
Zoetic Data and their Generators

Paul Bailes and Colin Kemp
School of ITEE, The University of Queensland, St Lucia, QLD 4072, Australia

Keywords: Catamorphism, Church Numeral, Foldr, Functional Programming, Fusion Theorem, Haskell.

Abstract: Functional or “zoetic” representations of data embody the behaviours that we hypothesise are characteristic
to all datatypes. The advantage of such representations is that they avoid the need, in order to realize these
characteristic behaviours, to implement interpretations of symbolic data at each use. Zoetic data are not
unheard-of in computer science, but support for them by current software technology remains limited. Even
though the first-class function capability of functional languages inherently supports the essentials of zoetic
data, the creation of zoetic data from symbolic data would have to be by repeated application of a
characteristic interpreter. This impairs the effectiveness of the “Totally Functional” approach to
programming of which zoetic data are the key enabler. Accordingly, we develop a scheme for synthesis of
generator functions for zoetic data which correspond to symbolic data constructors but which entirely avoid
the need for a separate interpretation stage. This avoidance allows us to achieve a clear separation of
concerns between the definitions of datatypes on the one hand and their various applications on the other.

1 INTRODUCTION

The multi-faceted advantages of functional
programming have long been well-documented
(Hughes, 1989). However, amid the benefits of such
as lazy evaluation and referential transparency, the
essential defining aspect of programmer-definable
higher-order functions, seems strangely to have been
under-appreciated. In particular, expositions of
functional programming (Bird and Wadler, 1988)
(Abelson et al., 1996) typically relegate functional
(“Church”) representations of data as mere
curiosities.

Our purpose here is to demonstrate the viability
of these functional (or zoetic: “pertaining to life;
living; vital”, Collins English Dictionary,
http://www.collinsdictionary.com) representations as
comprehensive replacements for conventional
symbolic data. The focus of the demonstration is on
how zoetic data can be manipulated, and specifically
created, (or “generated”) independently of their
symbolic counterparts, and thus form the basis of a
“Totally Functional” programming style where
symbolic data can be superseded by these zoetic
representations.

In this paper overall we: provide a basic
justification of zoetic data in terms of general
software engineering principles; indicate how

widespread and practical zoetic data actually are;
provide the conceptual and semantic bases for the
synthesis of generators for a wide class of zoetic
data; demonstrate the applicability of our synthesis
technique for a range of examples; and indicate how
zoetic data provide a conceptual gateway into a
comprehensive alternate view of programming based
on total rather than partial recursion.

2 ZOETIC DATA EXAMPLES

We begin by showing how zoetic data play
important roles in functional programming, not just
theoretically but practically also, using the a range of
examples of natural numbers, set data structures, and
context-free grammars. The key idea in each case is
that the zoetic counterpart to a conventional
symbolic datatype embodies an essential
characteristic behaviour.

2.1 Zoetic Naturals

Perhaps the best-known zoetic datatype in
programming is the “Church numeral” (Barendregt,
1984) representation of natural numbers, whereby a
natural N is represented by a counterpart function
(say Ñ) such that Ñ f x = fN x. That is, the

260
Bailes, P. and Kemp, C.
Zoetic Data and their Generators.
In Proceedings of the 11th International Conference on Evaluation of Novel Software Approaches to Software Engineering (ENASE 2016), pages 260-271
ISBN: 978-989-758-189-2
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

characteristic behaviour Ñ of a natural number N is
N-fold function composition. For example, the
zoetic version of (symbolic) natural number 3 would
be rendered, in Haskell concrete syntax (Haskell
Programming Language, http://www.haskell.org) as
the function:

(\f x -> f (f (f x)))

or equivalently

(\f -> f . f . f)

In particular, definitions for some basic zoetic
naturals would be

zzero = (\f x -> x)
zone = (\f x -> f x)

2.2 Zoetic Sets

Perhaps the best generally-known zoetic datatype is
the representation of sets by (or equivalently,
characterising their essential behaviour in terms of)
their characteristic predicates. For example, the
essence of the definition of the set of even numbers
as { x | x modulo 2 = 0 } is the predicate, or
Boolean-valued function (in Haskell syntax)

evens = (\x -> x `mod` 2 == 0)

Membership of such a zoetic set is tested by
direct function application, e.g.

evens 4 ->> True
evens 5 ->> False

Usefully, as we shall see, the characteristic
predicate is the partial application of the set
membership operation to the set, as exposed by the
tautology

S = {x | x ∈ S} = {x | (∈ S) x}

Note the adoption of Haskell operator sectioning,
where “(∈ S)” denotes the partial application of ∈ to
S, forming the characteristic predicate of S which is
then applied to putative element x.

2.3 Zoetic Grammars

The zoetic approach to context-free grammars that is
implicitly adopted by combinator parsing (Hutton,
1992) is that the relevant characteristic behaviour of
the grammar is the parser for the language defined
by the grammar. Accordingly, the renditions of the
context-free combinations of concatenation and
alternation are (higher-order) functions that apply
not to grammars but to parsers, and yielding not a
grammar but a parser.

In its essential form, a combinator parser for a

grammar g is a nondeterministic recogniser that
when applied to an input string s yields the list of
suffix strings that result after occurrences of
sentences of g have been found as prefixes in s:

type CParser = String -> [String]

An empty list of result strings signifies failure to
parse (Wadler, 1985).

