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Abstract: Functional or “zoetic” representations of data embody the behaviours that we hypothesise are characteristic 
to all datatypes. The advantage of such representations is that they avoid the need, in order to realize these 
characteristic behaviours, to implement interpretations of symbolic data at each use. Zoetic data are not 
unheard-of in computer science, but support for them by current software technology remains limited. Even 
though the first-class function capability of functional languages inherently supports the essentials of zoetic 
data, the creation of zoetic data from symbolic data would have to be by repeated application of a 
characteristic interpreter. This impairs the effectiveness of the “Totally Functional” approach to 
programming of which zoetic data are the key enabler. Accordingly, we develop a scheme for synthesis of 
generator functions for zoetic data which correspond to symbolic data constructors but which entirely avoid 
the need for a separate interpretation stage. This avoidance allows us to achieve a clear separation of 
concerns between the definitions of datatypes on the one hand and their various applications on the other. 

1 INTRODUCTION 

The multi-faceted advantages of functional 
programming have long been well-documented 
(Hughes, 1989). However, amid the benefits of such 
as lazy evaluation and referential transparency, the 
essential defining aspect of programmer-definable 
higher-order functions, seems strangely to have been 
under-appreciated. In particular, expositions of 
functional programming (Bird and Wadler, 1988) 
(Abelson et al., 1996) typically relegate functional 
(“Church”) representations of data as mere 
curiosities. 

Our purpose here is to demonstrate the viability 
of these functional (or zoetic: “pertaining to life; 
living; vital”, Collins English Dictionary, 
http://www.collinsdictionary.com) representations as 
comprehensive replacements for conventional 
symbolic data. The focus of the demonstration is on 
how zoetic data can be manipulated, and specifically 
created, (or “generated”) independently of their 
symbolic counterparts, and thus form the basis of a 
“Totally Functional” programming style where 
symbolic data can be superseded by these zoetic 
representations. 

In this paper overall we: provide a basic 
justification of zoetic data in terms of general 
software engineering principles; indicate how 

widespread and practical zoetic data actually are; 
provide the conceptual and semantic bases for the 
synthesis of generators for a wide class of zoetic 
data; demonstrate the applicability of our synthesis 
technique for a range of examples; and indicate how 
zoetic data provide a conceptual gateway into a 
comprehensive alternate view of programming based 
on total rather than partial recursion. 

2 ZOETIC DATA EXAMPLES 

We begin by showing how zoetic data play 
important roles in functional programming, not just 
theoretically but practically also, using the a range of 
examples of natural numbers, set data structures, and 
context-free grammars. The key idea in each case is 
that the zoetic counterpart to a conventional 
symbolic datatype embodies an essential 
characteristic behaviour. 

2.1 Zoetic Naturals 

Perhaps the best-known zoetic datatype in 
programming is the “Church numeral” (Barendregt, 
1984) representation of natural numbers, whereby a 
natural N is represented by a counterpart function 
(say Ñ) such that Ñ f x = fN x. That is, the 
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characteristic behaviour Ñ of a natural number N is 
N-fold function composition. For example, the 
zoetic version of (symbolic) natural number 3 would 
be rendered, in Haskell concrete syntax (Haskell 
Programming Language, http://www.haskell.org) as 
the function: 

(\f x -> f (f (f x))) 
 

or equivalently 

(\f -> f . f . f) 
 

In particular, definitions for some basic zoetic 
naturals would be 

zzero = (\f x -> x) 
zone = (\f x -> f x) 

2.2 Zoetic Sets 

Perhaps the best generally-known zoetic datatype is 
the representation of sets by (or equivalently, 
characterising their essential behaviour in terms of) 
their characteristic predicates. For example, the 
essence of the definition of the set of even numbers 
as { x | x modulo 2 = 0 } is the predicate, or 
Boolean-valued function (in Haskell syntax) 

evens = (\x -> x `mod` 2 == 0) 

Membership of such a zoetic set is tested by 
direct function application, e.g. 

evens 4 ->> True 
evens 5 ->> False 

Usefully, as we shall see, the characteristic 
predicate is the partial application of the set 
membership operation to the set, as exposed by the 
tautology 

S = {x | x ∈  S} = {x | (∈  S) x} 

Note the adoption of Haskell operator sectioning, 
where “(∈ S)” denotes the partial application of ∈ to 
S, forming the characteristic predicate of S which is 
then applied to putative element x. 

2.3 Zoetic Grammars 

The zoetic approach to context-free grammars that is 
implicitly adopted by combinator parsing (Hutton, 
1992) is that the relevant characteristic behaviour of 
the grammar is the parser for the language defined 
by the grammar. Accordingly, the renditions of the 
context-free combinations of concatenation and 
alternation are (higher-order) functions that apply 
not to grammars but to parsers, and yielding not a 
grammar but a parser. 

In its essential form, a combinator parser for a 

grammar g is a nondeterministic recogniser that 
when applied to an input string s yields the list of 
suffix strings that result after occurrences of 
sentences of g have been found as prefixes in s: 

type CParser = String -> [String] 

An empty list of result strings signifies failure to 
parse (Wadler, 1985). 

