
Decision Criteria for Software Component Sourcing
Steps towards a Framework

Rob J. Kusters, Lieven Pouwelse, Harry Martin and Jos Trienekens
Faculty MST, Open University, Valkenburgerweg 177, Heerlen, The Netherlands

Keywords: Make-or-buy, Software Components, Open Source, Closed Source, in House Development.

Abstract: Software developing organizations nowadays have a wide choice when it comes to sourcing software
components. This choice ranges from developing or adapting in-house developed components via buying
closed source components to utilizing open source components. This study seeks to determine criteria that
software developers can use to make this choice. Answering this question will result in a list of criteria that
can, after further validation, be used to develop structured decision support in this type of decision. A first
step is a literature search resulting in an initial list. Since the literature used was not specifically targeted at
the question at hand, it was decided to separately conduct interviews to obtain an independently derived list
of criteria. In a second part of the interview the respondents were confronted with the list resulting from
literature. Together this resulted in a preliminary proposal for decision criteria for software sourcing.

1 INTRODUCTION

Delivery in time and within budget of (business)
software that meets the functional and quality
requirements is often a challenge. Component-based
software development is often used to deal with this
challenge but the selection of appropriate software
components then becomes an important decision (Jha
et al., 2014). A component can be defined as a
coherent package of software that can be
independently developed and delivered as a unit, and
that offers interfaces by which it can be connected,
unchanged, with other components to compose a
larger system (D’Souza and Wills, 1997). When
developing component-based software, an
organization nowadays has a wide choice of sourcing
options. The main choices are:
 In-house development
 Re-use (possibly with adaption) of earlier in-

house developed components
 Acquisition of commercial components
 Usage of open source components
 Adaption of open source components.

Choosing between these options is not obvious
(Cortellessa et al., 2008). However, we were unable
to find a good overview of criteria that could be used
for such a decision. In this paper we propose a first
attempt at filling this gap. A two-fold approach is

taken. First, in a literature survey we try to identify a
basic list of criteria. After this we conducted a series
of interviews with experienced software developers
and managers without using the results obtained from
literature. From this, a list of criteria derived from
practice is extracted. In a second part of the
interviews, the results from literature are discussed
explicitly. We expect that the results can be used as
the basis for the development of structured decision
process support for sourcing software components.

In section 2 related work is discussed. The
methodology used in the research is described in
section 3, and execution of the research and the
results in section 4. The paper ends with conclusions
and a discussion of results in section 5.

2 RELATED WORK

A significant body of literature is already available on
management of software development in general.
However most of the literature found is only
indirectly related to software component sourcing. No
specific literature on software component sourcing
decision criteria was found. We did find however
literature on relevant aspects, focusing at the basic
make-or-buy decision, at the consequences of
organizing re-use of in-house developed components,
or on the advantages and disadvantages of using open

580
Kusters, R., Pouwelse, L., Martin, H. and Trienekens, J.
Decision Criteria for Software Component Sourcing - Steps towards a Framework.
In Proceedings of the 18th International Conference on Enterprise Information Systems (ICEIS 2016) - Volume 1, pages 580-587
ISBN: 978-989-758-187-8
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

source which will be a topic of discussion in this
article as well.

Morisio et al., (2002) shows the main issues of a
'make or buy' decision. They also state that each
product variant has its specific considerations
regarding appropriate requirements, risks and costs.
Cortellessa et al., present a framework supporting the
choice between selection of commercial component
software and development in-house (Cortellessa et
al., 2008). Daneshgar et al have examined, in relation
to the 'make or buy' decision on the basis of 10
existing decision criteria, additional criteria that
affect small and medium businesses (Daneshgar et al.,
2013). Boehm and Bhuta (2008) also identified
advantages and disadvantages of commercial off-the-
shelf products in their study. The choice between the
use of existing software components rather than to
fully develop in-house is often made implicitly. Also,
in projects that have been studied, it is implicitly
expected that the development time and effort
required can be reduced by making use of software
components. However, convincing evidence is not
yet available (Morisio et al., 2002). They also note
that when using commercial off the shelf products
new types of activities and their associated costs have
to be taken into account (Morisio et al., 2002). The
suitability of a component-based software system is
highly dependent on the architecture of the system.
Consistency and coupling play an important role in
determining the quality of the system in terms of
reliability and the effect of the component on the
maintainability and availability of the system as a
whole. This is also an area that should be taken into
account when making sourcing decisions (Jha et al.,
2014).

