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Abstract: The optimal power flow (OPF) problem for power transmission networks is an NP-hard optimization problem
with numerous quadratic equality and indefinite quadratic inequality constraints on bus voltages. The existing
nonlinear solvers often fail in yielding a feasible solution. In this paper, we follow our previously developed
nonsmooth optimization approach to address this difficult large-scale OPF problem, which is an iterative
process to generate a sequence of improved solutions that converge to an optimal solution. Each iteration calls
an SDP of a moderate dimension. Intensive simulations for OPF over networks with a large number of buses
are provided to demonstrate the efficiency of our approach.

1 INTRODUCTION

The brain of a smart grid is advanced distribution
management system (DMS), which is responsible
for supervisory control and data acquisition in reac-
tive dispatch, voltage regulation, contingency analy-
sis, capability maximization and other smart opera-
tions. Optimal power flow (OPF), which determines
a steady state operating point such that the cost of
electric power generation is minimized under oper-
ating constraints, lies at the heart of DMS ((Car-
pentier, 1962; Huneault and Galiana, 1991; Momoh
et al., 1999; Pandya and Joshi, 2008) and references
therein). The OPF problem is typically nonlinear
and nonconvex due to the multiple quadratic equal-
ity and indefinite quadratic inequality constraints on
the voltages variables in expressing the bus intercon-
nections, hardware operating capacity and balance be-
tween power demand and supply. These nonlinear
constraints are difficult so the state-of-the-art nonlin-
ear optimization solvers may converge to just station-
ary points (see (Bukhsh et al., 2013) and references
therein), which are even not necessarily feasible.

There has been a renewed attention on the ap-
plication of semi-definite programming (SDP) to the
OPF problem. As a nonconvex quadratic optimiza-
tion, OPF can be easily recast by convex quadratic
optimization with the additional nonconvex rank-one
constraint on the matrix W =VV H of the outer prod-

uct of voltage vector variable V (Bai et al., 2008;
Lavaei and Low, 2012). The matrix solution of the
semi-definite relaxation (SDR) by dropping the rank-
one matrix constraint, is of rank-one and therefore
provides the global OPF solution in the power dis-
tribution networks (Madani et al., 2015b) or in few
modified IEEE networks (Lavaei and Low, 2012).
Often, a low-rank matrix solution of SDR is of not
rank-one and cannot result in a feasible point of the
original nonconvex OPF problem (Lavaei and Low,
2012; Madani et al., 2015b; Madani et al., 2015a).
An another setback of using the such matrix variable
W ∈ Cn×n for a network of n buses is that its dimen-
sion n(n+1)/2 increases dramatically with respect to
n. For instance, for moderate n = 150 and n = 300
such W is equivalent to 150× 151/2 = 11.325 and
300× 301/2 = 45.150 complex scalar variables. On
the other hand, all large scale networks are sparse in
the sense that the number of the flow lines connecting
buses is relatively moderate. This means that only a
small portion of the crossed nonlinear terms VkV ∗m ap-
pearing in the constraints. References (Molzahn et al.,
2013; Andersen et al., 2014; Madani et al., 2015a)
suggest to formulate OPF as optimization in multiple
matrix variables of outer products of overlapped sub-
sets of voltages. Obviously, it is hardly expected that
SDR by dropping the rank-one constraints on all these
multiple outer products would have all rank-one solu-
tion. Consequently, the matrix solution of SDR does
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not have any physical meaning.
To address the rank-one issue, in (Shi et al., 2015),

we have proposed a rank-reduced optimization to ad-
dress the rank-one for the matrix variable W of the
total voltages, which works very well and practically
for moderate networks up to 300 buses. In this paper,
we will further develop this rank-reduced optimiza-
tion technique for its large-scale OPFs up to a few
thousands buses.

The paper is structured as follows. Section 2 is
devoted to the problem formulation, its challenges
and its computational solution development. Section
3 provides simulation to show the efficiency of our
methods. The conclusions are drawn in Section 4.

The notation used in the paper is standard. More
specifically, j denotes the imaginary unit, M � 0
means that the Hermitian symmetric matrix M is pos-
itive semi-definite, rank(M) is the rank of the ma-
trix M; ℜ(·) and ℑ(·) denote the real and imaginary
parts of a complex quantity. a ≤ b for two complex
numbers a and b is componentwise understood, i.e.
ℜ(a) ≤ℜ(b) and ℑ(a) ≤ ℑ(b). 〈., .〉 is the dot prod-
uct of matrices, while {Ai}i=1,...,n denotes the matrix
with diagonal blocks Ai and zero off-diagonal blocks.

