (Klusch and Ka-
pahnke, 2012) and SPARQLent (Sbodio et al., 2010),
using the OWLS-TC4 datasets, shows that the algo-

rithms supported by PMRF behave globally well in
comparison to iSeM-logic-based and SPARQLent.

The paper first reviews the matching and ranking
algorithms (Section 2). Next, it presents the architec-
ture of the PMRF (Section 3). Then, it studies the
performance of the PMRF (Section 4). Lastly, the pa-
per provides the comparative study (Section 5), com-
ments on the user/provider acceptability (Section 6)
and discusses some related work (Section 7). The last
section concludes the paper.

2 MATCHING AND RANKING
ALGORITHMS

In this section, we briefly present the matching and
ranking algorithms supported by the PMRF.

2.1 Matching Algorithms

The PMRF supports three matching algorithms—
basic, partially parameterized and fully
parameterized—supporting different levels of
customization (see Table 1). The basic matching
algorithm supports no customization. The partially
parameterized matching algorithm allows the user to
specify the set of attributes to be used in the matching.
Within the fully parameterized matching algorithm,
three customizations are taken into account. A
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first customization consists in allowing the user to
specify the list of attributes to consider. A second
customization consists in allowing the user to specify
the order in which the attributes are considered. A
third customization is to allow the user to specify a
desired similarity measure for each attribute. In the
rest of this section, we present the third algorithm.

Table 1: Customization levels.

Matching List of Order of Desired
algorithm attributes attributes similarity
Basic
Partially parameterized X
Fully parameterized X X X

In order to support all the above-cited customiza-
tions of the fully parameterized matching, we used the
concept of Criteria Table, introduced by (Doshi et al.,
2004), that serves as a parameter to the matching pro-
cess. A Criteria Table,C, is a relation consisting of
two attributes,C.A andC.M. TheC.A describes the
service attribute to be compared, andC.M gives the
least preferred similarity measurefor that attribute.
Let C.Ai andC.Mi denote the service attribute value
and the desired measure in theith tuple of the rela-
tion. TheC.N denotes the number of tuples inC.

Let SR be the service that is requested,SA be the
service that is advertised andC a criteria table. A suf-
ficient match exists betweenSR andSA if for everyat-
tribute inC.A there exists an identical attribute ofSR

andSA and the values of the attributes satisfy the de-
sired similarity measure specified inC.M. Formally,

∀i∃ j,k(C.Ai = SR.A j = SA.Ak)∧µ(SR.A j ,SA.Ak)�C.Mi

⇒ SuffMatch(SR,SA) 1≤ i ≤C.N.
(1)

The computing of the similarity degreesµ(·, ·) is
addressed in Section 2.2. The fully parameterized
matching process is formalized in Algorithm 1, which
follows directly from Sentence (1). Algorithm 1 pro-
ceeds as follows. First, it loops over the attributes in
the Criteria TableC and for each attribute it identifies
the corresponding attribute in the requested serviceSR

and the potentially advisable service under consider-
ationSA. The corresponding attributes are appended
into two different listsrAttrSet (requested Web ser-
vice) andaAttrSet (advisable Web service). This op-
eration is implemented by sentences 1 to 10 in Al-
gorithm 1. Second, it loops over the Criteria Table
and for each attribute it computes the similarity de-
gree between the corresponding attributes inrAttrSet
andaAttrSet. This operation is implemented by sen-
tences 11 to 14 in Algorithm 1. The output of Algo-
rithm 1 is either success (if for every attribute inC
there is a similar attribute in the advertised serviceSA

with a sufficient similarity degree) or fail (otherwise).

The Criteria TableC used as parameter to Algo-
rithm 1 permits the user to control the matched at-
tributes, the order in which attributes are compared,
as well as the minimal desired similarity for each at-
tribute. The structure of partially matching algorithm
is similar to Algorithm 1 but it takes as input an un-
ordered collection of attributes with no desired simi-
larities. The basic matching algorithm do no support
any customization and the only possible inputs are
the specification of the requestedSR and advertised
SA services. A further discussion about the different
customization levels is given in Section 3.4.

Algorithm 1: Fully Parameterized Matching.
Input : SR, // Requested service.