From the point of view of re-use as a sourcing
option, re-use has the potential to shorten lead times,
improve quality and reduce development costs. The
studies conducted by (Lim, 1994) and (Kakarontzas
et al., 2013) suggest that reuse of software results in
higher quality. Also (Favaro et al., 1998) indicate that
the economic benefits of software reuse are
substantial. However, the reuse of software has
shown to be challenging for many organizations on
both a technical and organizational level
(Kakarontzas et al., 2013). Results from the study of
(Lim, 1994) are broadly consistent with research from
(Kakarontzas et al., 2013). Lim mentions the
following arguments for reuse: reduced delivery
times; lower development costs and higher quality by
fixing bugs in the product, but balances this with the
need for sufficient funding for developing,
maintaining and keeping components for re-use
available. Frakes (2005) further elaborates the

organizational issues that need to be dealt with for
facilitating reuse.

Also, work is available focusing on the adoption
and the adaption of open source components. Such
components have numerous benefits including free
customizable source code. On the other hand, the use
of (open source) software components may present
various challenges concerning selection, testing and
integration. If a system is being distributed or sold, it
is e.g. important that a component with an appropriate
license is selected (Chen et al., 2007). Ruffin and
Ebert (2004) also state that, depending on the product,
use, and market conditions, certain open source
properties may be advantageous. One example is the
existence of a large user community which results in
a de-facto standard. Additionally, like (Chen et al.,
2007) they emphasize the importance of adhering to
license conditions. There seems to be general
disagreement on the added quality open source can
provide. The study by (Paulson et al., 2004) suggests
that defects are generally found and resolved faster in
open source than in closed source software. Ruffin
and Ebert (2004) argue that open source software may
increase security. However, (Schryen and Kadura,
2009) state that this conclusion requires further
research, since a solid basis for this conclusion has yet
to be established. For users of commercial off the
shelf software components, it is more difficult to track
changes than for open source software users. Open
source users are also more concerned about the
reputation of their support provider (Li et al., 2006).

In the related field of package software selection
a good overview is provided by (Jadhav and Sonar,
2011) which gives an interesting and very possibly
relevant overview of package selection criteria.
However, the field is sufficiently distinct to prevent
us in this stage from accepting these results as-is.
They can however be looked into in a further stage of
the research.

All together we see significant contributions,
often focusing on specific but related aspects of the
sourcing criteria issue without, as of yet, resulting in
a well-structured overview of criteria. Based on this
conclusion, we decided to investigate sourcing
criteria in a dedicated study.

3 METHODOLOGY

We started with a literature search using relevant
combinations of the search terms “advantages,
disadvantages, open source software, closed source
software, software components, software component

Decision Criteria for Software Component Sourcing - Steps towards a Framework

581

selection, software reuse, and software 'make or
buy'”. We used the generic search engine
scholar.google.com and also the following online
databases:
 ACM Digital Library
 IEEE Digital Library
 JSTOR Business, Biological, Mathematics &

Statistics Collection
 ScienceDirect (Elsevier)
 SpringerLink

Relevancy of papers was assessed first on title and
abstract. Resulting interesting papers were then
investigated in detail. Selected papers were also used
as the basis for a further reference based search
(forward and backward) to find additional related
papers. In total 94 papers were selected of which after
further study 11 were eventually used.