2 LARGE-SCALE OPTIMAL
POWER FLOW PROBLEM AND
CHALLENGES

Consider an AC electricity transmission network with
a set of buses N := {1,2, · · · ,n}. The buses are con-
nected through a set of flow lines L ⊆ N ×N , i.e.
bus m is connected to bus k if and only if (m,k) ∈ L .
Accordingly, N (k) := {m ∈ N : (m,k) ∈ L}. The
power demanded at bus k ∈N is

SLk = PLk + jQLk ,

where PLk and QLk are the real and reactive power.
A subset G ⊆ N of buses is supposed to be con-
nected to generators. Any bus k ∈ N \ G is thus
not connected to generators. Other notations are: (i)
Y = [ykm](k,m)∈N ×N ∈ Cn×n is the admittance matrix
(Zimmerman et al., 2011). Each ykm is the mutual
admittance between bus k and bus m, so ykm = ymk
∀ (k,m)∈L ; (ii)V is the complex voltage vector, V =
[V1,V2, · · · ,Vn]

T ∈ Cn, where Vk is the complex volt-
age injected to bus k ∈ N ; (iii) I is the complex cur-
rent vector, I = YV = [I1, I2, · · · , In]

T ∈ Cn, where Ik
is the complex current injected to bus k ∈N ; (iv) Ikm
is the complex current in the power line (k,m) ∈ L ,

∑
m∈N (k)

Ikm = Ik = ∑
m∈N (k)

ykmVm; (v) Skm = Pkm+ jQkm

is the complex power transferred from bus k to bus

m, where Pkm and Qkm represent the real and reactive
transferred power; (vi) SGk = PGk + jQGk is the com-
plex power injected by bus k ∈G , where PGk and QGk
represent the real and reactive generated power.

For each bus k, it is obvious that SGk − SLk =

(PGk−PLk)+ j(QGk−QLk)=Vk ∑
m∈N (k)

V ∗my∗km. There-

fore, we can express the real generated power PGk
and reactive generated power QGk at bus k as
PGk = PLk + ℜ( ∑

m∈N (k)

VkV ∗my∗km) and QGk = QLk +

ℑ( ∑
m∈N (k)

VkV ∗my∗km).

The objective of OPF is to minimize the follow-
ing cost function of real active generated power
PG: f (PG) = ∑

k∈G
(ck2P2

Gk
+ ck1PGk + ck0) with ck2 >

0,ck1,ck0 given, which is a function of the bust volt-
ages V :

f (V ) = ∑
k∈G

[ck2(PLk +ℜ( ∑
m∈N (k)

VkV ∗my∗km))
2

+ck1(PLk +ℜ( ∑
m∈N (k)

VkV ∗my∗km))+ ck0]. (1)

Accordingly, the following OPF problem is formu-
lated

min
V∈Cn

f (V ) s.t. (2a)

−PLk − jQLk = ∑
m∈N (k)

VkV ∗my∗km,k ∈N \G , (2b)

Pmin
Gk
≤ PLk +ℜ( ∑

m∈N (k)

VkV ∗my∗km)≤ Pmax
Gk

,k ∈ G , (2c)

Qmin
Gk
≤ QLk +ℑ( ∑

m∈N (k)

VkV ∗my∗km)≤ Qmax
Gk

,k ∈ G , (2d)

V min
k ≤ |Vk| ≤V max

k ,k ∈N , (2e)
|Skm|= |VkV ∗my∗km| ≤ Smax

km ,∀(k,m) ∈ L (2f)
|Vk−Vm| ≤V max

km ,(k,m) ∈ L , (2g)
|arg(Vk)− arg(Vm)| ≤ θmax

km ,(k,m) ∈ L , (2h)

where (2b) is the equation of the balance between the
demand and supply power at bus k ∈ N \G , (2c)-
(2d) are the power generation bounds, where Pmin

Gk
,

Qmin
Gk

and Pmax
Gk

, Qmax
Gk

are the lower bound and upper
bound of the real power reactive power generations,
respectively, (2e) are the voltage amplitude bounds,
(2f)-(2h) are capacity limitations, where the line cur-
rents between the connected buses are constrained by
(2f), while (2g)-(2h) guarantee the voltage balance
in terms of their magnitude and phases (Zimmerman
et al., 2011).