SA, // Advertised service.

C, // Criteria Table.

Output : Boolean, // fail/success.

1 while (i ≤C.N) do
2 while

(
j ≤ SR.N

)
do

3 if
(
SR.A j =C.Ai

)
then

4 AppendSR.A j to rAttrSet;

5 j←− j +1;

6 while
(
k≤ SA.N

)
do

7 if
(
SA.Ak =C.Ai

)
then

8 AppendSA.Ak to aAttrSet;

9 k←− k+1;

10 i←− i+1;

11 while (t ≤C.N) do
12 if (µ(rAttrSet[t],aAttrSet[t])≺C.Mt) then
13 return fail;

14 t←− t +1;

15 return success;

Let us now focus on the complexity of Algorithm
1. Generally, we haveSA.N≫ SR.N, hence the com-
plexity of the first outerwhile loop isO(C.N×SA.N).
Then, the worst case complexity of Algorithm 1 is
O(C.N×SA.N)+α whereα is the complexity of com-
puting µ(·, ·). The value ofα depends on the ap-
proach used to inferµ(·, ·). As underlined in (Doshi
et al., 2004), inferringµ(·, ·) by ontological parse
of pieces of information into facts and then utiliz-
ing commercial rule-based engines, which use the
fast Rete pattern-matching algorithm leads toα =
O(|R||F ||P|) where|R| is the number of rules,|F | is
the number of facts, and|P| is the average number
of patterns in each rule. Furthermore, we observe, as
in (Doshi et al., 2004), that the process of comput-
ing µ(·, ·) is the most ‘expensive’ step of Algorithm 1.
Hence, the complexity of the matching algorithm will
beO(C.N×SA.N)+O(|R||F||P|)≍O(|R||F ||P|).

Different versions and extensions of this algo-
rithm are available in (Chakhar, 2013)(Chakhar et al.,
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2014)(Chakhar et al., 2015)(Gmati et al., 2014). Fi-
nally, we remark that Algorithm 1 permits to com-
pute the similarly between a requested Web serviceSR

and an advertised Web serviceSA. In practice, how-
ever, matching process should consider all the Web
services available in the registry. An extended ver-
sion of Algorithm 1 that takes into account this fact is
given in (Gmati et al., 2014).

2.2 Computing Similarity Degrees

To compute the similarity degreeµ(·, ·), we extended
the solution of (Bellur and Kulkarni, 2007) where the
authors define four degrees of match, namelyExact,
Plug-in, Subsumes andFail as default. During the
matching process, the inputs and outputs of the re-
quested Web service are matched with the inputs and
outputs of the advertised Web service by construct-
ing a bipartite graph where the vertices correspond
to concepts associated with the attributes. The bipar-
tite graph is defined such that: (i) the vertices in the
left side of the bipartite graph correspond to adver-
tised services, (ii) the vertices in the right side cor-
respond to the requested service; and (iii) the edges
correspond to the semantic relationships between the
concepts in left and right sides of the graph. Then,
they assign weights to each edge as follows:Exact:
w1, Plug-in: w2, Subsumes: w3, Fail: w4; with
w4 ≻ w3 ≻ w2 ≻ w1. Finally, they apply the Hungar-
ian algorithm to identify the complete matching that
minimizes the maximum weight in the graph. The fi-
nal returned degree is the one corresponding to the
maximum weight in the graph. Then, the selected
assignment is the one representing a strict injective
mapping, such that the maximal weight is minimized.

The optimality criterion used in (Bellur and
Kulkarni, 2007) is designed to minimize the false pos-
itives and the false negatives. In fact, minimizing the
maximal weight would minimize the edges labeled
Fail. However, the choice of max(wi) as a final re-
turn value is restrictive and the risk of false negatives
in the final result is higher. To avoid this problem,
we propose to consider both max(wi) and min(wi) as
pertinent values in the matching.

A further discussion of similarity degree comput-
ing is available in (Gmati et al., 2015).