For example, assuming definitions of context-
free parsing combinators “conc” and “alt” and token
recogniser “tok” (see further below for these), we
can define the grammar

exp = exp `conc` ((tok "+")`conc`
trm)

 `alt`
 trm

trm = (tok "x") `alt` (tok "y")

We then parse according it by direct functional
application, e.g.
(1) exp "x+y”
(2) exp "qwe"
(3) exp "x"

Each of these yields respective results
(1) ["","+y"]
(2) []
(3) [""]

That is, parsing with exp respectively signifies
(1) of “x+y”: gives two results, one where the

entirety of “x+y” is recognized with no residue,
the other where only “x” is recognized leaving
residue “+y”

(2) of “qwe”: is unrecognized
(3) of “x”: is uniquely and fully recognized.

3 CHARACTERISTIC METHODS
AS BASIS OF ZOETIC DATA

The key to a systematic approach to generation of
zoetic data is the recognition that they embody a
uniform interpretation of an underlying symbolic
datatype. We use the term “characteristic method”
for this interpretation, by extension from the
characteristic predicate behaviour ascribed to zoetic
sets. The relative advantages of zoetic data based on
characteristic method interpretations of symbolic
data are exposed by example in the context of
natural numbers as follows.

Zoetic Data and their Generators

261

3.1 Pervasive Interpretation
Complicates Programming

The need to adopt a uniform interpretation of
symbolic data is demonstrated, albeit in microcosm,
by the following definitions of arithmetic operations
on natural numbers, which expose how thoroughly
programming is pervaded by the need to interpret
symbolic data, and how potentially harmful are the
effects:

data Nat = Succ Nat | Zero

add (Succ a) b = Succ (add a b)
add Zero b = b

mul (Succ a) b = add b (mul a b)
mul Zero b = Zero

exp a (Succ b) = mul a (exp a b)
exp a Zero = Succ Zero

The drawbacks inherent in these deceptively-
simple definitions are profound, as follows.
 Apart from the suggestive naming of the type

(Nat) and of its two constructors (Succ and Zero),
there is nothing in the definition of the type that
compels treatment of members of the type as
numbers of any kind, never mind natural numbers
specifically.

 Granted there is an obvious isomorphism between
the members of Nat and the abstract entities that
behave like natural numbers, but that
isomorphism needs to be implemented by each
usage of Nat. This implementation takes the form
of an implicit interpreter that converts symbols
into actions (in this case, iterative applications of
other functions).

 This implementation of the isomorphism from the
symbols of Nat to the iterative behaviour of
natural numbers needs to be repeated at each
usage: inconsistent usage will lead to inconsistent
(erroneous) behaviour.

 Defining functions through interpretation of
symbols using general recursion adds the burden
of proving totality i.e. termination.

3.2 Explicit Interpretations Offer
Simplification

The situation may be clarified somewhat by the
introduction of an explicit common interpreter for
the semantics (i.e. functional behavior) of natural
numbers n as n-fold iterators:
iter (Succ n) f x = f (iter n f x)
iter Zero f x = x

In the light of this, our arithmetic operation

definitions can be re-expressed
add a b = iter a Succ b
mul a b = iter a (add b) Zero
exp a b = iter b (mul a) (Succ Zero)

The introduction of “iter” thus allows for the
clarification of what interpretation is being given to
the type Nat (here as iteration), and when that
interpretation is being applied usefully and
meaningfully.

Despite this clarification however, the revised
interpretive arithmetic definitions are still deficient
in terms of inconvenience, fragility and potential
inconsistency:

 inconvenience, in that the interpreter needs to be
applied explicitly;

 fragility, in that the wrong interpreter could
conceivably be applied;

 potential inconsistency, in that multiple
interpreters with inconsistent behaviours could be
defined and applied (e.g. one might assume
naturals start at 0, while another might assume
they start at 1, as was once a common
convention).

3.3 Separation of Concerns via Zoetic
Data

All the above criticisms can be summarised as a
failure to observe the key software design principle
of separation of concerns (Dijkstra, 1982). In this
case the separation is between application logic on
the one hand and what we might call infrastructure
logic on the other. In the above examples, the
definitions (add, mul, exp) combine both the logic of
the respective applications (addition, multiplication,
exponentiation) with the logic of the semantics of
natural numbers (iteration). Making the semantic
interpreter (“iter”) explicit ameliorates the situation
somewhat but fails to consummate the separation.

In order fully to achieve separation of concerns
between applications and infrastructure, our solution
is to require that all members of a datatype are
inherently interpreted by the type’s characteristic
method. Specifically, we:
(1) assume that for each (symbolic) datatype there is

indeed a characteristic behaviour (such as
iteration for Nat as above);

(2) treat the partial application of the characteristic
interpreter (for the characteristic behaviour) to
the symbolic data as a conceptual zoetic unit;

(3) reorganise programs around these zoetic data.

In the case of our running example of definitions of
basic arithmetic operations, we replace naturals (a,

ENASE 2016 - 11th International Conference on Evaluation of Novel Software Approaches to Software Engineering

262

b, etc.) by zoetic naturals (say za, zb, etc.) where the
respective identities hold:

za = iter a
zb = iter b

etc. Accordingly, we rewrite arithmetic definitions
on za, zb etc.:

addz za zb = za succz zb
mulz za ab = za (addz zb) zzero
expz za zb = zb (mulz za) zone

It is at once evident that the required separation of
concerns has been achieved: the only information
added by these definitions is with regard to how the
zoetic naturals za, zb variously combine to
implement the respective arithmetic operations. In
particular, the iterative behaviour of za, zb is
assumed to have been provided at their creation.