Introducing Wkm = VkV ∗m,k = 1, ...,n;m = 1, ...,n
and W = [Wkm]k,m=1,...,n, the problem (2) is recast to

Multiple Matrix Rank Constrained Optimization for Optimal Power Flow over Large Scale Transmission Networks

385



the following optimization problem

min
W�0

F(W ) s.t. (3a)

−PLk − jQLk = ∑
m∈N (k)

Wkmy∗km k ∈N \G , (3b)

Pmin
Gk
≤ PLk +ℜ( ∑

m∈N (k)

Wkmy∗km)≤ Pmax
Gk

,k ∈ G , (3c)

Qmin
Gk
≤ QLk +ℑ( ∑

m∈N (k)

Wkmy∗km)≤ Qmax
Gk

,k ∈ G , (3d)

(V min
k )2 ≤Wkk ≤ (V max

k )2,k ∈N , (3e)
|Wkmy∗km| ≤ Smax

km ,(k,m) ∈ L , (3f)

Wkk +Wmm−Wkm−Wmk ≤ (V max
km )2,(k,m) ∈ L , (3g)

ℑ(Wkm)≤ℜ(Wkm) tanθmax
km ,(k,m) ∈ L , (3h)
rank(W ) = 1, (3i)

where F(W ) = ∑
k∈G

[ck2(PLk +ℜ( ∑
m∈N (k)

Wkmy∗km))
2 +

ck1(PLk +ℜ( ∑
m∈N (k)

Wkmy∗km))+ ck0], which is convex

quadratic in Wkm.
SDR approach (see e.g. (Lavaei and Low, 2012)) is
to drop the difficult rank-one constraint (3i) for SDR.
If the solution of such relaxed SDP is of rank-one,
i.e. it satisfies the nonconvex rank-one constraint (3i)
then it obviously leads to the global solution of the
nonconvex optimization problem (3). Otherwise even
a feasible solution of (3) is hardly obtained from a
solution of this SDR.

In (Shi et al., 2015), we suggest to address (3) by
the following spectral optimization

min
W�0

Fµ(W ) := F(W )+µ(Trace(W )

−λmax(W )) s.t. (3b)− (3h), (4)

where λmax(W ) stands for the maximal eigenvalue
of W and µ is a penalty parameter. Note that
Trace(W )−λmax(W ) = 0. The nonnegative quantity
Trace(W )− λmax(W ) can therefore be used to mea-
sure the degree of satisfaction of the matrix rank-one
constraint (3i). Without square on the factor of µ,
the penalization Trace(W )−λmax(W ) in (4) is exact,
meaning that the constraint Trace(W ) = λmax(W ) can
be satisfied by a minimizer of (4) with a finite value
of µ (see e.g. (Bonnans et al., 2006, Chapter 16)).
This is generally considered as a sufficiently nice
property to make such exact penalization attractive.

Function λmax(W ) is nonsmooth but is
lower bounded by λmax(W ) = max

||w||=1
wHWw ≥

(w(κ)
max)

HWw(κ)
max, where w(κ)

max is the normalized eigen-
vector corresponding to the eigenvalue λmax(W (κ)),

i.e. λmax(W (κ)) = (w(κ)
max)

HW (κ)w(κ)
max.

Therefore, for any W (κ) feasible to the convex con-
straints (3b)-(3h), the following convex optimization
problem provides an upper bound for the nonconvex
optimization problem (4)

min
W�0

F(κ)(W ) := F(W )+µ[Trace(W )

−(w(κ)
max)

HWw(κ)
max] s.t. (3b)− (3h)

(5)

because F(κ)(W )≥ Fµ(W ) ∀W � 0.
Suppose that W (κ+1) is the optimal solution of
SDP (5). Since W (κ) is also feasible to (5) with
Fµ(W (κ)) = F(κ)(W (κ)), it is true that Fµ(W (κ)) =

F(κ)(W (κ))≥ F(κ)(W (κ+1))≥ Fµ(W (κ+1)), so W (κ+1)

is a better feasible point of (4) than W (κ).

