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Abstract: The paper is devoted to code optimization techniques with respect to various criteria. Code optimization is 
well studied for compiled languages; however, interpreted languages can also benefit when using 
optimization approaches. We provide a work in progress of how the code optimization can be effectively 
performed for the applications developed with the use of interpreted languages. Methods and techniques 
proposed in the paper rely on the use of formal models, and in particular state models. We propose some 
code optimization based on two different state models, namely weighted tree automata, and extended finite 
automata. The problem of extraction of such models is known to be hard, and in both cases we provide 
some recommendations of how such models can be derived for a code in an interpreted language. All the 
optimization techniques proposed in the paper are followed by corresponding illustrative examples. 

1 INTRODUCTION 

As the complexity of information systems increases, 
novel techniques for software optimization are 
highly needed. Such optimization criteria can refer 
to different non-functional properties and 
requirements ranging from performance to some 
specific features, such as, for example, energy 
consumption for a given application under certain 
environment (Ivan et al., 2007). 

Various optimization techniques based on the 
source code of an application have been well studied 
during the last decades. Many of these techniques 
have been implemented in well-known compilers, 
see for example (Stallman et al., 2009), and 
nowadays it is even possible to choose specific 
optimizations performed when producing the binary 
code. 

On the other hand, interpreted languages such as 
PHP (Bakken et al., 2000), Perl (Wall et al., 2000), 
etc., have grown in popularity (especially in web 
applications). However, optimization techniques for 
compiled languages are not directly applicable for 
interpreted languages, given the fact that interpreted 
languages execute statements (one by one) as they 
appear in the code, i.e. there is no compilation stage 
of the source code as a whole. The latter therefore, 
motivates researchers to study methods and 

techniques for optimizing applications written in 
interpreted languages. More precisely, the problem 
of interest is stated as follows: given a source code 
in an interpreted language, one should replace this 
code with another sharing the same functionality, 
but being ‘better’ with respect to some non-
functional properties. In order to solve this problem 
we utilize appropriate formal models and propose to 
perform all the optimization procedures over the 
formal model rather than on the code itself. 

In this paper, we discuss how various classes of 
Finite State Automata (FSA) can be applied to code 
optimization for interpreted languages. In particular, 
we study weighted tree-like automata (Fülöp and 
Vogler, 2009) and extended finite automata (Smith 
et al., 2008) as relative code representations. In the 
first case, we assume that each instruction of the 
code under optimization is augmented with 
appropriate weights, that can represent the 
normalized time needed for the instruction 
execution, the percentage of a disk load while it is 
being executed, energy consumption or any other 
non-functional countable feature. Correspondingly, 
we provide an idea of how a code can be optimized 
such that the total cost / weight of the automaton is 
(close to) minimal. For extended finite automata, we 
discuss how such model can be extracted from the 
code under investigation and which analysis can be 
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performed using the available flexibility. In 
particular, we discuss certain heuristics, to identify 
properties of the model that allow providing some 
benefit for the source code under optimization.  

In fact, this short paper presents a work in 
progress of using state (trace) models for interpreted 
code optimization. Therefore, the main contribution 
of the paper is the discussion of how the above 
models can be derived and which kind of 
optimization techniques can be applied when using 
these models. Both cases of weighted and extended 
automata are followed by small (due to space 
limitation) examples of illustrative code in PHP. 

The structure of the paper is as follows. Section 2 
presents approaches of how the previously 
mentioned state models can be extracted from source 
code, and the optimization criteria for such models. 
Section 3 is divided into two parts regarding the use 
of weighted tree-like automata and extended 
automata for the code optimization. For each 
subsection, a discussion of how to perform the 
corresponding optimization is provided. Section 4 
concludes the paper.  

2 USING STATE MODELS FOR 
SOURCE CODE 
OPTIMIZATION 

2.1 Source Code Representation 

Source code is considered as a text listing of 
computer commands (or instructions). This text 
representation of source code has a formal language 
definition, designed to supply instructions to the 
computer; instructions that it must execute. We 
propose the notion of a state model representation of 
a given source code. In this paper, we use the 
previously mentioned state models, i.e., Extended 
Finite Automata (EFA) and Weighted Tree-like 
Automata (WTA) for code representation and 
optimization. In this subsection we discuss how to 
extract both models from the source code and how to 
come back to source code from each model.  