The results of the literature search were not
convincing. Meaning that many criteria had to be
derived from a literature base that was not specifically
written for our purpose. So although the first resulting
list of criteria might look plausible, we felt it had
insufficient justification to serve as the sole basis for
this research. Straightforward validation of such a list
(e.g. in a survey) could provide information on the
relevance of items already on the list, but it would be
unlikely to lead to adding missing items to this list.
To substantiate our first impression of the literature
search and to gain insight into the way in which these
and local criteria are being interpreted in practice, we
opted for an in-depth case study.

Since both relevance and completeness are
relevant objectives for such a type of research, we
decided on a twofold approach. In an interview, first
an open part took place aimed at independently
identifying a set of criteria that can provide a
reference set for discussion and valuation of the set
derived from literature. This was followed by a
second, semi-structured part. Here, explicitly based
on the list resulting from literature, we made a first
attempt to assess the potential relevance of the
literature set.

The choice was made for open in-depth interviews
since we felt the questions were too complex to allow
sufficient quality results and to provoke sufficient
response from a survey. We felt the disadvantage of
limited participation was off-set by the depth and
quality of the results which we could expect from in-
depth interviews.

We looked at a single organization where
component based development had been in use for
several years and where the sourcing decision is

therefor made routinely and where alternate sourcing
options are considered. The organization is a provider
of e-commerce applications and web applications for
SME’s and (semi-) government organizations. The
organization was founded 16 years ago, and currently
comprises 48 employees of which 35 are developers.
The organization is relatively young with ages of
employees varying from 20 to 40 years.

All five sourcing options identified above are
standard practice in this organization. However, the
organization does not have a formal policy regarding
software component sourcing decision criteria.
Therefore, we expected that developers and managers
are forced to contemplate the sourcing decision
regularly, resulting in the building up of experience.
In a sense, they can be considered as an expert group.
We expected this would give us a wider and well
informed range of answers. Since the organization
had no formal policy, documentation was unlikely to
provide relevant information. This also explains our
reliance on interviews.

To constrain the interviewees into the sourcing
decisions they actually make, rather than to trigger
unsubstantiated perceptions and opinions, we focused
at the decisions that had been made in the recent past
on three specific projects. Within this organization we
strived for maximum variation to promote diversity
of results.

Thus recent projects were selected representing all
the different sourcing options. The projects were each
taken from different departments within the
organization, to further increase the potential
diversity of answers. Similarly, per project different
stakeholders were interviewed, to account for role-
based bias. Stakeholders having a role in sales,
project management and software development, were
selected. To increase response quality even further,
only staff members with at least three years of
experience were interviewed.

Within this setting a detailed design of the two
parts of the interview was developed. During the first
part, an open interview was conducted where the
participants were encouraged to recollect the
arguments actually used within the specific projects.
The respondents were not shown the results of the
literature study to prevent any unintentional bias.
Respondents were asked to identify the components
of the project. For each component identified they
were asked:
 Were in your opinion other alternatives available?
 Did any colleague suggest other alternatives?
 On the basis of what criteria did you choose this

option?

ICEIS 2016 - 18th International Conference on Enterprise Information Systems

582

The interviews were recorded and crucial parts
were transcribed. Using NVivo (Bazeley and
Jackson, 2013) the results were organized and
labelled. Subsequently the results were compared by
the researchers with the list of criteria from the
literature search, and matches and mismatches have
been identified, of which the latter resulted in the
identification of new additional criteria

The second part of the interview was more
structured. The basis of this part of the interview is
the list of criteria found in the literature. The goal is
to see if these criteria identified in literature have been
used or could have been used in practice. Also in this
interview the relation with actual decision making
practice will be maintained, so questions are again
aimed at actual experience. Per criterion the
following questions were asked:
 Have you used this criterion in an earlier decision?
 If yes:

 Can you indicate what project this was?
 To what extent has this criterion really

contributed to the decision?
 If no (we did ask for opinions here):

 Is this a plausible criterion?
 Can you think of a project where this criterion

would have relevant?
For the second part of the interviews transcription

was not deemed necessary. Based on the recording,
the discussions were sufficiently structured and clear.