The common drawback of using the structure-
free matrix variable W ∈ Cn×n is that its dimension
n(n+ 1)/2 increases dramatically with respect to the
number n of the network buses. For instance, for
n = 150 and n = 300 such W is equivalent to 150×
151/2 = 11.325 and 300×301/2 = 45.150 complex
scalar variables. On the other hand, most large scale
networks are sparse in the sense that the number of
the flow lines connecting buses is relatively moder-
ate. There is only a small portion of the crossed terms
VkV ∗m appearing in the nonlinear constraints (2b)-(2h)
so such matrix variable W contains many redundant
VkV ∗m. References (Molzahn et al., 2013; Andersen
et al., 2014; Madani et al., 2015a) decompose the set
N := {1,2, ...,n} into I possibly overlapped subset
Ni = {i1, ..., iNi} called by bags, such that for each
i = 1,2, ...,I

i` ∈N (i`+1), `= 1, ...,Ni−1 and iNi ∈N (i1).

The set of bags can be reset such that its bags are of
relatively same size.

Define the Hermitian symmetric matrix variables

W i = [Wikim ]k,m=1,..,Ni ∈ CNi×Ni , i = 1,2, ...,I (6)

and W = diag{W i}i=1,...,I . By replacing Wkm =VkV ∗m
in (1) and constraints (2b)-(2h), we have the following
equivalent optimization reformulation for (2)

min
W�0

F(W ) s.t. (3b)−(3h), rank(W i)= 1, i= 1, ...,I .
(7)

Reference (Molzahn et al., 2013; Andersen et al.,
2014) consider (2) just by dropping all rank-one con-
straints in (7), while (Madani et al., 2015a) used a
penalized SDR for locating a low-rank semi-definite
solution W i. In the end, a rank-one solution could not
be found.

Now, we propose the following algorithm for
computational solution of (7).
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Large-scale Nonsmooth Optimization Algorithm
(NOA).
Initialization. Solve SDP

min
W

F(W ) s.t. (3b)− (3h) (8)

to find its solution W (0) := diag{W i,(0)}i=1,...,I . If
rank(W i,(0)) ≡ 1 stop: W (0) is the global solution of
the nonconvex optimization problem (7). Otherwise
define L(0) = {i ∈ {1, ...,I} : rank(W i,(0)) = 1}

Step 1. For κ = 0,1, .., and the normalized
eigenvector wi,(κ)

max corresponding to the eigenvalue
λmax(W i,(κ)) of W i,(κ) solve

min
W

F(κ)(W ) := F(W )+µ ∑
i/∈L(κ)

[Trace(W i)

−(wi,(κ)
max )

HW iwi,(κ)
max ] s.t. (3b)− (3h), (9a)

Trace(W i)− (wi,(κ)
max )

HW iwi,(κ)
max ≤ εtol , i ∈ L(κ) (9b)

to find its solution W (κ+1) := diag{W i,(κ+1)}i=1,2,...,I .
Stop if rank(W i,(κ+1)) = 1 for all i = 1,2, ...., I.
Otherwise define L(κ+1) = {i ∈ {1, ...,I} :
rank(W i,(κ+1)) = 1} and reset κ = κ+1.

Remark. The constraint (9b) implies that W i

must be a rank-one solution, so it is introduced to
prevent good bags turning out to be bad.

Similarly to (Shi et al., 2015), the following
proposition holds.
Proposition 1. Initialized by any feasible point W i,(0)

of SDP (8), {W (κ)} is a sequence of improved feasible
points of the nonconvex optimization problem

min
W

F(κ)(W ) := F(W )+µ∑
i
[Trace(W i)

−λmax(W i)] s.t. (3b)− (3h), (10a)

which converges to a point satisfying first-order nec-
essary optimality conditions.

3 SIMULATION RESULTS

The hardware and software facilities for our compu-
tational implementation are:
• Processor: Intel(R) Core(TM) i5-3470 CPU

@3.20GHz;

• Software: Matlab version R2013b;

• Matlab toolbox: Matpower version 5.1(Zimmer-
man et al., 2011) to compute the admittance ma-
trix Y from the power system data; CVX with
SDPT3 solver for SDP (5).

3.1 Polish-2383wp System

Polish-2383wp system is part of the European UCTE
system, with 2383 buses, 327 generators and 2896
transmission line, which lead to 2056 nonlinear con-
straints in (2b). Thus, there are 2383× 2384/2 =
2840536 complex scalar variables in the W matrix.
However W is sparse matrix, most element are 0, thus
we apply the Large-Scale NOA as follow,

Initialization. Following (Madani et al., 2015a)
to decompose the 2383 buses into 2383 overlapped
bags. The largest bag size is 24, while the smallest
bag size is 1. After the bags decomposition, the to-
tal number of the complex decision variables in (8) is
23199 vs 2840536 complex decision variables in (3).
Solve (8) over the 2383 bags, we find that there are
653 bad bags, which means the rank of the 653 bags
are more than 1. The largest bad bag size is 24, while
the smallest bad bag size is 2. Other 1720 good bags
are all rank-1. Then go to next step.

