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Abstract: This paper addresses critical issues and reports key findings with regards to the development of participant-
generic operator functional state (OFS) models in the context of cognitive work. Conceptually, this research 
is concerned with the nature of the relationship between the physiological state of individuals and human 
performance. Participants were physiologically monitored (cardiac, respiratory, and eye activity) during the 
execution a set of two cognitive tasks – n-back and visual search – for which there were two levels of 
difficulty. Levels of difficulty were associated with levels of mental workload. Performance on the tasks 
was also monitored and linked with OFS. Modeling of the relationship between physiological state and OFS 
involved systematic manipulation of three parameters: (1) size of smoothing window for performance, (2) 
performance decrement threshold for labelling functional and sub-functional states, and (3) the mode of 
classification being either prospective or descriptive. Modeling was performed using two types of 
classifiers. Results show that (1) models that use bio-behavioral data were capable of classifying 
performance on new participant data above chance, (2) levels of mental workload were better classified than 
OFS, (3) size of smoothing window had a significant impact on classifier performance, and (4) size of 
smoothing window, threshold values, and classifier type had a significant impact on sensitivity and 
specificity. Implications for the use of OFS models in operational contexts are discussed. 

1 INTRODUCTION 

The recent development of low cost and mobile 
devices capable of sensing human bio-behavioral 
activities has sparked a series of research efforts 
aiming to use such data for the assessment of 
operator functional state (OFS) in various contexts. 
OFS refers to “The multidimensional pattern of 
human psychophysiological condition that mediates 
performance in relation to physiological and 
psychological costs” (Carter et al., 2004). 
Assessment of OFS has great value, especially in 
safety critical systems where information about the 
state of operators could support decision makers or 
closed loop automated systems (Bracken et al., 
2014; Dirican and Göktürk, 2011). 

There has been significant progress in the 
development of models of OFS, but it still faces 
several challenges before such models are used in 
the field, especially in safety-critical applications. 

Indeed, transitioning models to uncontrolled 
conditions has been identified as an important 
challenge by many (Durkee et al., 2015; Yin and 
Zhang, 2014). Specifically, two challenges need to 
be addressed. The first one concerns the constraints 
associated with the data, both in terms of quality and 
availability. The second challenge is at the other end 
of the spectrum and concerns the formalization of 
the concept of OFS itself. This paper aims to help 
address these issues. 

1.1 Data 

In safety critical contexts, several constraints will 
impede the use of sensors or degrade the quality of 
the sampled data. It is not always possible to wear 
something on the head, or the task may be 
ambulatory by nature which may introduce motion 
artefacts in the signals. Consequently, and despite 
the demonstrated benefits of central nervous system 
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sensors in the modeling of OFS and similar concepts 
(e.g., Hogervorst et al., 2014; Durantin et al., 2013), 
some contexts will only allow for the collection of 
peripheral nervous system measures. Even though it 
may eventually be possible to remove motion 
artefacts from the signals using novel techniques 
(e.g., Tobon et al., 2013), there is a value in 
investigating the possibility to model OFS using 
only behavioral and peripheral nervous system 
sensors. But are they sufficient? Is there really OFS 
information in the data collected by these sensors? 
Indeed, the vast majority of studies that model OFS 
in near real-time rely at least if not only on central 
nervous system sensors.  

Previous work has shown that perceptual 
attention tasks elicited a small but significant 
increase in breathing rate (Overbeek et al., 2014). 
Also, in applied settings, such as office-like 
situations, breathing rate has shown to be positively 
associated with stress (Wijsman et al., 2013). 

Heart rate variability (HRV) is the (ir)regularity 
of consecutive heartbeats, and has been widely 
associated with the balance between sympathetic 
and parasympathetic systems. Among others, HRV 
was associated with mental overload in a simulated 
piloting task (Durantin et al., 2013) and stress in 
musical performance (Williamon et al., 2013). 

Eye-related activity may also provide 
information associated with OFS. Eye-related 
attributes should however not require a priori 
knowledge about the visual scene to facilitate use of 
the model in new contexts. Such attributes include 
eye velocity, pattern of saccadic and fixation activity 
(Régis et al., 2012), blink frequency and blink 
duration. 

Altogether, such attributes have shown to be 
sensitive to levels of workload, but divergent 
(Matthews et al., 2015). One potential approach to 
increase specificity is to combine attributes through 
machine learning techniques in order to discover 
multi-modal classification rules. 

1.2 OFS Ground Truth 

But what exactly is this information about the 
operator that such models attempt to provide? 
Gaillard (2003) argued that the goal of OFS 
assessment “is to detect significant deviations from 
the optimal bio behavioral state that may indicate an 
enhanced risk for performance degradation”. This 
conceptualization disentangles performance from 
OFS by introducing the notion of enhanced risk, 
which is reasonable since performance greatly 
depends on contextual factors. Indeed, the concept 

of performance is arguably further away from the 
bio-behavioral state than the level of workload or 
fatigue. It is a multi-determined concept that 
involves a complex combination of psycho-
physiological state, task difficulty, and other 
contextual factors. 

Because of this, one of the most studied 
components of OFS is mental workload (e.g., 
Durkee et al., 2013; Eggemeier et al., 1991; Wilson 
and Russell, 2003), which refers to the portion of 
operator information processing capacity or 
resources that is actually required to meet system 
demands. From a theoretical standpoint, the 
assessment of mental workload is critical since 
excessive demand on cognitive resources may result 
in performance degradation (Nourbakhsh et al., 
2013). Still, the relationship between mental 
workload and performance is not straightforward as 
other factors come into play, such as level of 
expertise, fatigue, and motivation. Because the 
relationship between mental workload and 
performance is not direct, we might be missing the 
target. Are the predicted levels of workload really 
associated with enhanced risk of performance 
degradation? 