For example, assuming definitions of context-
free parsing combinators “conc” and “alt” and token 
recogniser “tok” (see further below for these), we 
can define the grammar 

exp =  exp `conc` ((tok "+")`conc` 
trm) 

 `alt` 
 trm 

 

trm =  (tok "x") `alt` (tok "y") 
 

We then parse according it by direct functional 
application, e.g. 
(1) exp "x+y” 
(2) exp "qwe" 
(3) exp "x"  

Each of these yields respective results 
(1) ["","+y"] 
(2) [] 
(3) [""] 

 

That is, parsing with exp respectively signifies 
(1)  of “x+y”: gives two results, one where the 

entirety of “x+y” is recognized with no residue, 
the other where only “x” is recognized leaving 
residue “+y” 

(2) of “qwe”: is unrecognized 
(3) of “x”: is uniquely and fully recognized. 

3 CHARACTERISTIC METHODS 
AS BASIS OF ZOETIC DATA 

The key to a systematic approach to generation of 
zoetic data is the recognition that they embody a 
uniform interpretation of an underlying symbolic 
datatype. We use the term “characteristic method” 
for this interpretation, by extension from the 
characteristic predicate behaviour ascribed to zoetic 
sets. The relative advantages of zoetic data based on 
characteristic method interpretations of symbolic 
data are exposed by example in the context of 
natural numbers as follows. 
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3.1 Pervasive Interpretation 
Complicates Programming 

The need to adopt a uniform interpretation of 
symbolic data is demonstrated, albeit in microcosm, 
by the following definitions of arithmetic operations 
on natural numbers, which expose how thoroughly 
programming is pervaded by the need to interpret 
symbolic data, and how potentially harmful are the 
effects: 

data Nat = Succ Nat | Zero 
 

add (Succ a) b = Succ (add a b) 
add Zero b = b 
 

mul (Succ a) b = add b (mul a b) 
mul Zero b = Zero 
 

exp a (Succ b) = mul a (exp a b) 
exp a Zero = Succ Zero 

 

The drawbacks inherent in these deceptively-
simple definitions are profound, as follows. 
 Apart from the suggestive naming of the type 

(Nat) and of its two constructors (Succ and Zero), 
there is nothing in the definition of the type that 
compels treatment of members of the type as 
numbers of any kind, never mind natural numbers 
specifically. 

 Granted there is an obvious isomorphism between 
the members of Nat and the abstract entities that 
behave like natural numbers, but that 
isomorphism needs to be implemented by each 
usage of Nat. This implementation takes the form 
of an implicit interpreter that converts symbols 
into actions (in this case, iterative applications of 
other functions). 

 This implementation of the isomorphism from the 
symbols of Nat to the iterative behaviour of 
natural numbers needs to be repeated at each 
usage: inconsistent usage will lead to inconsistent 
(erroneous) behaviour. 

 Defining functions through interpretation of 
symbols using general recursion adds the burden 
of proving totality i.e. termination. 

3.2 Explicit Interpretations Offer 
Simplification 

The situation may be clarified somewhat by the 
introduction of an explicit common interpreter for 
the semantics (i.e. functional behavior) of natural 
numbers n as n-fold iterators: 
iter (Succ n) f x = f (iter n f x) 
iter Zero f x = x 

 

In the light of this, our arithmetic operation 

definitions can be re-expressed 
add a b = iter a Succ b 
mul a b = iter a (add b) Zero 
exp a b = iter b (mul a) (Succ Zero) 

 

The introduction of “iter” thus allows for the 
clarification of what interpretation is being given to 
the type Nat (here as iteration), and when that 
interpretation is being applied usefully and 
meaningfully. 

Despite this clarification however, the revised 
interpretive arithmetic definitions are still deficient 
in terms of inconvenience, fragility and potential 
inconsistency: 

 inconvenience, in that the interpreter needs to be 
applied explicitly; 

 fragility, in that the wrong interpreter could 
conceivably be applied; 

 potential inconsistency, in that multiple 
interpreters with inconsistent behaviours could be 
defined and applied (e.g. one might assume 
naturals start at 0, while another might assume 
they start at 1, as was once a common 
convention). 

3.3 Separation of Concerns via Zoetic 
Data 

All the above criticisms can be summarised as a 
failure to observe the key software design principle 
of separation of concerns (Dijkstra, 1982). In this 
case the separation is between application logic on 
the one hand and what we might call infrastructure 
logic on the other. In the above examples, the 
definitions (add, mul, exp) combine both the logic of 
the respective applications (addition, multiplication, 
exponentiation) with the logic of the semantics of 
natural numbers (iteration). Making the semantic 
interpreter (“iter”) explicit ameliorates the situation 
somewhat but fails to consummate the separation. 

In order fully to achieve separation of concerns 
between applications and infrastructure, our solution 
is to require that all members of a datatype are 
inherently interpreted by the type’s characteristic 
method. Specifically, we: 
(1) assume that for each (symbolic) datatype there is 

indeed a characteristic behaviour (such as 
iteration for Nat as above); 

(2) treat the partial application of the characteristic 
interpreter (for the characteristic behaviour) to 
the symbolic data as a conceptual zoetic unit; 

(3) reorganise programs around these zoetic data. 

