
On Source Code Optimization for Interpreted Languages using State
Models

Jorge López1,2, Natalia Kushik2 and Nina Yevtushenko1
1Department of Information Technologies, Tomsk State University, Lenin str. 36, Tomsk, Russia

2SAMOVAR, Télécom SudParis, CNRS, Université Paris-Saclay, 9 rue Charles Fourier 91000, Évry, France

Keywords: Source Code Optimization, Quality of Software, State Models.

Abstract: The paper is devoted to code optimization techniques with respect to various criteria. Code optimization is
well studied for compiled languages; however, interpreted languages can also benefit when using
optimization approaches. We provide a work in progress of how the code optimization can be effectively
performed for the applications developed with the use of interpreted languages. Methods and techniques
proposed in the paper rely on the use of formal models, and in particular state models. We propose some
code optimization based on two different state models, namely weighted tree automata, and extended finite
automata. The problem of extraction of such models is known to be hard, and in both cases we provide
some recommendations of how such models can be derived for a code in an interpreted language. All the
optimization techniques proposed in the paper are followed by corresponding illustrative examples.

1 INTRODUCTION

As the complexity of information systems increases,
novel techniques for software optimization are
highly needed. Such optimization criteria can refer
to different non-functional properties and
requirements ranging from performance to some
specific features, such as, for example, energy
consumption for a given application under certain
environment (Ivan et al., 2007).

Various optimization techniques based on the
source code of an application have been well studied
during the last decades. Many of these techniques
have been implemented in well-known compilers,
see for example (Stallman et al., 2009), and
nowadays it is even possible to choose specific
optimizations performed when producing the binary
code.

On the other hand, interpreted languages such as
PHP (Bakken et al., 2000), Perl (Wall et al., 2000),
etc., have grown in popularity (especially in web
applications). However, optimization techniques for
compiled languages are not directly applicable for
interpreted languages, given the fact that interpreted
languages execute statements (one by one) as they
appear in the code, i.e. there is no compilation stage
of the source code as a whole. The latter therefore,
motivates researchers to study methods and

techniques for optimizing applications written in
interpreted languages. More precisely, the problem
of interest is stated as follows: given a source code
in an interpreted language, one should replace this
code with another sharing the same functionality,
but being ‘better’ with respect to some non-
functional properties. In order to solve this problem
we utilize appropriate formal models and propose to
perform all the optimization procedures over the
formal model rather than on the code itself.

In this paper, we discuss how various classes of
Finite State Automata (FSA) can be applied to code
optimization for interpreted languages. In particular,
we study weighted tree-like automata (Fülöp and
Vogler, 2009) and extended finite automata (Smith
et al., 2008) as relative code representations. In the
first case, we assume that each instruction of the
code under optimization is augmented with
appropriate weights, that can represent the
normalized time needed for the instruction
execution, the percentage of a disk load while it is
being executed, energy consumption or any other
non-functional countable feature. Correspondingly,
we provide an idea of how a code can be optimized
such that the total cost / weight of the automaton is
(close to) minimal. For extended finite automata, we
discuss how such model can be extracted from the
code under investigation and which analysis can be

282
López, J., Kushik, N. and Yevtushenko, N.
On Source Code Optimization for Interpreted Languages using State Models.
In Proceedings of the 11th International Conference on Evaluation of Novel Software Approaches to Software Engineering (ENASE 2016), pages 282-287
ISBN: 978-989-758-189-2
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

performed using the available flexibility. In
particular, we discuss certain heuristics, to identify
properties of the model that allow providing some
benefit for the source code under optimization.

In fact, this short paper presents a work in
progress of using state (trace) models for interpreted
code optimization. Therefore, the main contribution
of the paper is the discussion of how the above
models can be derived and which kind of
optimization techniques can be applied when using
these models. Both cases of weighted and extended
automata are followed by small (due to space
limitation) examples of illustrative code in PHP.