The remainder of this paper this focusses upon
how such inherent behaviours are necessarily inbuilt
when creating zoetic data, and thus achieving the
further required properties of robustness (no chance
of applying the wrong characteristic method) and
consistency (that there indeed exists a unique
characteristic method).

4 GENERATING ZOETIC DATA

The approach we shall follow is simply-stated:
instead of creating zoetic data from partial
applications of characteristic interpreters to symbolic
data, generate the zoetic data directly with zoetic
analogues of the symbolic constructors. When
programming, calls to symbolic constructors are
replaced by calls to the zoetic generators. In other
words, we effect an isomorphism between the
symbolic and zoetic type. As zoetic generators
produce a member of the zoetic type, no final
application of the interpreter (iter etc.) is required.

In this section, we preview the definitions of
some interesting generators of zoetic data, which we
later show how to derive by calculation from their
specifications.

4.1 Zoetic Natural Generators

For example, the zoetic versions of natural numbers
would be specified in terms of partial application of
the above iterative interpreter “iter” to their usual
symbolic renditions as follows:

zzero = iter Zero
zone = iter (Succ Zero)
ztwo = iter (Succ (Succ Zero))
-- etc.

Accordingly, we instead require systematic
generation of zoetic naturals such as the above by
application of zoetic counterparts of the symbolic
constructors Zero and Succ, i.e.

zzero = (\f x -> x)
succz n = (\f x -> f (n f x))

or equivalently

zzero f x = x
succz n f x = f (n f x)

and thus

zone = succz zzero
ztwo = succz zone
zthree = succz ztwo
-- etc.

In particular, it is easy to show (by simple term
rewriting from the definitions of zzero and succz)
that these correctly yield the expected Church
numerals, e.g.

zthree
=
succz (succz (succz zzero))
=
(\f x -> f (f (f x)))

4.2 Zoetic Set Generators

For zoetic sets it’s easy to intuit generators that
apply to appropriate elements or (sub-)sets yielding
characteristic predicates that test the membership or
otherwise of a putative element x:

empty x = False
singleton e x = x==e
union zs1 zs2 x = zs1 x || zs2 x
complement zs x = not (zs x)

-- etc…

4.3 Zoetic Grammar Generators

Following our example above, combinator parsers
are generated, as are context-free grammars, from
alternation of grammars/parsers, or concatenation of
grammars/parsers, or tokens. Alternation
accordingly builds a combinator parser from two
components p1 and p2, by appending the results of
parsing s with each of p1 and p2:

alt :: CParser -> CParser -> CParser
alt p1 p2 s = p1 s ++ p2 s

Concatenation accordingly builds a combinator
parser from two components p1 and p2, by parsing s
with p1 and then parsing each of the results with p2:

conc :: CParser -> CParser -> CParser
conc p1 p2 s = concat (map p2 (p1 s))

Zoetic Data and their Generators

263

A token t parses string s by removing prefix t from s:

tok :: String -> CParser
tok t s =
 if prefix t s then [chop t s] else []

where
 “prefix t s” tests if string t is a prefix of s;
 “chop t s” removes prefix t from s.

5 GENERATOR SYNTHESIS FOR
ALGEBRAIC ZOETIC TYPES

In the context of the above, our (related) problem is:
 to discover the zoetic generators that correspond

to symbolic constructors in a systematic way, as
opposed to the mere intuitions that have led to the
examples above.

 which then enables us to replace the partial
applications to symbolic data of characteristic
methods/interpreters with direct applications of
these generators to zoetic data;

In this section, we deal with the simplest kind of
zoetic datatype which corresponds to regular
algebraic types (Backhouse et al., 1999). We
recognise the generic catamorphic pattern (Meijer et
al., 1991) on the regular algebraic type (more
widely-known as the foldr operation in the list
context, and represented by iter above for naturals)
as the characteristic behaviour of its zoetic
counterparts.

This choice is made on the basis of:

 category-theoretic justifications of
catamorphisms as capturing the essence
(categorically-speaking, “initiality”) of a regular
algebraic type;

 the practical capability of catamorphic patterns to
express a wide range of subrecursive operations
(Hutton, 1999);

 the above capability including the ability to
express other more apparently-sophisticated
recursion patterns (Bailes and Brough, 2012).

Just as with Naturals above, zoetic versions of these
types in general are specified by the partial
application of the relevant catamorphism pattern for
that type to the symbolic data. For example, for the
types of lists and rose trees:

data List a = Cons t (List a) | Nil
data Rose a =
 Tip a | Branch (List (Rose a))

we have catamorphism patterns:

catL Nil c n = n

catL (Cons x xs) c n =
 c x (catL xs c n)

catR (Tip x) t b = t x
catR (Branch rs) t b =
 b (mapL (\r -> catR r t b) rs)
mapL f xs =
-- corresponds to Haskell prelude
-- “map”, but on List t instead of [t]
 catL xs
 (\x xs’ -> Cons (f x) xs’)
 Nil

Note that the usual order of operands in changed to
facilitate partial application of the catamorphic
pattern to symbolic data. In particular
catL xs op b = foldr op b xs

Note also how in the case of rose trees, where the
recursion is not a simple polynomial, that some
additional complexity is entailed in that the structure
of the n-ary recursion has to be processed by the
relevant map function (in this case over Lists). The
resulting list is processed by some combining
function b which could well be a (List)
catamorphism also. For these Algebraic
(catamorphic-pattern-based) Zoetic Types (AZTs),
synthesis of the generators proceeds by
straightforward equational reasoning, as exemplified
by the following.