The basic idea of source code extraction comes 
to the well-known Abstract Syntax Tree (AST) 
representations generated by parsing code (Jones, 
2003). For interpreted languages there exist a 
number of open source implementations developed 
for such purpose, see for example (Popov, 2016). 
We propose to derive the appropriate state models 
by traversing the AST data structure that is obtained 
from a given source code. 

Given the fact that a WTA and an AST both have 
a tree-like structure, the generation of a WTA is 
mostly straightforward. Starting from the root node 
of the AST and the initial state of the WTA, we 
traverse the AST and for each member of the current 
AST node structure we create a corresponding state 
in the WTA. The AST nodes’ data structures have 
different members. For example, a while loop node 
has an expression (for the corresponding condition) 
and a list of statements (the statements to execute 
form the loop’s body). For each of those members 
we add a transition with the action labeled as the 
object type of the node member. The successor of a 
current WTA state is created with respect to the 
corresponding AST state, and this generation 
process is done recursively for the successor state 
and current node structure member. 

In order to produce source code from a WTA 
representation, the pre-order tree transversal 
algorithm can be used. With this simple algorithm, 
source code can be obtained from the WTA 
representation. 

On the other hand, the generation of an EFA 
from an AST data structure is different. The 
approach also starts from the root of the AST data 
structure and the initial EFA state. Later on, for each 
expression or assignation statement we add the 
corresponding context variables and updating 
functions for the corresponding expressions. New 
states are created when control-flow statements are 
encountered (function calls, loops, conditions, etc.). 
A function call, however, is processed in a special 
manner, since the added state can be unrolled 
(expanded) in accordance to the proper function 
statements (sub-machine). When adding new states 
with control-flow, the control flow conditions are 
added to the predicates of the corresponding 
transitions. Intuitively, inputs and outputs are 
encoded (labeled) in the EFA respectively.  

The process of generating source code back from 
an EFA representation follows the reverse procedure 
from the generation. 

Even if the EFA structure does not appear to be 
close to an AST, the correspondence between the 
source code and the EFA is very close as it can be 
seen in Figure 3. 

2.2 Source Code Optimization Criteria 

Typical criteria for source code optimization include 
reducing the number of lines in the code. Since we 
use state models to represent the source code, this is 
equivalent to reduce either: i) the number of states; 

On Source Code Optimization for Interpreted Languages using State Models

283



 

ii) the number of transitions; or iii) the number of 
context variables in the model.  

Other non-functional optimization criteria can 
also be considered, such as, for example, avoiding 
the use of costly operations or specific function 
calls. As an example, one might prefer using three 
additions of a variable instead of multiplying it by 
three or avoiding input/output operations in favor of 
in-memory operations. This will result in less 
expensive operations which can imply less energy 
consumption, for instance. Calling reliable or secure 
functions can be another non-functional 
requirement, for example, one can consider 
sanitizing inputs (e.g., htmlspecialchars function in 
PHP) to avoid potential Cross-Site Scripting 
(Nentwich et al., 2007) or SQL Injection attacks 
(Halfond and Orso, 2005). These requirements 
provide other optimization criteria that can be also 
modeled by an addition of ‘big’ weights to all non-
reliable instruction representations (transitions, for 
instance) of the corresponding state model. 

3 OPTIMIZATION METHODS 

3.1 Code Optimization for Tree-like 
Automata 

Different sets of instructions written in the same 
language can be equivalent. However one of them 
can be better than others, w.r.t. specific non-
functional properties or requirements of the 
corresponding software. For example, equivalent 
(from the functional point of view) applications can 
differ in terms of their performance, energy 
consumption, disk load, etc. Correspondingly, for 
the source code, there is a list Sub of substitutions 
which can replace some instructions / sequences of 
actions. For example, a sequence ab can represent 
the code that is equivalent to the code represented by 
an action d; however, the weight of d can be bigger 
than the sum of weights of a and b and thus, the d–
code can be slower or can be more energy 
consuming than the code represented by the 
sequential execution of a and b. We can also use 
regular expressions, which in fact, correspond to the 
replacement of a sub-tree in the initial weighted tree 
automaton. Such regular expressions are well known 
(Smith et al., 2008) and we do not describe them in 
detail due to the page limit of this work.  