The structure of the paper is as follows. Section 2
presents approaches of how the previously
mentioned state models can be extracted from source
code, and the optimization criteria for such models.
Section 3 is divided into two parts regarding the use
of weighted tree-like automata and extended
automata for the code optimization. For each
subsection, a discussion of how to perform the
corresponding optimization is provided. Section 4
concludes the paper.

2 USING STATE MODELS FOR
SOURCE CODE
OPTIMIZATION

2.1 Source Code Representation

Source code is considered as a text listing of
computer commands (or instructions). This text
representation of source code has a formal language
definition, designed to supply instructions to the
computer; instructions that it must execute. We
propose the notion of a state model representation of
a given source code. In this paper, we use the
previously mentioned state models, i.e., Extended
Finite Automata (EFA) and Weighted Tree-like
Automata (WTA) for code representation and
optimization. In this subsection we discuss how to
extract both models from the source code and how to
come back to source code from each model.

The basic idea of source code extraction comes
to the well-known Abstract Syntax Tree (AST)
representations generated by parsing code (Jones,
2003). For interpreted languages there exist a
number of open source implementations developed
for such purpose, see for example (Popov, 2016).
We propose to derive the appropriate state models
by traversing the AST data structure that is obtained
from a given source code.

Given the fact that a WTA and an AST both have
a tree-like structure, the generation of a WTA is
mostly straightforward. Starting from the root node
of the AST and the initial state of the WTA, we
traverse the AST and for each member of the current
AST node structure we create a corresponding state
in the WTA. The AST nodes’ data structures have
different members. For example, a while loop node
has an expression (for the corresponding condition)
and a list of statements (the statements to execute
form the loop’s body). For each of those members
we add a transition with the action labeled as the
object type of the node member. The successor of a
current WTA state is created with respect to the
corresponding AST state, and this generation
process is done recursively for the successor state
and current node structure member.

In order to produce source code from a WTA
representation, the pre-order tree transversal
algorithm can be used. With this simple algorithm,
source code can be obtained from the WTA
representation.

On the other hand, the generation of an EFA
from an AST data structure is different. The
approach also starts from the root of the AST data
structure and the initial EFA state. Later on, for each
expression or assignation statement we add the
corresponding context variables and updating
functions for the corresponding expressions. New
states are created when control-flow statements are
encountered (function calls, loops, conditions, etc.).
A function call, however, is processed in a special
manner, since the added state can be unrolled
(expanded) in accordance to the proper function
statements (sub-machine). When adding new states
with control-flow, the control flow conditions are
added to the predicates of the corresponding
transitions. Intuitively, inputs and outputs are
encoded (labeled) in the EFA respectively.

The process of generating source code back from
an EFA representation follows the reverse procedure
from the generation.

Even if the EFA structure does not appear to be
close to an AST, the correspondence between the
source code and the EFA is very close as it can be
seen in Figure 3.

2.2 Source Code Optimization Criteria

Typical criteria for source code optimization include
reducing the number of lines in the code. Since we
use state models to represent the source code, this is
equivalent to reduce either: i) the number of states;

On Source Code Optimization for Interpreted Languages using State Models

283

ii) the number of transitions; or iii) the number of
context variables in the model.

Other non-functional optimization criteria can
also be considered, such as, for example, avoiding
the use of costly operations or specific function
calls. As an example, one might prefer using three
additions of a variable instead of multiplying it by
three or avoiding input/output operations in favor of
in-memory operations. This will result in less
expensive operations which can imply less energy
consumption, for instance. Calling reliable or secure
functions can be another non-functional
requirement, for example, one can consider
sanitizing inputs (e.g., htmlspecialchars function in
PHP) to avoid potential Cross-Site Scripting
(Nentwich et al., 2007) or SQL Injection attacks
(Halfond and Orso, 2005). These requirements
provide other optimization criteria that can be also
modeled by an addition of ‘big’ weights to all non-
reliable instruction representations (transitions, for
instance) of the corresponding state model.