The choice was made to do both parts of the
interview in a single session. This had as an
advantage that people remembered better what they
said before and were therefore better able to connect
what was mentioned in the first part, to the second
part. This strengthened the results. It was also done
for pragmatic reasons. It was easier to get
participation this way. A drawback of course was that
newly identified criteria could not now be tested
across the participants.

Internal validity is fostered by a careful research
design. Respondents were carefully selected and
treated with respect. They were informed on the
purpose of the project and were told their input was
voluntary, would be treated anonymously and that
they could, at any time, refuse an answer or stop their
participation. They were also given the option to
check our recordings and interpretations derived from
their interview. Respondents were informed in
advance about the purpose of the research and were
also provided with definitions of the sourcing options.
This allowed them to prepare the interview and also

can prevent misunderstanding as to the object of
discussion. This will increase the quality of the
information obtained, and thus the validity of the
research.

External validity is obtained by the ‘factual’
context maintained throughout the interviews.
Results will show that in the particular organization
some criteria have actually been used in the sourcing
decision. Naturally, this does not imply relevancy for
each and all other software organizations. But it does
show that experienced practitioners have found them
useful, hinting that others may value the use of
explicit component sourcing criteria as well.

Reliability is again supported by the careful
design of the interviews. This resulted in the
development of an extended interview guide that
allowed to a large degree repeatable interviews.

4 EXECUTION AND RESULTS

The literature study resulted in a list of 26 criteria (see
table 1).

We selected three recent (within the last year)
projects intending to cover all types of sourcing
identified above. They were:
 P1: an e-commerce solution based on an internally

developed e-commerce platform that uses open
source software components and recycled in-
house developed software.

 P2: an e-commerce solution based on the open
source platform that uses open source software
components, adapted open source software
components, and in-house developed software.

 P3: an internal application framework that uses
open source software components, closed source
software components and in-house developed
software.

Respondents were asked to identify the components
in each project. Examples of components mentioned
were Magento and Wordpress. This proved to be
more complex than originally expected, resulting in
some differences in components identified between
the respondents. For project P1 the respondents
identified three, five, and five components, resulting
in the discussion of twelve components. For P2 the
numbers were five, seven, and “two + others”, also
resulting in the discussion of twelve components. For
P3 finally, the numbers were eight and nine resulting
in discussion of fourteen components.

Decision Criteria for Software Component Sourcing - Steps towards a Framework

583

Table 1: Results from literature.

ID Criterion
L01 Because the source code is publicly available

the risk of stopping vendor support is reduced
because there a possible to switch to another
supplier (Ruffin and Ebert, 2004)

L02 Developing an application on a de facto
standard API protects the application against
changing supplier conditions (Ruffin and
Ebert, 2004)

L03 The risk of having to provide compensation to
the licensor for the breach of license, patent or
proprietary rights (Ruffin and Ebert, 2004)

L04 The number of interactions between different
components (Jha et al., 2014)

L05 The scale and complexity of software
component (Daneshgar et al., 2013)

L06 Appropriate requirements - the extent to
which the component standard meets user
needs (Daneshgar et al., 2013)

L07 The number of discovered vulnerabilities
(Schryen and Kadura, 2009)

L08 Lead time required to fix discovered
vulnerabilities (Ruffin and Ebert, 2004)

L09 Reliability - maturity, fault tolerance and
recoverability (Lawrence, 1996)

L10 Maintainability - analyzability, changeability,
stability and testability (Lawrence, 1996)

L11 Effect of the software component on the
availability of the system as a whole
(Daneshgar et al., 2013)

L12 Flexibility in the use of the component
(Daneshgar et al., 2013)

L13 Delivery time (Lim, 1994)
L14 Development costs (Lim, 1994)
L15 Life cycle / maintenance costs (Boehm and