5.1 Synthesis of Generators for Zoetic
Naturals

For example, for zoetic Naturals as defined above,
from the specifications of the isomorphism between
Nat and our zoetic Naturals, we specify the
generators as follows, i.e. as partial applications of
the interpreter for the required characteristic
behaviour - the relevant catamorphism pattern “iter”.
Observe how the zoetic operand to generator succz
is consistently specified as the partial application of
“iter” to symbolic natural n:

zzero = iter Zero

succz (iter n) = iter (Succ n)

To calculate their implementations, we proceed
respectively, in each case adding sufficient relevant
parameters to the specifications in order to allow the
expansion of the application of iter and then
simplification according to the definition of iter in
the course of which the interpreter (iter) is
eliminated, i.e.:

zzero f x

= (supplying additional parameters to the RHS also)

iter Zero f x

ENASE 2016 - 11th International Conference on Evaluation of Novel Software Approaches to Software Engineering

264

= (by definition of iter)

x

and

succz (iter n) f x

= (supplying additional parameters to the RHS also)

iter (Succ n) f x

= (by definition of iter)

f (iter n f x)

Thus, recognizing the partial application “iter n”
as the zoetic natural zn, we have the Haskell
function declarations for the zoetic natural
generators:

zzero f x = x
succz zn f x = f (zn f x)

5.2 Synthesis of Generators for Zoetic
Lists

Lists are treated similarly, from the specification of
generators in terms of partial application of the
application of the characteristic symbolic interpreter
- in this case the catamorphism pattern for lists
“catL”:

znil = catL Nil

zcons x (catL xs) = catL (Cons x xs)

We proceed respectively by adding parameters and
simplifying according to the defining equations of
catL:
znil c n = catL Nil c n = n

and (in detail)

zcons x (catL xs) c n

= (supplying additional parameters to the RHS also)

catL (Cons x xs) c n

= (by definition of catL)

c x (catL xs c n)

Thus, recognizing the partial application “catL xs”
as the zoetic list zxs, we have the Haskell function
declarations to implement the zoetic list generators:

znil c n = n
zcons x zxs c n = c x (zxs c n)

5.3 Synthesis of Generators for Zoetic
Rose Trees

Again, we follow the principle that the specification
of generators is in terms of partial application of the
application of the characteristic symbolic interpreter

- in this case the catamorphism pattern for rose trees
“catR”. Note especially in this case how the zoetic
operand to zbranch is specified as the list of the
partial applications of “catR” to each of the
symbolic rose trees in the branch, as effected by
“mapL”.

ztip x = catR (Ztip x)

zbranch (mapL catR rs)) =
 catR (Branch rs)

To calculate the implementation we as usual proceed
respectively

ztip x t b

= (supplying additional parameters to the RHS also)

catR (Ztip x) t b

= (by definition of catR)

t x

and

zbranch (mapL catR rs)) t b

= (supplying additional parameters to the RHS also)

catR (Branch rs) t b

= (by definition of catR)

b (mapL (\r -> catR r t b) rs)

= (abstracting “catR r”)

b(mapL(\r->(\zr->(zr t b))(catR r))rs)

= (identifying function composition)

b(mapL(\r->((\zr->(zr t b)).catR) r)rs)

= (removing r by eta-reduction)

b (mapL ((\zr -> (zr t b)).catR) rs)

= (distributing mapL over composition)

b (mapL (\zr -> zr t b)(mapL catR rs))

Thus, recognizing the list of partial applications
“mapL catR rs” as the list of zoetic rose trees zrs, we
have the Haskell function declarations for the zoetic
rose tree generators:
ztip x t b = t x

zbranch zrs t b =
 b (mapL (\zr -> zr t b) zrs)

If the n-ary recursive structure of rose trees is
represented not by a symbolic list zrs but rather is
zoetic, then the effect of mapL on zrs is simply
achieved by its direct application as a list
catamorphism:

zbranch zrs t b =
 b (
 zrs
 (\zr zrs’ -> zcons (zr t b) zrs’)

Zoetic Data and their Generators

265

 znil
)

6 SPECIFIC ZOETIC TYPES

The above systemic approach to AZT generator
synthesis is however only part of the story. A wider
class of zoetic types than AZTs is formed by the
partial application of specific characteristic methods
rather than the generic catamorphic patterns on the
relevant symbolic algebraic types. In other words,
while catamorphic patterns represent the most
general behaviours, specialisations may be required
in specific circumstances. Examples of these as seen
so far in this presentation are combinator parsers and
characteristic predicates.