3 OPTIMIZATION METHODS

3.1 Code Optimization for Tree-like
Automata

Different sets of instructions written in the same
language can be equivalent. However one of them
can be better than others, w.r.t. specific non-
functional properties or requirements of the
corresponding software. For example, equivalent
(from the functional point of view) applications can
differ in terms of their performance, energy
consumption, disk load, etc. Correspondingly, for
the source code, there is a list Sub of substitutions
which can replace some instructions / sequences of
actions. For example, a sequence ab can represent
the code that is equivalent to the code represented by
an action d; however, the weight of d can be bigger
than the sum of weights of a and b and thus, the d–
code can be slower or can be more energy
consuming than the code represented by the
sequential execution of a and b. We can also use
regular expressions, which in fact, correspond to the
replacement of a sub-tree in the initial weighted tree
automaton. Such regular expressions are well known
(Smith et al., 2008) and we do not describe them in
detail due to the page limit of this work.

Given a list Sub of possible substitutions of
traces over the alphabet A with traces over alphabet
B, a trace α = α1 … αl over alphabet A is equivalent
to trace β = β1 … βl over alphabet A ∪ B if for each

i = 1, …, l, αi = βi or βi is a possible substitution for
αi of the list Sub. The list of substitutions Sub
contains only possible substitutions that guarantee
that after applying any of such substitutions to a
given WTA S, an equivalent WTA S′ is obtained.

An equivalent WTA S′ refers to a WTA obtained
after applying a sub-set of substitutions in the Sub
list to the original WTA S. S′ represents the source
code, which is equivalent w.r.t. the overall
functional specification of the source code that is
represented by S.
Example. Let A = {a, b, c}, B = {a, d} and Sub =
{aba → bc; bcb → d; bab → cd}. Consider the trace
abababa. If we consider abababa as aba bab a then
we get an equivalent trace bc baba that can be
considered as bcb aba. Thus, the trace dbc is
equivalent to abababa. If each action in the
corresponding automaton has a weight one, then the
sequence of the weight 7 can be minimized to the
one of weight 3. However, if we partition the trace
abababa in another way as a bab aba then an
equivalent trace acdbc will be obtained that cannot
be minimized w.r.t the given set Sub of available
substitutions.

An important semantic note on the regular
expression usage is in the context of replacements.
The regular expression replacement actions
represent the set of original actions matched by the
regular expression over the alphabet A. As an
example, for the replacement a.*b → db.* the
matched sequence of actions is axazb, the
replacement is dbxaz, due to the fact that xaz was the
matched set of actions in the replacement.

Given a finite list L of traces over the alphabet A
where each action is a weighted action, the problem
is to derive traces of minimal weight using
substitutions of a list Sub over alphabet B.
WTA Code Optimization Example. Consider the
following simple PHP code that outputs the
perimeters for the first 1000 circles with integer
radius (later referenced as the perimeters code):

<?php
 $PI = 3.141592654;
 $n = 1000;
 for($i = 0; $i < $n; $i++)
 {
 $p = 2 * $PI * $i;
 print("R = $i, P = $p \n");
 }
?>

A WTA model shown in Figure 1 was derived
manually based on the code listed above.

The weights of the automaton S presented in

ENASE 2016 - 11th International Conference on Evaluation of Novel Software Approaches to Software Engineering

284

Figure 1 are assigned under the assumption that
many assignations and expressions of PHP source
code have the same cost, which equals one.
Therefore, for each node of the corresponding tree,
the weight of the incoming edge equals the sum of
those for all the outgoing edges plus a penalization
constant. The penalization constant, in the running
example, adds five to each function call, three to
each loop, and one to multiplications.

Weights can favor certain instructions, for
instance, to prefer shift left operations instead of
multiplications by a power of two.

Figure 1: A WTA representation of the perimeters code.

Let the substitution list Sub be as follows:
{assign_PI(2)A* → ε(0); assign_n(1)A* → ε(0);

ID_n(1)→ const_1000; exp_x(3)exp_(2)A* →
const_6.283185308(1)} .