Bhuta, 2008; Favaro et al., 1998)
L16 The number of functional additions per

release (Paulson et al., 2004)
L17 Freedom to adapt code (Chen et al., 2007)
L18 License of the component (Chen et al., 2007)
L19 Intellectual property (Daneshgar et al., 2013)
L20 Government requiring usage of specific

accounting software (Daneshgar et al., 2013)
L21 Wish to maintain a broad technical vision

across the entire product (Frakes, 2005)
L22 Wish to use knowledge and business expertise

efficiently across projects (Frakes, 2005)
L23 Desire to systematically manage parts which

allow flexible reaction to changing market
conditions (Frakes, 2005)

L24 Availability of capable staff for development
(Lim, 1994)

L25 Maintaining and keeping available reusable
software components (Lim, 1994)

L26 Available financial means to organize re-use
(Frakes, 2005)

An option here could have been to provide the
component structure as an input for the interviews.
However, in that case respondents could have been
confronted with components they are not really
familiar with. In many cases this would have resulted
in additional answers. This would have decreased the
reliability of the answers given. The results confirm
that this indeed occurred during the interviews, with
actually surprisingly little overlap between the
components identified. This we feel, justified our
design decision.

For each project, respondents were selected
according to the roles specified above. Project P3 was
an in-house project, so no related sales representative
was available. Projects P1 and P2 were managed by
the same project manager. This person was
interviewed twice for the first part, once for each of
the projects. The second part naturally only needed to
be carried out once. In total, this resulted in eight
interview results for part one and seven for the second
part.

At this stage, we had the choice between
compromising on the number of respondents or on the
diversity of sourcing in the projects. We opted for an
optimal diversity of sourcing options, feeling that
sufficient interviews were left to give valid and
reliable results.

The respondents had on average 8.2 years of
experience of which 6.7 in their current organization,
providing a solid basis of experience.

Table 2: Addition criteria found.

ID Criterion #
P01 experience with the software component

within the organization
5

P02 availability of documentation 1
P03 interoperability and compatibility with

plug-ins and / or frameworks
5

P04 the wish of the customer 6
P05 expected life of the software component 2
P06 software component is widely accepted

by the community
4

P07 evaluation of the software component by
the community

1

P08 Connect with market demand / increase
commercial opportunities

3

For each interview we reserved four hours in a
meeting room, so as to have sufficient time and to
avoid being disturbed. On average, part one of the
interview took slightly over half an hour, while the
second part on average lasted for an hour. With some
time required for the introduction and small rests
between parts 1 and 2 and sometimes halfway part 2,
the average duration was less than two hours. The

ICEIS 2016 - 18th International Conference on Enterprise Information Systems

584

respondents had sufficient time to answer questions
fully, contributing to the reliability of the answers.

The additional criteria found in the first part of the
interviews can be found in table 2. In the column ‘#’
is indicated the number of respondents who identified
this criterion without prompting.

Of the 26 criteria identified in literature, eleven
were also confirmed in this first part of the interviews.
In table 3 the column ‘part-1’shows the number of
respondents that mentioned criteria (and an
associated example from the project) that could be
mapped to this list.

Table 3: Results interviews.

ID Part-1 Part-2
based on usage based on opinion

L01 3 5
L02 7
L03 3 3
L04 1 4 3
L05 3 5 1
L06 3 7
L07 1
L08 3
L09 3 6 1
L10 2 6 1
L11 3 5 2
L12 4 7
L13 2 4
L14 6 6 1
L15 2 5 1
L16 3 2
L17 2 4
L18 5 6 1
L19 1 2
L20 2 5
L21 7
L22 7
L23 3 4
L24 2 4 3
L25 6 1
L26 5

The second part of the interviews only looked at
the criteria derived from literature, so no additional
confirmation could be obtained for the criteria P1-P8.
The results of the second part of the interviews can be
found in the column ‘part-2’ table 3. The column
‘based on usage’ shows the number of respondents
that recognized a criteria as one they had actually
used in the past. An additional thirteen criteria from
literature were confirmed here. In all cases an actual

example was given by the respondents, demonstrating
factual knowledge rather than speculation.