In the case of our running example of definitions of 
basic arithmetic operations, we replace naturals (a, 
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b, etc.) by zoetic naturals (say za, zb, etc.) where the 
respective identities hold: 

za = iter a 
zb = iter b 
 

etc. Accordingly, we rewrite arithmetic definitions 
on za, zb etc.: 

addz za zb = za succz zb 
mulz za ab = za (addz zb) zzero 
expz za zb = zb (mulz za) zone 
 

It is at once evident that the required separation of 
concerns has been achieved: the only information 
added by these definitions is with regard to how the 
zoetic naturals za, zb variously combine to 
implement the respective arithmetic operations. In 
particular, the iterative behaviour of za, zb is 
assumed to have been provided at their creation.   

The remainder of this paper this focusses upon 
how such inherent behaviours are necessarily inbuilt 
when creating zoetic data, and thus achieving the 
further required properties of robustness (no chance 
of applying the wrong characteristic method) and 
consistency (that there indeed exists a unique 
characteristic method). 

4 GENERATING ZOETIC DATA 

The approach we shall follow is simply-stated: 
instead of creating zoetic data from partial 
applications of characteristic interpreters to symbolic 
data, generate the zoetic data directly with zoetic 
analogues of the symbolic constructors. When 
programming, calls to symbolic constructors are 
replaced by calls to the zoetic generators. In other 
words, we effect an isomorphism between the 
symbolic and zoetic type. As zoetic generators 
produce a member of the zoetic type, no final 
application of the interpreter (iter etc.) is required. 

In this section, we preview the definitions of 
some interesting generators of zoetic data, which we 
later show how to derive by calculation from their 
specifications. 

4.1 Zoetic Natural Generators 

For example, the zoetic versions of natural numbers 
would be specified in terms of partial application of 
the above iterative interpreter “iter” to their usual 
symbolic renditions as follows: 

zzero = iter Zero 
zone = iter (Succ Zero) 
ztwo = iter (Succ (Succ Zero)) 
-- etc. 

Accordingly, we instead require systematic 
generation of zoetic naturals such as the above by 
application of zoetic counterparts of the symbolic 
constructors Zero and Succ, i.e. 

zzero = (\f x -> x) 
succz n = (\f x -> f (n f x)) 
 

or equivalently 

zzero f x = x 
succz n f x = f (n f x) 

 

and thus 

zone = succz zzero 
ztwo = succz zone 
zthree = succz ztwo 
-- etc. 
 

In particular, it is easy to show (by simple term 
rewriting from the definitions of zzero and succz) 
that these correctly yield the expected Church 
numerals, e.g. 

zthree  
= 
succz (succz (succz zzero)) 
= 
(\f x -> f (f (f x))) 

4.2 Zoetic Set Generators 

For zoetic sets it’s easy to intuit generators that 
apply to appropriate elements or (sub-)sets yielding 
characteristic predicates that test the membership or 
otherwise of a putative element x: 

empty x = False 
singleton e x = x==e 
union zs1 zs2 x = zs1 x || zs2 x 
complement zs x = not (zs x) 
 

-- etc… 

4.3 Zoetic Grammar Generators 

Following our example above, combinator parsers 
are generated, as are context-free grammars, from 
alternation of grammars/parsers, or concatenation of 
grammars/parsers, or tokens. Alternation 
accordingly builds a combinator parser from two 
components p1 and p2, by appending the results of 
parsing s with each of p1 and p2: 

alt :: CParser -> CParser -> CParser 
alt p1 p2 s = p1 s ++ p2 s 

 

Concatenation accordingly builds a combinator 
parser from two components p1 and p2, by parsing s 
with p1 and then parsing each of the results with p2: 

conc :: CParser -> CParser -> CParser 
conc p1 p2 s = concat (map p2 (p1 s)) 
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A token t parses string s by removing prefix t from s: 

tok :: String -> CParser 
tok t s = 
  if prefix t s then [chop t s] else [] 
 

where 
 “prefix t s” tests if string t is a prefix of s; 
 “chop t s” removes prefix t from s. 

5 GENERATOR SYNTHESIS FOR 
ALGEBRAIC ZOETIC TYPES 

In the context of the above, our (related) problem is: 
 to discover  the  zoetic generators that correspond 

to symbolic constructors in a systematic way, as 
opposed to the mere intuitions that have led to the 
examples above. 

 which then enables us to replace the partial 
applications to symbolic data of characteristic 
methods/interpreters with direct applications of 
these generators to zoetic data; 

In this section, we deal with the simplest kind of 
zoetic datatype which corresponds to regular 
algebraic types (Backhouse et al., 1999). We 
recognise the generic catamorphic pattern (Meijer et 
al., 1991) on the regular algebraic type (more 
widely-known as the foldr operation in the list 
context, and represented by iter above for naturals) 
as the characteristic behaviour of its zoetic 
counterparts.  

This choice is made on the basis of: 

 category-theoretic justifications of 
catamorphisms as capturing the essence 
(categorically-speaking, “initiality”) of a regular 
algebraic type; 

 the practical capability of catamorphic patterns to 
express a wide range of subrecursive operations 
(Hutton, 1999); 

 the above capability including the ability to 
express other more apparently-sophisticated 
recursion patterns (Bailes and  Brough, 2012). 