By an application of the substitutions in Sub to
the WTA in Figure 1 an optimized WTA in Figure 2
is obtained. By following the pre-order tree
transversal algorithm for code generation the
following optimized code is obtained:

<?php
 for($i = 0; $i < 1000; $i++)
 {
 $p = 6.283185308 * $i;
 print("R = $i, P = $p \n");
 }
?>

Please note that, the minimization of the overall
weight of the edges at the first level of the
corresponding tree, which is the sum of weights of
the outgoing edges from the root can be another
optimization criterion. If each such outgoing

instruction has weight one, then for replacing we can
choose an equivalent tree with the minimal number
of root transitions.

Figure 2: An optimized WTA representation of the
perimeters code.

3.2 Code Optimization using Extended
Finite Automata

The EFA representation is widely used for code
representation since such representations are
compact and intuitively very close to code
instructions. We have identified some heuristics over
the components of the EFA such that after applying
these heuristics, an optimized and functionally
equivalent EFA is obtained. As an example, consider
the heuristic for finding and suppressing a non-
significant sub-automaton.

Given an EFA E extracted from the code, we
propose to decompose the automaton E into two
parts E1 and E2, such that, for a sub-automaton E1 it
holds the following: i) each transition of E1 does not
contain any input or ii) an output. The latter means
that the automaton E1 is “responsible only” for the
internal calculations, i.e. for updating the context
variable values. If it holds that for each context
variable ci, that is updated in one of the transitions of
the sub-automaton E1, ci does not appear in any
predicate included into the sub automaton E2 nor in
any function that calculates the value of an output
parameter, then the sub automaton E1 is not
significant for the whole behavior of the
composition of the machines E1 and E2. In this case,
the automaton E1 can be ignored, i.e., can be deleted
from the composition.

Consider an example of representing a source
code as an EFA. We further illustrate how the EFA
can be optimized with the help of the ‘non-
significant’ sub-automaton described above.

On Source Code Optimization for Interpreted Languages using State Models

285

Extended Finite Automata Code Optimization
Example. For a better understanding of how an EFA
model can be used for code optimization, consider
the following PHP function:

function mean($iarr, $n)
{
 $max = $iarr[0];
 for($j=1; $j<$n; $j++)
 if($max < $iarr[$j])
 $max = $iarr[$j];
 for($i=0; $i<$n; $i++)
 $avg += $iarr[$i];
 return $avg / $n;
}

The function input parameters are an array, and its
length. The output is the mean value of the array.
The EFA representation of the code listed above was
manually derived and it is shown in Figure 3. We
note that the following set of context variables is
considered: {j, i, s, arr_1, …, arr_n}; all context
variables are assumed to be initialized to 0, except of
i which is initialized to 1.

In the running example, the automaton E1 is
shown in Figure 4 enclosed in a box with a
continuous line; the automaton E2 is depicted in a
box with a dashed line. After applying the above
heuristic process, the resulting EFA is obtained
(Figure 5).

Figure 3: EFA representation of the PHP mean function.

By direct inspection, one can assure that the
optimized EFA is simpler than the initial, and the
corresponding source code has less number of
instructions. The code that corresponds to the
optimized EFA is the following:

function mean($iarr, $n)
{
 for($j=0; $j<$n; $j++)
 $avg += $iarr[$j];
 return $avg / $n;
}

Figure 4: Component identification for the EFA model of
the PHP mean function.

Figure 5: An optimized EFA via ‘non-significant’ sub-
automaton heuristics for the PHP mean function.

4 CONCLUSION

In this paper, we have discussed how finite state
models can be used for code optimization. As this
problem is well-studied and effective methods and
tools are well developed in current compilers, we
focused on the problem of such optimization for
interpreted languages. In particular, we have
discussed how state models can be efficiently used
to derive another interpreted code, which is better
than the original one, according to some criteria (in
some sense).

ENASE 2016 - 11th International Conference on Evaluation of Novel Software Approaches to Software Engineering

286

Among the known state models we chose
weighted tree-like automata and extended finite
automata for code optimization. We provided
several heuristics of how the original models can be
changed in such a way that substituting / deleting a
submachine of the corresponding automaton can
lead to a code with a better performance, disk load,
energy consumption, etc. As the extraction of
original weighted / extended automaton is a hard
problem by itself, we briefly describe how the
corresponding automata can be derived.