2.3 Ranking Algorithms

The PMRF supports three ranking algorithms: score-
based, rule-based and tree-based. The first algorithm
relies on the scores only. The second algorithm de-
fines and uses a series of rules to rank Web services.
It permits to solve the ties problem encountered by the

score-based ranking algorithm. The tree-based algo-
rithm, which is based on the use of a tree data struc-
ture, permits to solve the problem of ties of the first al-
gorithm. In addition, it is computationally better than
the rule-based ranking algorithm. The score-based
ranking is given in Algorithm 2. The rule-based and
tree-based ranking algorithms are available in (Gmati
et al., 2014) and (Gmati et al., 2015), respectively.

Algorithm 2: Score-Based Ranking.
Input : mServices,// List of matching Web services.

N,// Number of attributes.

Output : mServices,// Ranked list of Web services.

1 mServices← ComputeNormScores(mServices,N);

2 r ← length(mServices);

3 for (i = 1 to r−1) do
4 j← i;

5 while
( j ≥ 0∧mServices[ j−1,N+2]> mServices[ j,N+2]) do

6 swapmServices[ j,N+2] andmServices[ j−1,N+2];

7 j← j−1;

8 returnmServices;

The main input of this algorithm is a listmSer-
vices of matching Web services. The functionCom-
puteNormScores in Algorithm 2 permits to calculate
the normalized scores of Web services. It implements
the idea we proposed in (Gmati et al., 2014). The
score-based ranking algorithm uses then aninsertion
sort procedure (implemented by lines 3-7 in Algo-
rithm 2) to rank the Web services based on their nor-
malized scores.

The list mServices used as input to Algorithm 2
has the following generic definition:

(SA
i ,µ(S

A
i .A1,SR.A1), · · · ,µ(SA

i .AN,SR.AN)),

where:SA
i is an advertised service,SR is the requested

service,N the total number of attributes and forj ∈
{1, · · · ,N}, µ(SA

i .A j ,SR.A j) is the similarity measure
between the requested Web service and the advertised
Web service on thejth attributeA j .

The list mServices will be first updated by func-
tion ComputeNormScores and it will have the follow-
ing new generic definition:

(SA
i ,µ(S

A
i .A1,SR.A1), · · · ,µ(SA

i .AN,SR.AN),ρ′(SA
i )),

where: SA
i , SR, N andµ(SA

i .A j ,SR.A j) ( j = 1, · · · ,N)
are as above; andρ′(SA

i ) is the normalized score of ad-
vertised Web serviceSA

i . The normalized scoreρ′(SA
i )

is computed byComputeNormScores.
Based on the discussion in Section 2.2, we de-

signed two versions for computing similarity degrees.
Accordingly, two versions can be distinguished for
the definition of the listmServices at the input level,
along with the way the similarity degrees are com-
puted. The first version is as follows:
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Figure 1: Conceptual architecture of the PMRF.

(SA
i ,µmax(SA

i .A1,SR.A1), · · · ,µmax(SA
i .AN,SR.AN)),

where: SA
i , SR and N are as above; and

µmax(SA
i .A j ,SR.A j) ( j = 1, · · · ,N) is the similarity

measure between the requested Web service and the
advertised Web service on thejth attributeA j com-
puted by selecting the edge with themaximum
weight in the matching graph.

The second version ofmServices is as follows:
(SA

i ,µmin(SA
i .A1,SR.A1), · · · ,µmin(SA

i .AN,SR.AN)),

where SA
i , SR and N are as above; and

µmin(SA
i .A j ,SR.A j) ( j = 1, · · · ,N) is the similar-

ity measure between the requested Web service and
the advertised Web service on thejth attributeA j
computed by selecting the edge with theminimum
weight in the matching graph.

To obtain the final rank, we need to use these two
versions separately and then combine the obtained
rankings. However, a problem of ties may occur since
several Web services may have the same scores with
both versions. This will deteriorate the precision rate.
The tree-based ranking algorithm (Gmati et al., 2015)
permits to solve this new ties problem.

The functionComputeNormScores in Algorithm
2 has a complexity ofO(rN2) wherer is the number
of Web services andN is the number of attributes. The
length in line 2 is assumed to be a built-in function and
its complexity is not considered here. The sentences
in lines 3-7 in Algorithm 2 implement an insertion
sort procedure, which at best has a time complexity
of O(r) and in worst case, it makesO(r2). Hence, the
overall complexity of Algorithm 2 isO(rN2)+O(r)
in best case andO(rN2)+O(r2) in worst case.