Regarding the latter, consider for example the
following type of trees with a mixture of binary and
unary subtrees:

Bt a =
Nul | Lf a | Brn(Bt a)(Bt a)| One(Bt a)

This algebraic type has a default interpretation in
terms of its catamorphic pattern:

catBt Nul n l b o = n
catBt (Lf x) n l b o = l x
catBt (Brn t1 t2) n l b o =
 b(catBt t1 n l b o)(catBt t2 n l b o)
catBt (One t) n l b o = o t

Generators for the consequent AZT, derived using
the above methods are:

nul n l b o = n
lf x n l b o = l x
brn t1 t2 n l b o =
 b (t1 n l b o) (t2 n l b o)
one t n l b o = o t

A different interpretation however of these trees
as sets is given by the characteristic method
“member”:
member Nul e = False
member (Lf x) e = x==e
member (Brn t1 t2) e =
 member t1 e || member t2 e
member (One t) e = not (member t e)

Obviously, zoetic sets that behave as
characteristic predicates are given by partial
applications

member bt -- NB bt :: Bt a

The challenge now facing us, in order to widen
the practical range of zoetic data beyond pure
catamorphic behaviours, is synthesis of the
generators for such specific zoetic types (SZTs).

With respect ot the above example, this means
empty, singleton, union, complement as further
above corresponding respectively to Bt constructors
Nul, Lf, Brn and One. This is more complex than
that of generic catamorphism-based AZTs, and
hence first requires the conceptual infrastructure of
the following section.

7 PRINCIPLES OF GENERATOR
DERIVATION FOR SZTs

Derivation of generators for SZTs depends upon
some further properties common to zoetic data and
catamorphisms.

7.1 Catamorphic Expressibility

The continuing central role played by
catamorphisms in zoetic data is reflected in the
critical assumption that the characteristic functions
of specific zoetic data are all expressible as
catamorphisms, i.e. as the generic catamorphic
patterns themselves (for AZTs) or, as well shall see,
specialisations by applying these patterns to
appropriate operands to the generic catamorphic
patterns on the underlying types (for SZTs).

The basis for this assumption relates to one of
the basic premises for zoetic data, i.e. the liberation
of programming from the burden of interpretation.
Thus, if interpreters don’t need to be written, then
programming languages don’t need to be so complex
as to express interpreters. Rather, the expressiveness
of catamorphisms a.k.a. “fold” (Hutton, 1999) seems
to provide a sufficient basis for all practically-
imaginable applications (i.e. other than a Universal
Turing Machine or equivalent programming
language interpreter). Formally-speaking, the
iterative aspect of any function provably terminating
in second-order arithmetic (Reynolds, 1985) is
expressible as a catamorphism.

Accordingly, our derivations of SZT generators
are limited to those for which holds what we call the
“Catamorphic-Expressible property” (CE) - that the
characteristic behaviour B on some symbolic data D
of type T can be expressed as a catamorphism:

(CE) B D = catT D G1 … Gn

where
 cataT is the catamorphism on type T
 Gi are the operands to cataT that implement B

(which as we see below, are actually the zoetic
generators we seek).

ENASE 2016 - 11th International Conference on Evaluation of Novel Software Approaches to Software Engineering

266

7.2 Schematic Catamorphism

Demonstration of key properties common to
catamorphisms is facilitated by a scheme of
catamorphisms captured in Haskell source code by
definitions as follows (Uustalu et al., 2001).

First, identify some general algebraic
abstractions:

type Algebra f a = f a -> a

-- as per Haskell prelude
class Functor f where
 fmap :: (a -> b) -> f a -> f b

The key to a generic definition of the catamorphic
pattern is the pattern functor that defines the shape
of the data for a (recursive) type. In order to isolate
the (non-recursive) pattern functor, direct recursion
in type definitions is not appropriate. Recursive
types are instead the explicit fixed-point of their
pattern functor, thus we need a fixpoint operator for
data types:

newtype Mu f = InF { outF :: f (Mu f) }

(The respective constructor and extractor functions
for Mu - Inf and outF - are artefacts of the Haskell
type system.)

For example, the pattern functor type of the
polymorphic list type (with elements of type ‘a’) is:

data Lf a lf = Nl | (Cns a lf)
instance Functor (Lf a) where
 fmap g Nl = Nl
 fmap g (Cns x xs) = Cns x (g xs)

Thus, the actual recursive polymorphic List type is
the least fixed point of “Lf a”:

type List a = Mu (Lf a)

The catamorphic recursion pattern for any type is the
most general homomorphism from the algebra given
by the pattern functor of the type to any other result
algebra (i.e. the polymorphic target type of the
recursion pattern). A generic rendition in Haskell is

cata :: Functor f =>
Algebra f a -> Mu f -> a

cata f = f . fmap (cata f) . outF

where ‘f’ embodies the embedded operation that
characterises the catamorphism in terms of the
pattern algebra of the type. Observe how the
recursive application of “cata f” by fmap ensures the
desired recursive operation of the catamorphism.

So in order to define specific catamorphic
operations, all that is required is to define the
embedded operation (the ‘f’ parameter of cata). For
example:
 the catamorphic definition of the length of a list is

now
length xs = cata phi where
 phi Nl = 0
 phi (Cns _ xs) = 1+xs

 the list catamorphism pattern (catL) as above can
be written simply by passing its parameters to the
catamorphism’s characteristic operation:

catL xs o b = cata phi where
 phi Nl = b
 phi (Cns x xs) = o x xs

7.3 Fusion Theorem

Just as catamorphisms exemplify how the
programming of recursion can be packaged and
simplified, so fusion (Hutton, 1999) is an example of
how reasoning about recursive programs can be
packaged and simplified.