We mention that optimization techniques
discussed in the paper are mostly based on the
flexibility of the original model and extracting a sub-
model that can be substituted or simply, deleted.
Such flexibility can be effectively preserved as a
largest solution of the corresponding FSM/automata
equation (Villa et al., 2015). Therefore, as a future
work we would like to apply this theory of equation
solving for code optimization. However, such
perspective arises new theoretical issues such as
solving equations over weighted / extended
automata, establishing (necessary and) sufficient
conditions for the existence of solutions to such
equations, etc. These questions are out of the scope
of this position paper and are left for the future
work. On the other hand, given the fact that state
models are known to be effective for code
generation (Giegerich and Graham, 1992), we are
also interested in the application of FSM / Automata
equation solving for an optimal synthesis of an
‘unknown’ code component.

Certainly, the efficiency of proposed techniques
needs to be experimentally evaluated over larger test
cases (larger source code) and this is another
direction of our future work. We also plan to
experiment in different environments (including
compiled languages) given the fact that the proposed
approach seems to be applicable for any language
parse trees.

ACKNOWLEDGEMENTS

The work was partially supported by the ITEA3
project 14009, MEASURE (http://measure.softeam-
rd.eu, https://itea3.org/project/measure.html).

REFERENCES

Villa, T., Petrenko, A., Yevtushenko, N., Mishchenko, A.
and Brayton, R., 2015. Component-Based Design by
Solving Language Equations. Proceedings of the

IEEE, DOI: 10.1109/JPROC.2015.2450937, Volume:
103, Issue: 11, P: 2152-2167, 2015.

Jones, J., 2003. Abstract syntax tree implementation
idioms. In the proceedings of the 10th conference on
pattern languages of programs.

Nentwich, F., Jovanovic, N., Kirda, E., Kruegel, C.,
Vigna, G., 2007. Cross-Site Scripting Prevention with
Dynamic Data Tainting and Static Analysis. In the
proceedings of the Network and Distributed System
Security Symposium (NDSS’07).

Halfond, W. G. J.,Orso, A., 2005. AMNESIA: Analysis
and Monitoring for NEutralizing SQL-injection
Attacks. In the proceedings of the 20th IEEE/ACM
International Conference on Automated Software
Engineering. P: 174-183.

Smith, R., Estan, C.,Jha, S., Kong, S., 2008. Deflating the
Big Bang: Fast and Scalable Deep Packet Inspection
with Extended Finite Automata. In the proceedings of
the ACM SIGCOMM 2008 Conference on Data
Communication, P:207-218.

Ivan, I., Boja, C., Vochin, M., Nitescu, I., Toma, C., Popa,
M., 2007. Using Genetic Algorithms in Software
Optimization. In WSEAS’07, 6th Int. Conference on
TELECOMMUNICATIONS and INFORMATICS,
Dallas, Texas, USA.

Stallman, R. M. and GCC Developer Community, 2009.
Using The Gnu Compiler Collection: A Gnu Manual
For Gcc Version 4.3.3, CreateSpace, Paramount, CA,
First Edition.

Bakken, S. S., Suraski, Z., Schmid, E., 2000. PHP Manual:
Volume 2, iUniverse, Incorporated.

Wall, L., 2000. Programming Perl, O'Reilly & Associates,
Inc. 3rd edition. Sebastopol, CA, USA.

Popov N., 2016 PHP Parser, URL:
https://github.com/nikic/PHP-Parser, Last visited:
2016-01-14.

Fülöp, Z., Vogler, H., 2009. Weighted Tree Automata and
Tree Transducers, P: 313-403, Handbook of Weighted
Automata, Springer, Berlin Heidelberg

Giegerich, R., and Graham, S L., 1992. Code Generation
— Concepts, Tools, Techniques, the proceedings of
the International Workshop on Code Generation,
Dagstuhl, Germany, Springer –Verlag London

On Source Code Optimization for Interpreted Languages using State Models

287