3 SYSTEM ARCHITECTURE
AND IMPLEMENTATION

In this section, we first introduce conceptual and func-
tional architecture of the PMRF. Then, we briefly
present the implementation environment and choices.
Finally, we show how the system can be customized.

3.1 Conceptual Architecture

Figure 1 provides the conceptual architecture of the
PMRF. The inputs of the system are: the Criteria Ta-
ble, the Attributes List, the published Web services
repository, the user request and its corresponding On-
tologies. The Attributes List is a criteria table without
similarity measures. It is used during the partially pa-
rameterized matching. The weights of similarity de-
grees and order functions are computed by the PMRF.
The weights are used to compute the scores of Web
services and the order functions are employed in the
rule-based ranking (see (Gmati et al., 2014)). The out-
put of the PMRF is a ranked list of Web services.

The PMRF is composed of two layers. The role of
the first layer is to parse the input data and parameters
and then transfer it to the second layer, which repre-
sents the matching and ranking engine. The Matching
Module filters Web service offers that match with the
Criteria Table/List. The result is then passed to the
Ranking Module. This module produces a ranked list
of Web services. The assembler guarantees a coher-
ent interaction between the different modules in the
second layer.
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Figure 2: Functional architecture of the PMRF.

The three main components of the second layer
are:

• Matching Module: This component contains the
different matching algorithms: basic, partially pa-
rameterized and fully parameterized matching al-
gorithms.

• Similarity Computing Module : This compo-
nent supports the different similarity measure
computing approaches: Efficient similarity with
MinEdge, Accurate similarity with MinEdge, Ac-
curate similarity with MaxEdge and Accurate
similarity with MaxMinEdge.

• Ranking Module: This component is the repos-
itory of the score computing technique and the
different ranking algorithms, namely score-based,
rule-based and tree-based ranking algorithms.

3.2 Functional Architecture

The functional architecture of the PMRF is given in
Figure 2. It shows graphically the different steps
from receiving the user query (specifications of the
requested Web service and the different parameters)
until the delivery of the final results (ranked list of
matching Web services) to the user.

We can distinguish the following main operations:

• The PMRF receives (1) the user query including
the specifications of the desired Web service and
the required parameters;

• The Matching Module scans (2) the Registry in
order to identify the Web services matching the
user query;

• During the matching process, the Matching Mod-
ule uses (3) the Similarity Computing Module to
calculate the similarity degrees;

• The Matching Module delivers (4) the Web ser-
vices matching the user query to the Ranking
Module;

• The Ranking Module receives (5) the matching
Web services and processes them for ranking;

• During the ranking operation, the Ranking Mod-
ule uses (6) the Scoring Technique to compute the
scores of the Web services;

• The Ranking Module generates a ranked list of
Web services, which is then delivered (7) by the
PMRF to the user.

3.3 Implementation

To develop the PMRF, we have used the following
tools: (i) Eclipse IDE as the developing platform, (ii)
OWLS-API to parse the OWLS service descriptions,
and (iii) OWL-API and the Pellet-reasoner to perform
the inference for computing the similarity degrees. In
order to minimize resources consumption (especially
memory), we used the following procedure for imple-
menting the inference operation: (1) A local Ontology
is created at the start of the matchmaking process. The
incremental classifier class, taken from the Pellet rea-
soner library, is associated to this Ontology. (2) The
service parser based on the OWLs-API retrieves the
Uniform Resource Identifier (URI) of the attributes
values of each service. The concepts related to these
URIs are added incrementally to the local Ontology
and the classifier is updated accordingly. (3) In order
to infer the semantic relations between concepts, the
similarity measure module uses the knowledge base
constructed by the incremental classifier.

3.4 System Customization

The parameterizing interface of the PMRF is given
in Figure 3. The PMRF permits the user to choose
the type of algorithm to use and to specify the cri-
teria table to consider during the matching. The
PMRF offers three matching algorithms (basic, par-
tially parameterized and fully parameterized) and
three ranking algorithms (score-based, rule-base and
tree-based).