Just as with Naturals above, zoetic versions of these 
types in general are specified by the partial 
application of the relevant catamorphism pattern for 
that type to the symbolic data. For example, for the 
types of lists and rose trees: 

data List a = Cons t (List a) | Nil 
data Rose a = 
  Tip a | Branch (List (Rose a)) 
 

we have catamorphism patterns: 

catL Nil c n = n 

catL (Cons x xs) c n = 
  c x (catL xs c n) 
 
catR (Tip x) t b = t x 
catR (Branch rs) t b = 
  b (mapL (\r -> catR r t b) rs) 
mapL f xs = 
-- corresponds to Haskell prelude 
-- “map”, but on List t instead of [t] 
  catL xs 
  (\x xs’ -> Cons (f x) xs’) 
  Nil 
 

Note that the usual order of operands in changed to 
facilitate partial application of the catamorphic 
pattern to symbolic data. In particular 
catL xs op b = foldr op b xs  
 

Note also how in the case of rose trees, where the 
recursion is not a simple polynomial, that some 
additional complexity is entailed in that the structure 
of the n-ary recursion has to be processed by the 
relevant map function (in this case over Lists). The 
resulting list is processed by some combining 
function b which could well be a (List) 
catamorphism also. For these Algebraic 
(catamorphic-pattern-based) Zoetic Types (AZTs), 
synthesis of the generators proceeds by 
straightforward equational reasoning, as exemplified 
by the following. 

5.1 Synthesis of Generators for Zoetic 
Naturals 

For example, for zoetic Naturals as defined above, 
from the specifications of the isomorphism between 
Nat and our zoetic Naturals, we specify the 
generators as follows, i.e. as partial applications of 
the interpreter for the required characteristic 
behaviour - the relevant catamorphism pattern “iter”.  
Observe how the zoetic operand to generator succz 
is consistently specified as the partial application of 
“iter” to symbolic natural n: 

zzero = iter Zero 
 

succz (iter n) = iter (Succ n)  
 

To calculate their implementations, we proceed 
respectively, in each case adding sufficient relevant 
parameters to the specifications in order to allow the 
expansion of the application of iter and then 
simplification according to the definition of iter in 
the course of which the interpreter (iter) is 
eliminated, i.e.: 

zzero f x 

= (supplying additional parameters to the RHS also) 

iter Zero f x 
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= (by definition of iter) 

x 

 

and 

succz (iter n) f x 

= (supplying additional parameters to the RHS also) 

iter (Succ n) f x 

= (by definition of iter) 

f (iter n f x) 
 

Thus, recognizing the partial application “iter n” 
as the zoetic natural zn, we have the Haskell 
function declarations for the zoetic natural 
generators: 

zzero f x = x 
succz zn f x = f (zn f x) 

5.2 Synthesis of Generators for Zoetic 
Lists 

Lists are treated similarly, from the specification of 
generators in terms of partial application of the 
application of the characteristic symbolic interpreter 
- in this case the catamorphism pattern for lists 
“catL”: 

znil = catL Nil 

zcons x (catL xs) = catL (Cons x xs) 
 

We proceed respectively by adding parameters and 
simplifying according to the defining equations of 
catL: 
znil c n = catL Nil c n = n 
 

and (in detail) 

zcons x (catL xs) c n 

= (supplying additional parameters to the RHS also) 

catL (Cons x xs) c n 

= (by definition of catL) 

c x (catL xs c n) 
 

Thus, recognizing the partial application “catL xs” 
as the zoetic list zxs, we have the Haskell function 
declarations to implement the zoetic list generators: 

znil c n = n 
zcons x zxs c n = c x (zxs c n) 

5.3 Synthesis of Generators for Zoetic 
Rose Trees 

Again, we follow the principle that the specification 
of generators is in terms of partial application of the 
application of the characteristic symbolic interpreter 

- in this case the catamorphism pattern for rose trees 
“catR”. Note especially in this case how the zoetic 
operand to zbranch is specified as the list of the 
partial applications of “catR” to each of the 
symbolic rose trees in the branch, as effected by 
“mapL”. 

ztip x = catR (Ztip x) 
 

zbranch (mapL catR rs)) = 
  catR (Branch rs) 
 

To calculate the implementation we as usual proceed 
respectively 

ztip x t b 

= (supplying additional parameters to the RHS also) 

catR (Ztip x) t b 

= (by definition of catR) 

t x 
 

and 

zbranch (mapL catR rs)) t b 

= (supplying additional parameters to the RHS also) 

catR (Branch rs) t b 

= (by definition of catR) 

b (mapL (\r -> catR r t b) rs) 

= (abstracting “catR r”) 

b(mapL(\r->(\zr->(zr t b))(catR r))rs) 

= (identifying function composition) 

b(mapL(\r->((\zr->(zr t b)).catR) r)rs) 

= (removing r by eta-reduction) 

b (mapL ((\zr -> (zr t b)).catR) rs) 

= (distributing mapL over composition) 

b (mapL (\zr -> zr t b)(mapL catR rs)) 
 