In terms of the schematic catamorphism above,
fusion is the implication:

h (phi x) = chi (fmap h x)

h (cata phi x) = cata chi x

where phi and chi are the embedded operations of
type-compatible catamorphisms

Fusion for individual types can be derived from
the above schema, typically with the antecedent of
the implication as: the conjunction of the
instantiation of the schema with the particulars of
each of the constructors for the relevant pattern
functor.

For example, for list catamorphisms the two
characteristic operations are typified by

phi Nl = B1
phi (Cns x xs) = O1 x xs

chi Nl = B2
chi (Cns x xs) = O2 x xs

Thus for some base values Bi and binary operations
Oi, we instantiate the fusion theorem for lists as
follows.

 The antecedent condition, case Nl, is:
h (phi Nl)= chi (fmap h Nl)

h (phi Nl)= chi Nl

h B1 = B2

 The antecedent condition, case Cns x xs, is
h (phi (Cns x xs))=

chi (fmap h (Cns x xs))

h (phi (Cns x xs)) =

chi (Cns x (h xs))

Zoetic Data and their Generators

267

h (O1 x xs) = O2 x (h xs)

 There is a single consequent:
h (cata phi xs) = cata chi xs

h (catL xs O1 B1) = catL xs O2 B2

Thus, conjunction of the consequents gives the
single implication:
h B1 = B2 ˄ h (O1 x xs) = O2 x (h xs)

h (catL xs O1 B1) = catL xs O2 B2

7.4 Identity Property and Constructor
Replacement

The Identity property for Catamorphisms
(Backhouse et al., 1999) (IC) is crucial in our
development. Its simplest typical form is:

(IC) catT D C1 … Cn = D

where the Ci are the (symbolic) constructors for
(symbolic type) T and (of course) D :: T. That is,
applying a catamorphism to a structure with the
structure’s own constructors yields the same
structure.

IC follows from how a catamorphism can be
thought of as implementing constructor replacement
with the catamorphism operands. In terms of the
schematic catamorphism, observe how the
embedded operation ‘f’ is applied by cata
recursively to and across each level of substructure.
At each level the embedded operation is applied to
an instance of the pattern algebra where the
constructors are replaced according to the
programming of the embedded operation.

7.5 Identifying and Deriving
Generators

The values Gi used in CE above as operands to the
relevant catamorphic pattern cataT to express SZT
behaviours B can be demonstrated to have a critical
use as follows. For each distinct case of CE,
typically

B D = catT D G1…Gn

we first use IC to expand the LHS systematically, in
what we identify as a Derivative of Catamorphic-
Expressibility (DCE):

(DCE) B (catT D C1…Cn)= catT D G1…Gn

or, in terms of the schematic catamorphism

 B (cata phi D) = cata chi D

where embedded phi and chi as usual replace

constructors Ci, in this case for phi by themselves
and for chi by the Gi.

At this point, fusion is applicable, i.e. to establish
the above identity, we need schematically

chi (fmap B x) = B (phi x)
or typically

Gi (B args’ ...) = B (Ci args ...)

where “args …” are the operands to which Ci
applies to produce some D :: T, and “args’ …” are
the args … but with Ci uniformly replaced
throughout by Gi.

Thus, the operands Gi (that are used to express
the behaviours of SZTs) are not only calculable by
fusion, but they are also the zoetic generators
corresponding to the symbolic constructors. From
this point equational reasoning yields
implementations of Gi as for generic catamorphic
types as above. Illustrative examples now follow.

8 GENERATOR DERIVATIONS
FOR EXEMPLARY SZTs

8.1 Derivation of Zoetic Set Generators

Recall the type of trees with a mixture of binary and
unary subtrees:

Bt a =
Nul | Lf a | Brn(Bt a)(Bt a)| One(Bt a)

for which the the relevant catamorphic pattern is
catBt (as defined above).

The relevant fusion law (derivable from the
earlier fusion schema) is

h na = nb
˄
h (la x) = lb x
˄
h (ba t1 t2) = bb (h t1) (h t2)
˄
h (oa t) = ob (h t)

h (catBt t na la ba oa) = catBt t nb lb bb ob

Now, if these trees are to be interpreted as zoetic
sets by the characteristic method “member” above,
the relevant expression of DCE in this case is:

member (catBt bt Nl Lf Brn One)
=
catBt bt m s u c

Application of fusion gives:
(1) member Nul = m

ENASE 2016 - 11th International Conference on Evaluation of Novel Software Approaches to Software Engineering

268

(2) member (Lf x) = s x
(3) member (Brn t1 t2) =

u (member t1) (member t2)
(4) member (One t) = c (member t)

From this point, equational reasoning
respectively proceeds in each case:
(1) m e = member Nul e = False
(2) s x e = member (Lf x) e = x==e
(3) u (member t1) (member t2) e
 = member (Brn bt1 bt2) e
 = member t1 e || member t2 e
(4) c (member t) e
 = member (One t) e
 = not (member t e)

Thus, recognising in particular the partial
applications “member ti” as zoetic sets zsi, we have
derived implementations for zoetic generators of
empty, singleton, union and complement of sets
respectively m, s, u and c:

m e = False
s x e = x==e
u zs1 zs2 e = zs1 e || zs2 e
c zs e = not (zs e)

which are identical (modulo names) to the intuitive
definitions offered originally far above.