In addition, the PMRF supports different aggre-
gation levels: conjunctive-attribute level, disjunctive-
attribute level and service level. The attribute-level
matching involves capability and property attributes
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Figure 3: Parameterizing Interface.

and consider each matching attribute independently of
the others. In this type of matching, the PMRF offers
two types of aggregation, namely conjunctive and dis-
junctive, where the individual (for each attribute) sim-
ilarity degrees are combined using either AND or OR
logical operators. The service-level matching consid-
ers capability and property attributes but the matching
operation implies attributes both independently and
jointly.

The PMRF also allows the user to select the pro-
cedure to use for computing the similarity degrees.
Four procedures are supported by the system: Ef-
ficient similarity with MinEdge, Accurate similarity
with MinEdge, Accurate similarity with MaxEdge
and Accurate similarity with MaxMinEdge.

4 PERFORMANCE EVALUATION

In this section, we evaluate the performance of the
proposed matching and ranking framework.

4.1 Evaluation Framework

To evaluate the performance of the PMRF, we used
the SME2 (Klusch et al., 2010), which is an open
source tool for testing different semantic matchmak-
ers in a consistent way. The SME2 uses OWLS-TC
collections to provide the matchmakers with Web ser-

vice descriptions, and to compare their answers to the
relevance sets of the various queries. The SME2 pro-
vides several metrics to evaluate the performance and
effectiveness of a Web service matchmaker. The met-
rics that have been considered in this paper are: pre-
cision and recall, average precision, query response
time and memory consumption. The definition of
these metrics are given in (Klusch et al., 2010).

Experimentations have been conducted on a Dell
Inspiron 15 3735 Laptop with an Intel Core i5 proces-
sor (1.6 GHz) and 2 GB of memory. The test collec-
tion used is OWLS-TC4, which consists of 1083 Web
service offers described in OWL-S 1.1 and 42 queries.

4.2 Performance Evaluation Analysis

To study the performance of the different modules
supported by the PMRF, we implemented seven plug-
ins (see Table 2) to be used with the SME2 tool. Each
of these plugins represents a different combination of
the matching, similarity computing and ranking algo-
rithms.

4.2.1 Comparison of Configurations 1 and 2

The difference between configurations 1 and 2 is
the similarity measure module instance: configura-
tion 1 employs theAccurate MinEdge instance while
the second employs theEfficient MinEdge instance.
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Table 2: Evaluated Configurations.
Config. Similarity Measure Matching Ranking

1 Accurate MinEdge Basic Basic
2 Efficient MinEdge Basic Basic
3 Accurate MaxEdge Basic Basic
4 Accurate MinEdge Fully Parameterized Basic
5 Accurate MaxMinEdge Basic RankMinMax
6 Accurate MinEdge Basic Rule Based
7 Efficient MinEdge Basic Rule Based

Figure 4 shows the Average Precision and Figure 5 il-
lustrates the Recall/Precision plot of configurations 1
and 2. We can see that configuration 1 outperforms
configuration 2 for these two metrics. This is due to
the use of logical inference, that obviously enhances
the precision of the first configuration.

Figure 4: Config. 1vsConfig. 2: Average Precision.

Figure 5: Config. 1vsConfig. 2: Recall/Precision.

In Figure 6, however, configuration 2 is shown to
be remarkably faster than configuration 1. This is due
to the inference process used in configuration 1 that
consumes considerable resources.

4.2.2 Comparison of Configurations 1 and 4

The configurations 1 and 4 use different matching
module instances. The first configuration is based on

Figure 6: Config. 1vsConfig. 2: Query Response Time.

the basic matching algorithm while the second uses
the fully parameterized matching. Figure 7 shows the
Average Precision metric results. It is easy to see that
configuration 4 outperforms configuration 1. This is
due to the fact that the Criteria Table restricts the re-
sults to the most relevant Web services, which will
have the best ranking leading to a higher Average Pre-
cision. Figure 8 illustrates the Recall/Precision plot.
It shows that configuration 4 has a low recall rate. The
overly restrictive Criteria Table explains these results,
since it fails to return some relevant services.