Thus, recognizing the list of partial applications 
“mapL catR rs” as the list of zoetic rose trees zrs, we 
have the Haskell function declarations for the zoetic 
rose tree generators: 
ztip x t b = t x 

zbranch zrs t b = 
  b (mapL (\zr -> zr t b) zrs) 
 

If the n-ary recursive structure of rose trees is 
represented not by a symbolic list zrs but rather is 
zoetic, then the effect of mapL on zrs is simply 
achieved by its direct application as a list 
catamorphism: 

zbranch zrs t b = 
  b ( 
    zrs 
    (\zr zrs’ -> zcons (zr t b) zrs’) 
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    znil 
  ) 

6 SPECIFIC ZOETIC TYPES 

The above systemic approach to AZT generator 
synthesis is however only part of the story. A wider 
class of zoetic types than AZTs is formed by the 
partial application of specific characteristic methods 
rather than the generic catamorphic patterns on the 
relevant symbolic algebraic types. In other words, 
while catamorphic patterns represent the most 
general behaviours, specialisations may be required 
in specific circumstances. Examples of these as seen 
so far in this presentation are combinator parsers and 
characteristic predicates. 

Regarding the latter, consider for example the 
following type of trees with a mixture of binary and 
unary subtrees: 

Bt a = 
Nul | Lf a | Brn(Bt a)(Bt a)| One(Bt a) 

This algebraic type has a default interpretation in 
terms of its catamorphic pattern: 

catBt Nul n l b o = n 
catBt (Lf x) n l b o = l x 
catBt (Brn t1 t2) n l b o = 
  b(catBt t1 n l b o)(catBt t2 n l b o) 
catBt (One t) n l b o = o t 
 

Generators for the consequent AZT, derived using 
the above methods are: 

nul n l b o = n 
lf x n l b o = l x 
brn t1 t2 n l b o = 
  b (t1 n l b o) (t2 n l b o) 
one t n l b o = o t 

 

A different interpretation however of these trees 
as sets is given by the characteristic method 
“member”: 
member Nul e = False 
member (Lf x) e = x==e 
member (Brn t1 t2) e = 
  member t1 e || member t2 e 
member (One t) e = not (member t e) 
 

Obviously, zoetic sets that behave as 
characteristic predicates are given by partial 
applications 

member bt  -- NB bt :: Bt a 
 

The challenge now facing us, in order to widen 
the practical range of zoetic data beyond pure 
catamorphic behaviours, is synthesis of the 
generators for such specific zoetic types (SZTs). 

With respect ot the above example, this means 
empty, singleton, union, complement as further 
above corresponding respectively to Bt constructors 
Nul, Lf, Brn and One. This is more complex than 
that of generic catamorphism-based AZTs, and 
hence first requires the conceptual infrastructure of 
the following section. 

7 PRINCIPLES OF GENERATOR 
DERIVATION FOR SZTs 

Derivation of generators for SZTs depends upon 
some further properties common to zoetic data and 
catamorphisms. 

7.1 Catamorphic Expressibility 

The continuing central role played by 
catamorphisms in zoetic data is reflected in the 
critical assumption that the characteristic functions 
of specific zoetic data are all expressible as 
catamorphisms, i.e. as the generic catamorphic 
patterns themselves (for AZTs) or, as well shall see, 
specialisations by applying these patterns to 
appropriate operands to the generic catamorphic 
patterns on the underlying types (for SZTs). 

The basis for this assumption relates to one of 
the basic premises for zoetic data, i.e. the liberation 
of programming from the burden of interpretation. 
Thus, if interpreters don’t need to be written, then 
programming languages don’t need to be so complex 
as to express interpreters. Rather, the expressiveness 
of catamorphisms a.k.a. “fold” (Hutton, 1999) seems 
to provide a sufficient basis for all practically-
imaginable applications (i.e. other than a Universal 
Turing Machine or equivalent programming 
language interpreter). Formally-speaking, the 
iterative aspect of any function provably terminating 
in second-order arithmetic (Reynolds, 1985) is 
expressible as a catamorphism. 

Accordingly, our derivations of SZT generators 
are limited to those for which holds what we call the 
“Catamorphic-Expressible property” (CE) - that the 
characteristic behaviour B on some symbolic data D 
of type T can be expressed as a catamorphism: 

(CE) B D = catT D G1 … Gn 

where 
 cataT is the catamorphism on type T 
  Gi are the operands to cataT that implement B 

(which as we see below, are actually the zoetic 
generators we seek). 
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7.2 Schematic Catamorphism 

Demonstration of key properties common to 
catamorphisms is facilitated by a scheme of 
catamorphisms captured in Haskell source code by 
definitions as follows (Uustalu et al., 2001).  

First, identify some general algebraic 
abstractions: 

type Algebra f a = f a -> a  

-- as per Haskell prelude 
class Functor f where 
  fmap :: (a -> b) -> f a -> f b 
 

The key to a generic definition of the catamorphic 
pattern is the pattern functor that defines the shape 
of the data for a (recursive) type. In order to isolate 
the (non-recursive) pattern functor, direct recursion 
in type definitions is not appropriate. Recursive 
types are instead the explicit fixed-point of their 
pattern functor, thus we need a fixpoint operator for 
data types: 

newtype Mu f = InF { outF :: f (Mu f) } 
 

(The respective constructor and extractor functions 
for Mu - Inf and outF - are artefacts of the Haskell 
type system.) 