We also asked for opinions of respondents in case
no actual usage took place. If they had not actually
used the criterion they were asked if they found it
plausible. The number of respondents who agreed
with this can be found in the column ‘based on
opinion’ of table 3.

When discussing criterion L7 (the number of
discovered vulnerabilities) no fewer than five
respondents stated that instead of the number of
vulnerabilities the criterion should in fact consider
their (potential) impact. One respondent out of these
also provided an example of usage of this criterion in
a recent project. This resulted in an unexpected ninth
additional criterion:

P09: Impact of discovered vulnerabilities.

5 DISCUSSION AND
CONCLUSIONS

In this paper we described research aimed at
identifying criteria to support software component
sourcing decisions. The literature study resulted in 26
potential criteria. Some criteria were mentioned by
several authors, but in principle we saw limited
overlap between the authors. This did not inspire
confidence as to the completeness of this list. A more
complete list would have shown more overlap.

This triggered design of an independent
investigation, based on a series of in-depth
interviews. Here experts from practice were asked,
based on a recently completed project, to indicate
criteria used in their sourcing decisions. This resulted
in the identification of nineteen criteria, of which
eleven could be matched to the list derived from
literature and eight were new additions. A ninth
addition emerged later from de interviews.

When discussing the quality of the resulting list of
criteria we can first look at completeness. Naturally,
the current list may be quite incomplete and further
research is needed to establish a more complete list of
commonly useful criteria. Nine new additions to a list
based on the experience of just a single company does
suggest that saturation has as yet not been achieved.
We are likely to find more when more companies are
included in the research.

On the other hand, by combining literature and
practice in this way it would seem that at least the
most obvious, and maybe then also the most
important criteria, will have been identified. It must

Decision Criteria for Software Component Sourcing - Steps towards a Framework

585

be noted that the research conducted only looked at
relevance, not at degree of importance.

Apart from completeness we predominantly
looked at relevance of the criteria that were identified.
There a more positive picture emerges. The nine new
criteria have been found without prompting and have
been used in practice for a concrete sourcing decision
within the target organization. That implies that they
are relevant and other organizations can consider
using them.

Likewise, eleven criteria emerged from the
interviews, which could be easily mapped on the
literature. For these a similar degree of confidence
can be expressed. Again these were found without
prompting and have already been used in a sourcing
decision practice. And they also have backing from
literature.

In the second part of the interviews we used the
list resulting from literature as input to the interviews.
Out of the fifteen remaining criteria, for thirteen
criteria examples were provided that they had been
used in an actual decision process. The evidence can
be considered slightly less strong since the
respondents required prompting for these criteria but
still examples of usage could be given. It is
reasonable to conclude that these criteria are also
relevant.

That leaves two criteria for which no actual usage
could be identified. However, L02 (Developing an
application on a de facto standard API protects the
application against changing supplier conditions) was
seen by all seven respondents to be a plausible
criterion nonetheless. This remarkable consensus
gives no evident reason to dismiss this criterion. L08
(lead time required to fix discovered vulnerabilities)
is also confirmed three times. All in all, there are
reasons to qualify the entire result as at least
‘plausible’.

Furthermore, the initial list presented in this study
is rather unrefined and needs additional processing.
Many criteria are overlapping and differ in the level
of abstraction and aggregation. E.g. criterion P04
rather broadly states the importance of “customer
wishes”. This is a more abstract formulation of the
very specifically formulated L20 (Government
requiring usage of specific accounting software).
L07, L08 and P09 all somehow focus on
vulnerabilities. L03 and L18 both consider license
issues. Because of this, the current set of criteria
cannot be seen as a set of independent criteria. Some
further classification is required. We decided against
doing so for the results of the literature study for two
reasons. One because the number of criteria resulting
was manageable and the other because we did not

want to run a risk of changing information by our
interpretations. The current list can be classified
further, but we decided to wait till additional criteria
have been identified.