8.2 Derivation of Zoetic Grammar
Generators

Based on an interpretation of two-flavoured Rose
trees (where the different “flavours” are
distinguished by respective constructors B1 and B2),
we can specify and derive implementations for n-ary
versions of the parsing combinators conc and alt
from far above. The basic infrastructure is as
follows. (For simplicity of presentation, native
Haskell lists are used to implement the n-ary subtree
structure.)

data Rose2 =
 Tip String | B1 [Rose2] | B2 [Rose2]

catR2 (Tip s) t b1 b2 = t s
catR2 (B1 r2s) t b1 b2 =
 b1 (
 map (\r2 -> catR2 r2 t b1 b2) r2s
)
catR2 (B2 r2s) t b1 b2 =
 b2 (
 map (\r2 -> catR2 r2 t b1 b2) r2s
)

The relevant fusion law (again derivable from
the earlier fusion schema) is

h (ta x) = tb x
˄

h (b1a rs) = b1b (map h rs)
˄
h (b2a rs) = b2b (map h rs)

h (catR2 rs ta b1a b2a) = catR2 rs tb b1b b2b

Then the following interpretation (by “parse”)
ascribes behaviours
 to Tip: the behaviour of a token
 to B1: the behaviour of n-ary alternation
 to B2: the behaviour of n-ary concatenation:
parse (Tip tk) str =
 if prefix tk str
 then [chop tk str]
 else []
-- prefix, chop as before

parse (B1 r2s) str =
 concat (
 map (\p -> p str)(map parse r2s)
)

parse (B2 r2s) str =
 foldr
 (\p ss -> concat (map p ss)) -- op
 (head (map parse r2s) str) -- b
 (reverse (tail (map parse r2s)))-- xs

The required n-ary generators tok, nalt and nconc
are specified by the relevant expression of DCE:
parse (catR2 rs Tip B1 B2)
=
catR2 rs tok nalt nconc

From the above, fusion yields:
(1) parse (Tip tk) = tok tk
(2) parse (B1 r2s) =
 nalt (map parse r2s)
(3) parse (B2 r2s) =
 nconc (map parse r2s)

Equational reasoning respectively proceeds
(1) tok tk str
 = parse (Tip tk) str
 = if prefix tk str
 then [chop tk str]
 else []

(2) nalt (map parse r2s) str
 = parse (B1 r2s) str
 = concat (
 map(\p-> p str)(map parse r2s)
)

(3) nconc (map parse r2s) str
 = parse (B2 r2s) str
 = foldr
 (\p ss -> concat (map p ss))
 (head (map parse r2s) str)
 (reverse (tail (map parse r2s)))

Zoetic Data and their Generators

269

Finally, recognising “parse (Tip ts)” as “tok ts”
and “map parse r2s” as the list of zoetic grammars
gs, and p(arser) as zoetic g(rammar) yields
implementations as follows. The implementation of
tok repeats the intuitive definition above:

tok tk str =
 if prefix tk str
 then [chop tk str]
 else []

The respective implementations of nalt and ncat are
evident generalisations of the intuitive definitions of
binary alt and conc of traditional combinator parsers
above:
nalt gs str =
 concat (map (\g -> g str) gs)

nconc gs str =
 foldr
 (\g ss -> concat (map g ss))
 (head gs str)
 (reverse (tail gs))

9 RELATED WORK

We have already emphasised how zoetic data, while
not recognised or identified distinctively as such, are
not uncommon to functional programming in
general (e.g. characteristic predicates, combinator
parsers).

Our grounding of zoetic data in catamorphic
recursion patterns establishes a further link, to
Turner’s “Total Functional Programming” (Turner,
2004) which emphasises the use of subrecursive
program structuring mechanisms to ensure that its
programs avoid unproductive non-termination i.e.
are total functions). The basis for the link is that our
grounding of zoetic data in catamorphic recursion
patterns also ensures functional totality.

Thus, our “Totally Functional” programming
develops Turner’s, as follows.

(1) For every datatype there is posited a
characteristic method, so that symbolic data are
completely (“totally”) replaced by functional
representations.

(2) However, these characteristic methods are all
ultimately definable totally as catamorphisms: in
the case of AZTs, directly in terms of the
catamorphic pattern that can be thought of as
characterising the type; in the case of SZTs, by
application of an underlying catamorphic pattern
to operands (that turn out to be the generators for
the SZT).

Note that not every function of interest to us is

expressible as a (single) catamorphism. For example
the catamorphic pattern catR for Rose trees requires
mapL on the list of subtrees, itself definable in terms
of the list catamorphism pattern catL. Also, other
operations (as basic as inserting an element into a
sorted list) may involve non-iterative post-
processing of the results of catamorphisms - see
Bailes and Brough (2012) for a summary. However,
the essential iterative behaviour of non-trivial zoetic
data seems to remain amenable to our methods as
above.

We acknowledge that programming based on the
catamorphisms implicit in regular recursive type
definitions is not original e.g. Coq (The Coq Proof
Assistant, https://coq.inria.fr/); however we take the
further step of attempting to treat all data as
behaviour, i.e. “totally functional”.

10 FUTURE DIRECTIONS

We recognize the need for further work in some key
areas as follows.