For example, the pattern functor type of the 
polymorphic list type (with elements of type ‘a’) is: 

data Lf a lf = Nl | (Cns a lf) 
instance Functor (Lf a) where 
   fmap g Nl = Nl 
   fmap g (Cns x xs) = Cns x (g xs) 
 

Thus, the actual recursive polymorphic List type is 
the least fixed point of “Lf a”: 

type List a = Mu (Lf a) 
 

The catamorphic recursion pattern for any type is the 
most general homomorphism from the algebra given 
by the pattern functor of the type to any other result 
algebra (i.e. the polymorphic target type of the 
recursion pattern). A generic rendition in Haskell is 

cata ::  Functor f => 
Algebra f a -> Mu f -> a  

cata f = f . fmap (cata f) . outF 
 

where ‘f’ embodies the embedded operation that 
characterises the catamorphism in terms of the 
pattern algebra of the type. Observe how the 
recursive application of “cata f” by fmap ensures the 
desired recursive operation of the catamorphism. 

So in order to define specific catamorphic 
operations, all that is required is to define the 
embedded operation (the ‘f’ parameter of cata). For 
example: 
 the catamorphic definition of the length of a list is 

now 
length xs = cata phi where 
   phi Nl = 0 
   phi (Cns _ xs) = 1+xs 

 

 the list catamorphism pattern (catL) as above can 
be written simply by passing its parameters to the 
catamorphism’s characteristic operation: 

catL xs o b = cata phi where 
   phi Nl = b 
   phi (Cns x xs) = o x xs 

7.3 Fusion Theorem 

Just as catamorphisms exemplify how the 
programming of recursion can be packaged and 
simplified, so fusion (Hutton, 1999) is an example of 
how reasoning about recursive programs can be 
packaged and simplified. 

In terms of the schematic catamorphism above, 
fusion is the implication: 

h (phi x) = chi (fmap h x) 
 
h (cata phi x) = cata chi x 

where phi and chi are the embedded operations of 
type-compatible catamorphisms 

Fusion for individual types can be derived from 
the above schema, typically with the antecedent of 
the implication as: the conjunction of the 
instantiation of the schema with the particulars of 
each of the constructors for the relevant pattern 
functor. 

For example, for list catamorphisms the two 
characteristic operations are typified by 

phi Nl = B1 
phi (Cns x xs) = O1 x xs 

 

chi Nl = B2 
chi (Cns x xs) = O2 x xs 
 

Thus for some base values Bi and binary operations 
Oi, we instantiate the fusion theorem for lists as 
follows. 

 The antecedent condition, case Nl, is: 
h (phi Nl)= chi (fmap h Nl) 
 
h (phi Nl)= chi Nl 
 
h B1 = B2 
 

 The antecedent condition, case Cns x xs, is 
h (phi (Cns x xs))= 

chi (fmap h (Cns x xs)) 
 
h (phi (Cns x xs)) = 

chi (Cns x (h xs)) 
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h (O1 x xs) = O2 x (h xs) 
 

 There is a single consequent: 
h (cata phi xs) = cata chi xs 
 
h (catL xs O1 B1) = catL xs O2 B2 
 

Thus, conjunction of the consequents gives the 
single implication: 
h B1 = B2 ˄ h (O1 x xs) = O2 x (h xs) 
 
h (catL xs O1 B1) = catL xs O2 B2 

7.4 Identity Property and Constructor 
Replacement 

The Identity property for Catamorphisms 
(Backhouse et al., 1999) (IC) is crucial in our 
development. Its simplest typical form is: 

(IC) catT D C1 … Cn = D 

where the Ci are the (symbolic) constructors for 
(symbolic type) T and (of course) D :: T. That is, 
applying a catamorphism to a structure with the 
structure’s own constructors yields the same 
structure. 

IC follows from how a catamorphism can be 
thought of as implementing constructor replacement 
with the catamorphism operands. In terms of the 
schematic catamorphism, observe how the 
embedded operation ‘f’ is applied by cata 
recursively to and across each level of substructure. 
At each level the embedded operation is applied to 
an instance of the pattern algebra where the 
constructors are replaced according to the 
programming of the embedded operation. 

7.5 Identifying and Deriving 
Generators 

The values Gi used in CE above as operands to the 
relevant catamorphic pattern cataT to express SZT 
behaviours B can be demonstrated to have a critical 
use as follows. For each distinct case of CE, 
typically 

B D = catT D G1…Gn 

we first use IC to expand the LHS systematically, in 
what we identify as a Derivative of Catamorphic-
Expressibility (DCE): 

(DCE) B (catT D C1…Cn)= catT D G1…Gn 

or, in terms of the schematic catamorphism 

  B (cata phi D) = cata chi D 

where embedded phi and chi as usual replace 

constructors Ci, in this case for phi by themselves 
and for chi by the Gi. 