Step 1. Set εtol = 10−6 and put the 1720 good
bags in constraint (9b), solve (9), after 8 iterations,
the bad bags number turns to be 13, while the good
bags number turns to be 2370. Among the 13 bad
bags, six have size 3, four have size 4, one has size 5
and two have size 6.

Step 2. Put the 2370 good bags in constraint (9b),
solve (9), after 5 iterations, the bad bags number turns
to be 10, while the good bags number turns to be
2373. Among the 10 bad bags, six have size 3, three
have size 4, and one has size 6.

Step 3. Put the 2373 good bags in constraint (9b),
solve (9), after 5 iterations, the bad bags number turns
to be 5, while the good bags number turns to be 2378.
Among the 5 bad bags, two have size 3, two have size
4, and one has size 6.

Step 4. Put the 2378 good bags in constraint (9b),
solve (9), after 5 iterations, the bad bags number turns
to be 2, while the good bags number turns to be 2381.
Among the 2 bad bags, one is size 3, the other is size
4.

Step 5. Put the 2381 good bags in constraint (9b),
solve (9), after 5 iterations, the bad bags number turns
to be 0. The optimal objective value is 1.9464×106.

It should be noted that, in step 4, two multiplier µ
were added in the bags penalized term, to increase the
convergence speed of bag-2011 and bag-2254, where
µ = 4. In step 5, bag-711 was multiplied by 4 as well.

3.2 Polish-2736sp System

Polish-2736sp system represents the Polish networks
during summer 2004 peak conditions, with 2736
buses, 420 generators and 3504 transmission line,
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which lead to 2316 nonlinear constraints in (2b).
Thus, there are 2736× 2737/2 = 3744216 complex
scalar variables in the W matrix. We apply the Large-
Scale NOA as follow,

Initialization. Following (Madani et al., 2015a)
to decompose the 2736 buses into 2736 overlapped
bags. The largest bag size is 24, while the smallest
bag size is 1. After the bags decomposition, the to-
tal number of the complex decision variables in (8) is
27298 vs 3744216 complex decision variables in (3).
Solve (8) over the 2736 bags, we find that there is only
one bad bag with size 4, more specifically, the second
largest eigenvalue is only 3.4×10−5, which is closely
to rank-1 tolerance criterion 10−5.

Step 1. Set εtol = 10−5, put the 2735 good bags in
constraint (9b), solve (9), after 1 iterations, the bad
bags number turns to be 0. The optimal objective
value is 1.3125×106.

3.3 Polish-2737sop System

Polish-2737sop system is the Polish networks during
summer 2004 peak conditions, with 2737 buses, 399
generators and 3506 transmission line, which lead to
2338 nonlinear constraints in (2b). Thus, there are
2737× 2738/2 = 3746953 complex scalar variables
in the W matrix. We apply the Large-Scale NOA as
follow,

Initialization. Following (Madani et al., 2015a) to
decompose the 2737 buses into 2737 overlapped bags.
The largest bag size is 24, while the smallest bag size
is 1. After the bags decomposition, the total number
of the complex decision variables in (8) is 27034 vs
3746953 complex decision variables in (3). Solve (8)
over the 2737 bags, we find that there are three bad
bags, whose size are all 2.

Step 1. Set εtol = 10−5, put the 2734 good bags in
constraint (9b), solve (9), after 1 iterations, the bad
bags number turns to be 0. The optimal objective
value is 7.8235×105.

3.4 Polish-2746wop System

Polish-2746wop system is the Polish networks during
winter 2003-04 off-peak conditions, with 2746 buses,
514 generators and 3514 transmission line, which
lead to 2232 nonlinear constraints in (2b). Thus, there
are 2746× 2747/2 = 3771631 complex scalar vari-
ables in the W matrix. We apply the Large-Scale NOA
as follow,

Initialization. Following (Madani et al., 2015a)
to decompose the 2746 buses into 2746 overlapped
bags.The largest bag size is 24, while the smallest bag
size is 1. After the bags decomposition, the total num-

ber of the complex decision variables in (8) is 29024
vs 3771631 complex decision variables in (3). Solve
(8) over the 2746 bags, we find that there is only one
bad bag with size 2.