Figure 7: Config. 1vsConfig. 4: Average Precision.

4.2.3 Comparison of Configurations 5 and 6

The difference between configurations 5 and 6 is the
ranking module instance and the similarity measure
computing procedure. The first uses the tree-based
ranking algorithm while the second employs the rule-
based ranking algorithm. Figure 9 shows that config-
uration 5 has a slightly better Average Precision than
configuration 6 while Figure 10 shows that configura-
tion 6 is obviously faster than configuration 5.

WEBIST 2016 - 12th International Conference on Web Information Systems and Technologies

60



Figure 8: Config. 1vsConfig. 4: Recall/Precision.

Figure 9: Config. 5vsConfig. 6: Average Precision.

5 COMPARATIVE STUDY

We compared the results of the PMRF matchmaker
with SPARQLent (Sbodio et al., 2010) and iSeM
(Klusch and Kapahnke, 2012) frameworks. Configu-
ration 7 was chosen to perform this comparison. The
SPARQLent is a logic-based matchmaker based on
the OWL-DL reasoner Pellet to provide exact and re-
laxed Web services matchmaking. The iSeM is an hy-
brid matchmaker offering different filter matchings:
logic-based, approximate reasoning based on logical
concept abduction for matching Inputs and Outputs.
We considered only the I-O logic-based in this com-
parative study. We note that SPARQLent and iSeM
consider preconditions and effects of Web services,
which are not considered in our work.

5.1 Average Precision

The Average Precision is shown in Figure 11. This
figure shows that the PMRF has a more accurate Av-
erage Precision than iSeM logic-based and SPARQ-

Figure 10: Config. 5vsConfig. 6: Query Response Time.

Lent, leading to a better ranking precision than the
two other frameworks. In addition, the generated
ranking is more fine-grained than SPARQLent and
iSeM. This is due to the score-based ranking that
gives a more coarse evaluation than a degree aggrega-
tion. Indeed, SPARQLent and iSeM approaches adopt
a subsumption-based ranking strategy as described in
(Paolucci et al., 2002), which gives equal weights to
all similarity degrees.

Figure 11: Comparative study: Average Precision.

5.2 Recall/Precision

Figure 12 presents the Recall/Precision of the PMRF,
iSeM logic-based and SPARQLent. This figure shows
that PMRF recall is significantly better than both
iSeM logic-based and SPARQLent. This means that
our approach is able to reduce the amount of false
positives (see (Bellur and Kulkarni, 2007) for a dis-
cussion on the false positives problem).
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Figure 12: Comparative study: Recall/Precision.

5.3 Query Response Time

The comparison of the Query Response Time of the
PMRF, logic-based iSeM and SPARQLent is shown
in Figure 13. The first column (Avg) gives the aver-
age response time for the three matchmakers. The ex-
perimental results show that the PMRF is faster than
SPARQLent (760ms for SPARQLent versus 128ms
for PMRF) and slightly less faster than logic-based
iSeM (65ms for iSeM). We note that SPARQLent has
especially high query response time if the query in-
clude preconditions/effects. The SPARQLent is also
based on an OWL DL reasoner, which is an expen-
sive processing. PMRF and iSeM have close query re-
sponse time because both consider direct parent/child
relations in a subsumption graph, which reduces sig-
nificantly the query processing. The PMRF highest
query response time limit is 248ms.

5.4 Memory Usage

Figure 14 shows the Memory Usage for PMRF, iSeM
logic-based and SPARQLent. It is easy to see that

Figure 13: Comparative study: Query Response Time.

PMRF consumes less memory than iSeM logic-based
and SPARQLent. This can be explained by the fact
that the PMRF does not require a reasoner (in the
case of Configuration 7) neither a SPARQL queries in
order to compute similarities between concepts. We
note, however, that the memory usage of the PMRF
increases monotonically in contrast to SPARQLent.
In the long-term operation of the proposed system, its
memory consumption might be equivalent to or more
than SPARQLent.

Figure 14: Comparative study: Memory Usage.