Given a list Sub of possible substitutions of 
traces over the alphabet A with traces over alphabet 
B, a trace α = α1 … αl over alphabet A is equivalent 
to trace β = β1 … βl over alphabet A ∪ B if for each 

i = 1, …, l, αi = βi or βi is a possible substitution for 
αi of the list Sub. The list of substitutions Sub 
contains only possible substitutions that guarantee 
that after applying any of such substitutions to a 
given WTA S, an equivalent WTA S′ is obtained. 

An equivalent WTA S′ refers to a WTA obtained 
after applying a sub-set of substitutions in the Sub 
list to the original WTA S. S′ represents the source 
code, which is equivalent w.r.t. the overall 
functional specification of the source code that is 
represented by S. 
Example. Let A = {a, b, c}, B = {a, d} and Sub = 
{aba → bc; bcb → d; bab → cd}. Consider the trace 
abababa. If we consider abababa as aba bab a then 
we get an equivalent trace bc baba that can be 
considered as bcb aba. Thus, the trace dbc is 
equivalent to abababa. If each action in the 
corresponding automaton has a weight one, then the 
sequence of the weight 7 can be minimized to the 
one of weight 3. However, if we partition the trace 
abababa in another way as a bab aba then an 
equivalent trace acdbc will be obtained that cannot 
be minimized w.r.t the given set Sub of available 
substitutions.  

An important semantic note on the regular 
expression usage is in the context of replacements. 
The regular expression replacement actions 
represent the set of original actions matched by the 
regular expression over the alphabet A. As an 
example, for the replacement a.*b → db.* the 
matched sequence of actions is axazb, the 
replacement is dbxaz, due to the fact that xaz was the 
matched set of actions in the replacement. 

Given a finite list L of traces over the alphabet A 
where each action is a weighted action, the problem 
is to derive traces of minimal weight using 
substitutions of a list Sub over alphabet B. 
WTA Code Optimization Example. Consider the 
following simple PHP code that outputs the 
perimeters for the first 1000 circles with integer 
radius (later referenced as the perimeters code):  
 

<?php 
 $PI = 3.141592654; 
 $n = 1000; 
 for($i = 0; $i < $n; $i++) 
 { 
  $p = 2 * $PI * $i; 
  print("R = $i, P = $p \n"); 
 } 
?> 

 

A WTA model shown in Figure 1 was derived 
manually based on the code listed above. 

The weights of the automaton S presented in 
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Figure 1 are assigned under the assumption that 
many assignations and expressions of PHP source 
code have the same cost, which equals one. 
Therefore, for each node of the corresponding tree, 
the weight of the incoming edge equals the sum of 
those for all the outgoing edges plus a penalization 
constant. The penalization constant, in the running 
example, adds five to each function call, three to 
each loop, and one to multiplications.  

Weights can favor certain instructions, for 
instance, to prefer shift left operations instead of 
multiplications by a power of two. 

 
Figure 1: A WTA representation of the perimeters code. 

Let the substitution list Sub be as follows:  
{assign_PI(2)A* → ε(0); assign_n(1)A* → ε(0); 

ID_n(1)→ const_1000; exp_x(3)exp_(2)A* → 
const_6.283185308(1)} . 

By an application of the substitutions in Sub to 
the WTA in Figure 1 an optimized WTA in Figure 2 
is obtained. By following the pre-order tree 
transversal algorithm for code generation the 
following optimized code is obtained: 

 
<?php 
 for($i = 0; $i < 1000; $i++) 
 { 
  $p = 6.283185308 * $i; 
  print("R = $i, P = $p \n"); 
 } 
?> 

 

Please note that, the minimization of the overall 
weight of the edges at the first level of the 
corresponding tree, which is the sum of weights of 
the outgoing edges from the root can be another 
optimization criterion. If each such outgoing 

instruction has weight one, then for replacing we can 
choose an equivalent tree with the minimal number 
of root transitions. 
 

 
Figure 2: An optimized WTA representation of the 
perimeters code. 

3.2 Code Optimization using Extended 
Finite Automata  

The EFA representation is widely used for code 
representation since such representations are 
compact and intuitively very close to code 
instructions. We have identified some heuristics over 
the components of the EFA such that after applying 
these heuristics, an optimized and functionally 
equivalent EFA is obtained. As an example, consider 
the heuristic for finding and suppressing a non-
significant sub-automaton.  