Step 1. Set εtol = 10−5, put the 2746 good bags in
constraint (9b), solve (9), after 1 iterations, the bad
bags number turns to be 0. The optimal objective
value is 1.2084×106.

3.5 Polish-2746wp System

Polish-2746wop system is the Polish networks dur-
ing winter 2003-04 evening peak conditions, with
2746 buses, 520 generators and 3514 transmission
line, which lead to 2226 nonlinear constraints in (2b).
Thus, there are 2746× 2747/2 = 3771631 complex
scalar variables in the W matrix. We apply the Large-
Scale NOA as follow,

Initialization. Following (Madani et al., 2015a)
to decompose the 2746 buses into 2746 overlapped
bags.The largest bag size is 24, while the smallest bag
size is 1. After the bags decomposition, the total num-
ber of the complex decision variables in (8) is 28257
vs 3771631 complex decision variables in (3). Solve
(8) over the 2746 bags, we find that there is only one
bad bag with size 2.

Step 1. Set εtol = 10−5, put the 2746 good bags in
constraint (9b), solve (9), after 1 iterations, the bad
bags number turns to be 0. The optimal objective
value is 1.6207×106.

3.6 Polish-3012wp System

Polish-3012wp system represents the Polish networks
during winter 2007-08 evening peak, with 3012 buses,
502 generators and 3572 transmission line, which
lead to 2510 nonlinear constraints in (2b). Thus, there
are 3012× 3013/2 = 4537578 complex scalar vari-
ables in the W matrix. We apply the Large-Scale NOA
as follow,

Initialization. Following (Madani et al., 2015a)
to decompose the 3012 buses into 3012 overlapped
bags.The largest bag size is 25, while the smallest bag
size is 1. After the bags decomposition, the total num-
ber of the complex decision variables in (8) is 30996
vs 4537578 complex decision variables in (3). Solve
(8) over the 3012 bags, we find that there are 381 bad
bags, which means the rank of the 381 bags are more
than 1.The largest bad bag size is 25, while the small-
est bad bag size is 2. Other 2631 good bags are all
rank-1. Then go to next step.

Step 1. Set εtol = 10−5 and put the 2631 good
bags in constraint (9b), solve (9), after 5 iterations, the
bad bags number turns to be 5, while the good bags
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number turns to be 3007. Among the 5 bad bags, two
have size 3, two have size 4, and one has size 5.

Step 2. Put the 3007 good bags in constraint (9b),
solve (9), after 5 iterations, the bad bags number turns
to be 0. The optimal objective value is 2.6406×106.

3.7 Polish-3120sp System

Polish-3120sp system represents the Polish networks
during summer 2008 morning peak, with 3120 buses,
505 generators and 3693 transmission line, which
lead to 2615 nonlinear constraints in (2b). Thus, there
are 3120× 3121/2 = 4868760 complex scalar vari-
ables in the W matrix. We apply the Large-Scale NOA
as follow,

Initialization. Following (Madani et al., 2015a)
to decompose the 3120 buses into 3120 overlapped
bags.The largest bag size is 25, while the smallest bag
size is 1. After the bags decomposition, the total num-
ber of the complex decision variables in (8) is 32637
vs 4868760 complex decision variables in (3). Solve
(8) over the 3120 bags, we find that there are 21 bad
bags,The largest bad bag size is 7, while the smallest
bad bag size is 2. which means the rank of the 21 bags
are more than 1. Other 3099 good bags are all rank-1.
Then go to next step.

Step 1. Set εtol = 10−5 and put the 3099 good bags
in constraint (9b), solve (9), after 5 iterations, only 2
bad bags with size 2 are still bad, while other bags
turn good.

Step 2. Put the 3118 good bags in constraint (9b),
solve (9), after 4 iterations, the bad bags number turns
to be 0. The optimal objective value is 2.1778×106.

It should be noted that, in step 2, the penalized
term of bag-81 was multiplied by 2 to increase the
convergence speed.

4 CONCLUSIONS

OPF over power transmission networks is a difficult
nonconvex optimization problem with numerous non-
linear equality and inequality constraints. We have
developed a large-scale nonsmooth optimization al-
gorithm to compute its optimal solution, which is
efficient and practical for networks with reasonably
large numbers of buses. Applications of NOA to
OPF over three-phase power transmission networks
are currently under consideration.
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