Obviously, further research will be needed to
further validate this set of criteria and to add more
results and insights from practice. An ongoing effort
is required to discover more potentially useful
criteria, which may hopefully result in some sort of
saturation. After that the resulting list can be
classified in a more coherent and manageable form.

There is also the interesting aspect of (relative)
degree of importance of criteria. This is probably very
much context dependent and therefore local
assessment will be needed to make a “common
criteria list” operational in decision making practices
in software component sourcing. This would open up
a new line of research in which the decision making
process of the way in which software components are
sourced comes into focus.

REFERENCES

Bazeley, P., and Jackson, K. (Eds.). 2013. Qualitative data
analysis with NVivo. Sage Publications Limited.

Boehm, B., and Bhuta, J. 2008. Balancing opportunities and
risks in component-based software development. IEEE
Software, 25 (6), 56-63.

Chen, W., Li, J., Ma, J., Conradi, R., Ji, J., and Liu, C. 2007.
A survey of software development with open source
components in China's software industry. Lecture Notes
in Computer Science, Vol. LNCS 4470, pp. 208-220.

Cortellessa, V., Marinelli, F., and Potena, P. (2008). An
optimization framework for "build-or-buy" Decisions
in software architecture. Computers and Operations
Research, 35 (10), 3090 - 3106.

D’Souza D. F. and Wills A.C., 1997. Objects, Components,
And Frameworks with UML – the Catalysis Approach,
Addison-Wesley, Reading, Mass.

Daneshgar, F., Low, GC, and Worasinchai, L. 2013. An
investigation of "build vs. buy "decision for software
acquisition by small to medium enterprises.
Information and Software Technology, 55 (10), 1741-
1750.

Favaro, JM, Favaro, KR, and Favaro, PF. 1998. Value
based software reuse investment. Annals of Software
Engineering, 5 (1), 5-52.

Frakes, WB 2005. Software reuse research: status and
future. IEEE Transactions on Software Engineering, 31
(7), 529-536.

Jadhav AS, and Sonar RM 2011. Framework for evaluation
and selection of the software packages: A hybrid
knowledge based system approach. Journal of Systems
and Software,. 84 (8) 1394-1407.

Jha, PC, Bali, V., Narula, S., and Kalra, M. 2014. Optimal
component selection based on cohesion and coupling

ICEIS 2016 - 18th International Conference on Enterprise Information Systems

586

for component-based software system under build-or-
buy scheme. Journal of Computational Science, 5 (2),
233-242.

Kakarontzas, G. Constantinou, E., Ampatzoglou, A., and
Stamelos, I. 2013. Layer assessment of object-oriented
software: A metric facilitating white-box reuse. Journal
of Systems and Software, 86 (2), 349-366.

Lawrence, S. 1996. Software Quality: The Elusive Target.
IEEE Software, 13 (01), 12-21.

Li, J., Conradi, R., Slyngstad, OPN, Bunse, C., Torchiano,
M., and Morisio, M. 2006. An empirical study on
decision making in off-the-shelf component-based
development. Proceeding of the 28th International
Conference on Software Engineering - ICSE '06, 897-
900.

Lim, W. 1994. Effects of reuse on quality, productivity, and
economics. IEEE Software, 11 (5), 23-30.

Morisio, M. Seaman, C., Basili, V., Parra, A., Kraft, S., and
Condon, S. 2002. COTS-based software development:
Processes and open issues. Journal of Systems and
Software, 61, 189-199.

Paulson, JW, Succi, G., and Eberlein, A. 2004. An
empirical study of open-source and closed-source
software products. IEEE Transactions on Software
Engineering, 30 (4), 246-256.

Ruffin, C., and Ebert, C. 2004. Using open source software
in product development: A Primer. IEEE Software, 21
(1), 82-86.

Schryen, G., and Kadura, R. 2009. Open source vs. closed
source software: towards measuring security
Proceedings of the 2009 ACM Symposium on, 2016 -
2023.

Decision Criteria for Software Component Sourcing - Steps towards a Framework

587