Given an EFA E extracted from the code, we 
propose to decompose the automaton E into two 
parts E1 and E2, such that, for a sub-automaton E1 it 
holds the following: i) each transition of E1 does not 
contain any input or ii) an output. The latter means 
that the automaton E1 is “responsible only” for the 
internal calculations, i.e. for updating the context 
variable values. If it holds that for each context 
variable ci, that is updated in one of the transitions of 
the sub-automaton E1, ci does not appear in any 
predicate included into the sub automaton E2 nor in 
any function that calculates the value of an output 
parameter, then the sub automaton E1 is not 
significant for the whole behavior of the 
composition of the machines E1 and E2. In this case, 
the automaton E1 can be ignored, i.e., can be deleted 
from the composition.  

Consider an example of representing a source 
code as an EFA. We further illustrate how the EFA 
can be optimized with the help of the ‘non- 
significant’ sub-automaton described above. 
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Extended Finite Automata Code Optimization 
Example. For a better understanding of how an EFA 
model can be used for code optimization, consider 
the following PHP function: 
 

function mean($iarr, $n)  
{ 
 $max = $iarr[0]; 
 for($j=1; $j<$n; $j++) 
  if($max < $iarr[$j]) 
   $max = $iarr[$j];     
 for($i=0; $i<$n; $i++) 
  $avg += $iarr[$i]; 
 return $avg / $n;  
} 

 

The function input parameters are an array, and its 
length. The output is the mean value of the array. 
The EFA representation of the code listed above was 
manually derived and it is shown in Figure 3. We 
note that the following set of context variables is 
considered: {j, i, s, arr_1, …, arr_n}; all context 
variables are assumed to be initialized to 0, except of 
i which is initialized to 1. 

In the running example, the automaton E1 is 
shown in Figure 4 enclosed in a box with a 
continuous line; the automaton E2 is depicted in a 
box with a dashed line. After applying the above 
heuristic process, the resulting EFA is obtained 
(Figure 5). 

 

 
Figure 3: EFA representation of the PHP mean function. 

By direct inspection, one can assure that the 
optimized EFA is simpler than the initial, and the 
corresponding source code has less number of 
instructions. The code that corresponds to the 
optimized EFA is the following: 
 

function mean($iarr, $n) 
{ 
 for($j=0; $j<$n; $j++) 
  $avg += $iarr[$j]; 
 return $avg / $n; 
} 

 

 
Figure 4: Component identification for the EFA model of 
the PHP mean function. 

 
Figure 5: An optimized EFA via ‘non-significant’ sub-
automaton heuristics for the PHP mean function. 

4 CONCLUSION 

In this paper, we have discussed how finite state 
models can be used for code optimization. As this 
problem is well-studied and effective methods and 
tools are well developed in current compilers, we 
focused on the problem of such optimization for 
interpreted languages. In particular, we have 
discussed how state models can be efficiently used 
to derive another interpreted code, which is better 
than the original one, according to some criteria (in 
some sense).  
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Among the known state models we chose 
weighted tree-like automata and extended finite 
automata for code optimization. We provided 
several heuristics of how the original models can be 
changed in such a way that substituting / deleting a 
submachine of the corresponding automaton can 
lead to a code with a better performance, disk load, 
energy consumption, etc. As the extraction of 
original weighted / extended automaton is a hard 
problem by itself, we briefly describe how the 
corresponding automata can be derived. 

We mention that optimization techniques 
discussed in the paper are mostly based on the 
flexibility of the original model and extracting a sub-
model that can be substituted or simply, deleted. 
Such flexibility can be effectively preserved as a 
largest solution of the corresponding FSM/automata 
equation (Villa et al., 2015). Therefore, as a future 
work we would like to apply this theory of equation 
solving for code optimization. However, such 
perspective arises new theoretical issues such as 
solving equations over weighted / extended 
automata, establishing (necessary and) sufficient 
conditions for the existence of solutions to such 
equations, etc. These questions are out of the scope 
of this position paper and are left for the future 
work. On the other hand, given the fact that state 
models are known to be effective for code 
generation (Giegerich and Graham, 1992), we are 
also interested in the application of FSM / Automata 
equation solving for an optimal synthesis of an 
‘unknown’ code component.  

Certainly, the efficiency of proposed techniques 
needs to be experimentally evaluated over larger test 
cases (larger source code) and this is another 
direction of our future work. We also plan to 
experiment in different environments (including 
compiled languages) given the fact that the proposed 
approach seems to be applicable for any language 
parse trees. 
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