First, in view of the evident usefulness of the
categorical dual of list catamorphisms - for lists the
“unfold” (Gibbons et al., 2001), or “anamorphisms”
more generally - zoetic versions of these as
embraced by Turner in his Total Functional
Programming (above), need exploration. We
anticipate that for every AZT there would be a dual
algebraic zoetic co-datatype, and that from these
specific zoetic co-datatypes are derivable.

Second, automatic type inference is not available
for zoetic data, because they require functional types
that transcend the expectations implicit in Milner
(1977) and its derivatives. For example, the simple
application

expz ztwo ztwo

fails (spectacularly) to type-check, with 28 lines of
error message from WinGHCi (Haskell Platform,
http://www.haskell.org/platform). A cleverer
definition of expz solves the problem in this case:

expz za zb = zb za

However, replacement of straightforward definitions
by such subtleties does not seem to be the basis of a
sustainable solution. Higher type systems (Vytiniotis
et al., 2006) offer apparent remedies, but the cost of
the loss of the convenience of inference remains to
be understood.

ENASE 2016 - 11th International Conference on Evaluation of Novel Software Approaches to Software Engineering

270

11 CONCLUSIONS

The concept of zoetic data arises from the
observation that much of the complexity of
programming arises from the need to interpret
characteristic behaviours for symbolic data each
time they are used. Strict adherence to the principle
of separation of concerns however indicates that this
problem would be addressed by decoupling the
definition of datatypes from their various
applications.

In our “totally functional” approach to
programming this separation is achieved by
replacing constructors of symbolic data with zoetic
data generators that produce functional
representations of data that embody the
characteristic behaviours inherent to each datatype.
Specific characteristic behaviours arise from
application of generic catamorphic patterns to
operands that have the effect of defining a more
specialised catamorphism. If however such specific
behaviour isn’t articulated, the catamorphic pattern
for the underlying regular algebraic type is itself the
characteristic behaviour. From these bases the zoetic
generators arise as formally-derived counterparts to
symbolic data constructors, thus completely
bypassing symbolic data and their interpreters.

ACKNOWLEDGEMENTS

We gratefully acknowledge our various colleagues’
contributions over the years to our ongoing work
reflected here, especially those of Leighton Brough.

REFERENCES

Abelson, H., Sussman G.J. and Sussman, J., 1996.
Structure and Interpretation of Computer Programs
2nd ed. MIT Press.

Backhouse, R., Jansson, P., Jeuring, J. and L. Meertens,
1999. Generic Programming - An Introduction. In S.
Swierstra, S., Henriques, P. and Oliveira, J. (eds.),
Advanced Functional Programming, LNCS, vol. 1608,
pp. 28-115.

Bailes, P. and Brough, L., 2012. Making Sense of
Recursion Patterns. In Proc. 1st FormSERA: Rigorous
and Agile Approaches, IEEE, pp. 16-22.

Barendregt, H., 1984. The Lambda Calculus - Its Syntax
and Semantics 2nd ed., North-Holland, Amsterdam.

Bird R. and Wadler, P., 1988. Introduction to Functional
Programming, Prentice-Hall International.

Coq Proof Assistant, https://coq.inria.fr/, accessed 22
February 2016.

Collins English Dictionary, http://www.collinsdictionary.
com, accessed 4 July 2014.

Dijkstra, E., 1982. On the role of scientific thought. In
Selected writings on Computing: A Personal
Perspective, pp. 60-66. Springer-Verlag, New York.

Gibbons, J., Hutton G. and Altenkirch, T., 2001. When is a
function a fold or an unfold?. In Electronic Notes in
Theoretical Computer Science, vol. 44 (1).

Haskell Platform, http://www.haskell.org/platform/,
accessed 4 July 2014.

Haskell Programming Language, http://www.haskell.org,
accessed 4 July 2014.

Hughes, J., Why Functional Programming Matters, 1989.
In The Computer Journal, vol. 32 (2), pp. 98-107.

Hutton, G., 1992. Higher-order functions for parsing. In
Journal of Functional Programming, vol. 2, 1992, pp.
323-343.

Hutton, G., 1999, A Tutorial on the Universality and
Expressiveness of Fold. In Journal of Functional
Programming, vol. 9, pp. 355-372.

Meijer, E., Fokkinga, M. and Paterson, R., 1991.
Functional Programming with Bananas, Lenses,
Envelopes, and Barbed Wire. In Proc. FPCA 1991,
LNCS vol. 523, pp. 142-144.

Milner, R., 1977. A Theory of Type Polymorphism in
Programming. In J. Comp. Syst. Scs., vol. 17, pp. 348-
375.

Reynolds, J., 1985. Three approaches to type structure”. In
Mathematical Foundations of Software Development,
LNCS, vol. 185, pp. 97-138.

Turner, D.A, 2004. Total Functional Programming. In
Journal of Universal Computer Science, vol. 10, no. 7,
pp. 751-768.

Uustalu, T., Vene, V. and Pardo, A., 2001. Recursion
Schemes from Comonads. In Nordic J. of Comput.,
vol. 8 (3), pp. 366-390.

Vytiniotis, D., Weirich, S. and Jones, S.L.P., 2006. Boxy
types: inference for higher-rank types and
impredicativity. In Proc. ICFP, pp. 251-262.

Wadler, P., 1985. How to Replace Failure by a List of
Successes. In Proc. FPCA 1985, LNCS, vol. 201, pp.
113-128.

Zoetic Data and their Generators

271