6 DISCUSSION

In this section, we discuss the user/provider accept-
ability of the proposed customizations. Indeed, one
important characteristic of the proposed framework is
its configurability by allowing the user to specify a
set of parameters and apply different algorithms sup-
porting different levels of customization. This, how-
ever, leads to the problem of user/provider acceptabil-
ity and ability to specify the required parameters, es-
pecially the criteria Table. Indeed, the specification
of these parameters may require some cognitive effort
from the user/provider.

A possible solution to reduce this effort is to use a
predefined Criteria Table. This solution can be further
enhanced by including in the framework some appro-
priate Artificial Intelligence techniques to learn from
the previous choices of the user.

Another possible solution to reduce the cognitive
effort consists in exploiting the context of the user
queries. First, the description of elementary services
can be textually analysed and based on the query do-
main, the system uses either the efficient or the ac-
curate configurations. Second, a global time limit to
the matchmaking process can be used to orient the
system towards the use of the accurate version or effi-
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cient version of the similarity measure computing al-
gorithm. Third, the context of the query in the work-
flow can be used to determine the level of customiza-
tion needed and also in the generation of a suitable
Criteria Table or Attributes List.

A more advanced solution consists in combining
all the idea cited above.

7 RELATED WORK

Several matchmaking frameworks have been pro-
posed in the literature. However, most of these frame-
works present at least one of the four shortcomings
cited in the introduction: use of strict syntactic match-
ing, use of capability-based matchmaking, lack of
customisation support and lack of accurate ranking of
matching Web services. In what follows, we discuss
each of these shortcomings.

Strict Syntactic Matching. The first and traditional
matchmaking frameworks, such as Jini (Arnold et al.,
1999), Konark (Lee et al., 2003) and Salutation
(Miller and Pascoe, 2000), are based on strict syn-
tactic matching. Such syntactic matching approaches
only perform service discovery and service matching
based on particular interface or keyword queries from
the user, which generally leads to low recall and low
precision of the retrieved services (Lv et al., 2009).

In order to overcome the limitation of strict syn-
tactic matching, some advanced techniques and al-
gorithms (e.g., genetic algorithmic as in (Ludwig,
2011), utility function as in (Wang et al., 2009)(Yu
and Lin, 2004)) have been used. Additionally, many
authors propose to include the concept of semantics
as in (Bellur and Kulkarni, 2007)(Ben Mokhtar et al.,
2006)(Fu et al., 2009)(Goncalves et al., 2010)(Guo
et al., 2005)(Klusch and Kapahnke, 2012)(Li and
Horrocks, 2003)(Paolucci et al., 2002)(Sbodio et al.,
2010)(Sycara et al., 2003) to deal with the limita-
tion of strict syntactic matching. The use of ontology
eliminates the limitations caused by syntactic differ-
ence between terms since matching is now possible
on the basis of concepts of ontologies used to describe
input and output terms (Bellur et al., 2008).

Capability-based Matchmaking. Most of exist-
ing matchmaking frameworks such as (Ben Mokhtar
et al., 2006)(Goncalves et al., 2010)(Guo et al.,
2005)(Li and Horrocks, 2003)(Paolucci et al.,
2002)(Sycara et al., 2003) utilize a strict capability-
based matchmaking, which is proven (Doshi et al.,
2004) to be inadequate in practice. Some recent
proposals including (Ben Mokhtar et al., 2006)(Guo

et al., 2005) propose to use semantics to enhance the
matchmaking process but most of them still consider
capability attributes only.

The author in (Chakhar, 2013) distinguishes three
types of service attributes (i) capability attributes that
directly relate to working of the service, (ii) quality
attributes related to the service quality and property
attributes including all attributes other than those in-
cluded in service capability or service quality. The
authors in (Chakhar et al., 2014) extend the works of
(Doshi et al., 2004) and (Chakhar, 2013) and propose
different matchmaking algorithms devoted to differ-
ent types of attributes (capability, property and service
quality).