At this point, fusion is applicable, i.e. to establish 
the above identity, we need schematically 

chi (fmap B x) = B (phi x) 
or typically 

Gi (B args’ ...) = B (Ci args ...) 

where “args …” are the operands to which Ci 
applies to produce some D :: T, and “args’ …” are 
the args … but with Ci uniformly replaced 
throughout by Gi. 

Thus, the operands Gi (that are used to express 
the behaviours of SZTs) are not only calculable by 
fusion, but they are also the zoetic generators 
corresponding to the symbolic constructors. From 
this point equational reasoning yields 
implementations of Gi as for generic catamorphic 
types as above. Illustrative examples now follow. 

8 GENERATOR DERIVATIONS 
FOR EXEMPLARY SZTs 

8.1 Derivation of Zoetic Set Generators 

Recall the type of trees with a mixture of binary and 
unary subtrees: 

Bt a = 
Nul | Lf a | Brn(Bt a)(Bt a)| One(Bt a) 
 

for which the the relevant catamorphic pattern is 
catBt (as defined above). 

The relevant fusion law (derivable from the 
earlier fusion schema) is 

h na = nb  
˄  
h (la x) = lb x 
˄ 
h (ba t1 t2) = bb (h t1) (h t2) 
˄ 
h (oa t) = ob (h t) 
 
h (catBt t na la ba oa) = catBt t nb lb bb ob 
 

Now, if these trees are to be interpreted as zoetic 
sets by the characteristic method “member” above, 
the relevant expression of DCE in this case is: 

member (catBt bt Nl Lf Brn One) 
= 
catBt bt m s u c 
 

Application of fusion gives: 
(1) member Nul = m 
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(2) member (Lf x) = s x 
(3) member (Brn t1 t2) = 

u (member t1) (member t2) 
(4) member (One t) = c (member t) 
 

From this point, equational reasoning 
respectively proceeds in each case: 
(1) m e = member Nul e = False 
(2) s x e = member (Lf x) e = x==e 
(3) u (member t1) (member t2) e 
 = member (Brn bt1 bt2) e 
 = member t1 e || member t2 e 
(4) c (member t) e 
 = member (One t) e 
 = not (member t e) 
 

Thus, recognising in particular the partial 
applications “member ti” as zoetic sets zsi, we have 
derived implementations for zoetic generators of 
empty, singleton, union and complement of sets 
respectively m, s, u and c: 

m e = False 
s x e = x==e 
u zs1 zs2 e = zs1 e || zs2 e 
c zs e = not (zs e) 
 

which are identical (modulo names) to the intuitive 
definitions offered originally far above. 

8.2 Derivation of Zoetic Grammar 
Generators 

Based on an interpretation of two-flavoured Rose 
trees (where the different “flavours” are 
distinguished by respective constructors B1 and B2), 
we can specify and derive implementations for n-ary 
versions of the parsing combinators conc and alt 
from far above. The basic infrastructure is as 
follows. (For simplicity of presentation, native 
Haskell lists are used to implement the n-ary subtree 
structure.) 

data Rose2 = 
  Tip String | B1 [Rose2] | B2 [Rose2] 
 

catR2 (Tip s) t b1 b2 = t s 
catR2 (B1 r2s) t b1 b2 = 
  b1 ( 
    map (\r2 -> catR2 r2 t b1 b2) r2s 
  ) 
catR2 (B2 r2s) t b1 b2 = 
  b2 ( 
    map (\r2 -> catR2 r2 t b1 b2) r2s 
  ) 
 

The relevant fusion law (again derivable from 
the earlier fusion schema) is 

h (ta  x) = tb  x 
˄ 

h (b1a  rs) = b1b (map h rs) 
˄ 
h (b2a  rs) = b2b (map h rs) 
 
h (catR2 rs  ta  b1a  b2a) = catR2 rs  tb  b1b  b2b 
 

Then the following interpretation (by “parse”) 
ascribes behaviours 
 to Tip: the behaviour of a token 
 to B1: the behaviour of n-ary alternation 
 to B2: the behaviour of n-ary concatenation: 
parse (Tip tk) str = 
  if prefix tk str 
  then [chop tk str]  
  else [] 
-- prefix, chop as before 
 

parse (B1 r2s) str = 
  concat ( 
    map (\p -> p str)(map parse r2s) 
  ) 
 

parse (B2 r2s) str = 
  foldr 
  (\p ss -> concat (map p ss))    -- op 
  (head (map parse r2s) str)      -- b 
  (reverse (tail (map parse r2s)))-- xs 
 

The required n-ary generators tok, nalt and nconc 
are specified by the relevant expression of DCE: 
parse (catR2 rs Tip B1 B2) 
= 
catR2 rs tok nalt nconc 
 

From the above, fusion yields: 
(1) parse (Tip tk) = tok tk 
(2) parse (B1 r2s) = 
      nalt (map parse r2s) 
(3) parse (B2 r2s) = 
      nconc (map parse r2s) 

Equational reasoning respectively proceeds 
(1) tok tk str 
    = parse (Tip tk) str 
    = if prefix tk str 
      then [chop tk str] 
      else [] 
 