Lack of Customisation Support. An important
shortcoming of most of existing Web service match-
making frameworks is the lack of customisation sup-
port. To deal with this shortcoming, some authors al-
low the user to specify some parameters. For instance,
the authors in (Doshi et al., 2004) present a parameter-
ized semantic matchmaking framework that exhibits a
customizable matchmaking behavior. One important
shortcoming of (Doshi et al., 2004) is that the suffi-
ciency condition defined by the authors is very strict
since it requires that all the specified conditions hold
at the same time. This seems to be very restrictive in
practice, especially for attributes related to the service
quality.

Recently, (Chakhar et al., 2014) extend the work
of (Chakhar, 2013) and propose a series of algorithms
for the different types of matching. These algorithms
are designed to support a customizable matching pro-
cess that permits the user to control the matched at-
tributes, the order in which attributes are compared,
as well as the way the sufficiency is computed for all
matching types.

Lack of Accurate Ranking of Matching Web
Services. Although the semantic matchmaking
(Paolucci et al., 2002)(Doshi et al., 2004)(Bel-
lur and Kulkarni, 2007)(Fu et al., 2009)(Chakhar,
2013)(Chakhar et al., 2014)(Chakhar et al., 2015) per-
mits to avoid the problem of simple syntactic and
strict capability-based matchmaking, it is not very
suitable for efficient Web service selection. This is
because it is difficult to distinguish between a pool
of similar Web services (Rong et al., 2009). Indeed,
since we have a limited number of similarity degrees,
semantic matchmaking frameworks will most often
face the problem of ties when several Web services
have the same similarity degree.

A possible solution to this issue is to use some
appropriate techniques and some additional informa-
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Table 3: Comparison of Matchmaking Frameworks.
Matchmaker Matching Attributes Customization Type Ranking Description Language
Jini(Arnold et al., 1999) Syntactic Capability No No No
Konark(Lee et al., 2003) Syntactic Capability No No XML
Salutation(Miller and Pascoe, 2000) Logical Capability No Yes OWL-S
MatchMaker (Sycara et al., 2003) Syntactic Capability No No DAMS, UDDI
RACER(Li and Horrocks, 2003) Syntactic Capability No No DAML-S
PSMF(Doshi et al., 2004) Logical Capability Yes No DAML-S, WSDL, UDDI
SPARQLent(Sbodio et al., 2010) Logical Capability No Yes OWL-S
iSeM-logi-based(Klusch and Kapahnke, 2012) Logical Capability No Yes OWL-S, SAWSDL
QoSeBroker(Chakhar et al., 2014)(Chakhar et al., 2015) Logical Capability, Property, Service quality Yes No OWL-S
PMRF Logical Capability, Property Yes Yes OWL-S

tion to rank the Web services delivered by the se-
mantic matching algorithm and then provide a man-
ageable set of ‘best’ Web services to the user from
which s/he can select one Web service to deploy. Sev-
eral approaches have been proposed to implement this
idea (Manikrao and Prabhakar, 2005)(Maamar et al.,
2005)(Kuck and Gnasa, 2007).

Table 3 summarizes the main characteristics of the
above cited frameworks. As shown in this table, the
discussed frameworks fail to jointly take into account
the shortcomings of Web services matchmaking enu-
merated in the introduction. The proposed system
PMRF uses semantic matchmaking, accepts capabil-
ity and property attributes, support different levels of
customization and generates a ranked list of matching
Web services. It can be easily extended, based on our
previous work (Chakhar et al., 2014)(Chakhar et al.,
2015), to support attributes related to the quality of
service.

8 CONCLUSION

In this paper, we presented a highly customizable
framework, called PMRF, for matching and ranking
Web services. We briefly reviewed the matching and
ranking algorithms supported by the PMRF, provided
its architecture and discussed some implementation
issues. We also presented the results of the perfor-
mance evaluation of the PMRF using the OWLS-TC4
datasets and compared it to iSeM-logic-based and
SPARQLent. The results show that the algorithms
supported by PMRF behave globally well in com-
parison to iSeM-logic-based and SPARQLent frame-
works.

In the future, we intend to enhance PMRF by
(i) including other matching techniques, namely tex-
tual matching and Ontology distance calculation; (ii)
adapt it to a dynamic Web service environment, (iii)
use AI techniques to reduce the cognitive effort re-
quired from user/provider; and (iv) make the PMRF
useable over the cloud technology.
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