(2) nalt (map parse r2s) str 
    = parse (B1 r2s) str 
    = concat ( 
        map(\p-> p str)(map parse r2s) 
      ) 
 
(3) nconc (map parse r2s) str 
    = parse (B2 r2s) str 
    = foldr 
      (\p ss -> concat (map p ss)) 
  (head (map parse r2s) str) 
  (reverse (tail (map parse r2s))) 
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Finally, recognising “parse (Tip ts)” as “tok ts” 
and “map parse r2s” as the list of zoetic grammars 
gs, and p(arser) as zoetic g(rammar) yields 
implementations as follows. The implementation of 
tok repeats the intuitive definition above: 

tok tk str = 
  if prefix tk str 
  then [chop tk str] 
  else [] 
 

The respective implementations of nalt and ncat are 
evident generalisations of the intuitive definitions of 
binary alt and conc of traditional combinator parsers 
above: 
nalt gs str = 
  concat (map (\g -> g str) gs) 
 

nconc gs str = 
  foldr 
  (\g ss -> concat (map g ss)) 
  (head gs str) 
  (reverse (tail gs)) 

9 RELATED WORK 

We have already emphasised how zoetic data, while 
not recognised or identified distinctively as such, are 
not uncommon to functional programming in 
general (e.g. characteristic predicates, combinator 
parsers). 

Our grounding of zoetic data in catamorphic 
recursion patterns establishes a further link, to 
Turner’s “Total Functional Programming” (Turner, 
2004) which emphasises the use of subrecursive 
program structuring mechanisms to ensure that its 
programs avoid unproductive non-termination i.e. 
are total functions). The basis for the link is that our 
grounding of zoetic data in catamorphic recursion 
patterns also ensures functional totality. 

Thus, our “Totally Functional” programming 
develops Turner’s, as follows. 

(1) For every datatype there is posited a 
characteristic method, so that symbolic data are 
completely (“totally”) replaced by functional 
representations. 

(2) However, these characteristic methods are all 
ultimately definable totally as catamorphisms: in 
the case of AZTs, directly in terms of the 
catamorphic pattern that can be thought of as 
characterising the type; in the case of SZTs, by 
application of an underlying catamorphic pattern 
to operands (that turn out to be the generators for 
the SZT). 

Note that not every function of interest to us is 

expressible as a (single) catamorphism. For example 
the catamorphic pattern catR for Rose trees requires 
mapL on the list of subtrees, itself definable in terms 
of the list catamorphism pattern catL. Also, other 
operations (as basic as inserting an element into a 
sorted list) may involve non-iterative post-
processing of the results of catamorphisms - see 
Bailes and Brough (2012) for a summary. However, 
the essential iterative behaviour of non-trivial zoetic 
data seems to remain amenable to our methods as 
above. 

We acknowledge that programming based on the 
catamorphisms implicit in regular recursive type 
definitions is not original e.g. Coq (The Coq Proof 
Assistant, https://coq.inria.fr/); however we take the 
further step of attempting to treat all data as 
behaviour, i.e. “totally functional”. 

10 FUTURE DIRECTIONS 

We recognize the need for further work in some key 
areas as follows. 

First, in view of the evident usefulness of the 
categorical dual of list catamorphisms - for lists the 
“unfold” (Gibbons et al., 2001), or “anamorphisms” 
more generally - zoetic versions of these as 
embraced by Turner in his Total Functional 
Programming (above), need exploration. We 
anticipate that for every AZT there would be a dual 
algebraic zoetic co-datatype, and that from these 
specific zoetic co-datatypes are derivable. 

Second, automatic type inference is not available 
for zoetic data, because they require functional types 
that transcend the expectations implicit in Milner 
(1977) and its derivatives. For example, the simple 
application 

expz ztwo ztwo 

fails (spectacularly) to type-check, with 28 lines of 
error message from WinGHCi (Haskell Platform, 
http://www.haskell.org/platform). A cleverer 
definition of expz solves the problem in this case: 

expz za zb = zb za 

However, replacement of straightforward definitions 
by such subtleties does not seem to be the basis of a 
sustainable solution. Higher type systems (Vytiniotis 
et al., 2006) offer apparent remedies, but the cost of 
the loss of the convenience of inference remains to 
be understood. 
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11 CONCLUSIONS 

The concept of zoetic data arises from the 
observation that much of the complexity of 
programming arises from the need to interpret 
characteristic behaviours for symbolic data each 
time they are used. Strict adherence to the principle 
of separation of concerns however indicates that this 
problem would be addressed by decoupling the 
definition of datatypes from their various 
applications. 

In our “totally functional” approach to 
programming this separation is achieved by 
replacing constructors of symbolic data with zoetic 
data generators that produce functional 
representations of data that embody the 
characteristic behaviours inherent to each datatype. 
Specific characteristic behaviours arise from 
application of generic catamorphic patterns to 
operands that have the effect of defining a more 
specialised catamorphism. If however such specific 
behaviour isn’t articulated, the catamorphic pattern 
for the underlying regular algebraic type is itself the 
characteristic behaviour. From these bases the zoetic 
generators arise as formally-derived counterparts to 
symbolic data constructors, thus completely 
bypassing symbolic data and their interpreters.  
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