This raises the question of how to obtain a valid 
and reliable ground truth of “enhanced risk for 
performance degradation”. One way to achieve this 
might be to collect data on standardized fundamental 
tasks and maximize control of contextual factors. In 
this context, observed performance degradations 
should mostly be due to individual as opposed to 
contextual factors and may therefore be used as a 
ground truth for OFS. Nevertheless, there are still 
pending issues we discuss and address here. 

1.3 Objectives 

The main objectives of this study are (1) to 
demonstrate the feasibility of modeling OFS without 
the use of central nervous system sensors and (2) to 
evaluate various operationalization of OFS ground 
truth and evaluate how OFS models fare in 
comparison to models of mental workload. Three 
specific research questions are addressed. 

First, performance and physiology may vary on 
asynchronous time scales. Indeed, a performance 
decrement can happen very fast, within seconds, 
whereas some physiological responses may have a 
slower onset. For instance, it is usually 
recommended measuring HRV over five-minute 
time windows (Mendez et al., 2014). Therefore, is 
the OFS better conceptualized (and classified) as a 
punctual or a longer term general state?  
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Second, it is unclear whether physiological 
responses cause performance decrements, or if it is 
the other way around (Brouwer et al., 2015). Are the 
physiological signals able to predict performance 
decrements (i.e., prospective mode) or are they 
limited to describing an ongoing state? If the 
performance decrement causes a physiological 
response, it may be hard to predict decrements in 
advance. Conversely, if physiological patterns lead 
to performance decrements, it may be reasonable to 
have some level of predictability.  

Finally, to be reliably detectable, a physiological 
response must have some level of amplitude. It is 
unclear however if there is a relationship between 
the amplitude of the performance decrement and the 
physiological response. Is there a performance 
decrement threshold that can be associated with 
physiological patterns regardless of the task? In 
other words, what is the magnitude of change 
necessary in performance to be reflected in 
physiological response, if any? This paper reports a 
systematic assessment of these issues.  

2 METHOD 

This study investigates the aforementioned questions 
using an experimental design that manipulates task 
difficulty in order to foster performance decrements. 
Participants perform the tasks while peripheral bio-
behavioral data is collected. Then, a series of models 
was developed to map the relationship between bio-
behavioral data and performance. For each model, a 
new set of parameters was manipulated for the 
operationalization of performance. Models are tested 
on new participants in order to assess cross-subject 
generalization. This section details the key elements 
of the method, including data collection, parameter 
selection, and modeling procedure.  

2.1 Experiment 

2.1.1 Participants 

Seventeen volunteers - 9 males, mean age (sd) = 
24.58 (3.74) - participated in the experiment. They 
were recruited on the university campus and 
received a financial compensation for their 
participation. Inclusion criteria were having normal 
or corrected vision and no known health issues. 

2.1.2 Design 

The experimental design involved two tasks: visual 

search and N-Back. Each participant completed 
eight consecutive experimental sessions separated by 
five-minute breaks to avoid carry over effects of 
physiological response. Each task comprised two 
conditions, easy and hard. This was done to ensure 
variability in performance data of the participants. 
These conditions were counterbalanced across 
participants and played twice. Total duration of the 
experimental sessions including practice sessions 
and breaks was approximately 90 minutes. Prior to 
the experimental sessions, participants were trained 
on each of the two tasks. 

Visual Search. Visual search is a computerized 
task that requires the participants to identify a target 
letter among a series of distractors (Figure 1). The 
task requires visually scanning the screen to search 
for the target letter. The participants select the target 
by clicking on the letter. Participants performed 60 
trials in each experimental session resulting in 240 
trials overall. 

 
Figure 1: Visual search is an attentional task that involves 
an active visual scan of the environment for a specific 
target (e.g., unrotated vowel [U]) among distractors (e.g., 
consonant and rotated vowels). 

Task difficulty is manipulated by varying the 
complexity of the rule of the target letter. In the easy 
condition, the target is a vowel. In the hard 
condition, the target is an unrotated vowel. Response 
times are recorded and represent the measure of 
performance. 

N-Back. The N-Back is a computerized task that 
requires participants to identify a target letter among 
a series of distractors presented sequentially in time 
(one every 2 seconds). The participants are 
presented a series of letters and must tell whether the 
actual letter is the same (target) or a different one 
(distractor) from the N previous letter. Participants 
must answer with the keyboard (i.e., “M” = same, 
“Z” = different). Participants performed 60 trials in 
each experimental session resulting in 240 trials 
overall. See Figure 2 for a schematic representation 
of the task. 
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Figure 2: The N-Back task is a working memory task in 
which the participants must preserve, manipulate and 
update information in active memory.  

Difficulty is operationalized by varying the 
number of elements to retain, manipulate, and 
update in memory (i.e., N = 1 [easy] and N = 2 
[hard]). Response times are recorded and represent 
the measure of performance. Accuracy was also 
recorded; however, we used response times as the 
principal measure of performance for comparison 
purposes with the visual search task. 

2.1.3 Sensing and Data 

During the completion of these tasks, participants 
were equipped with two devices for bio-behavioral 
sensing. The Zephyr Bio Harness 3 was used for 
electrocardiography (ECG) and respiratory induced 
plethysmography (RIP). ECG was sampled at 250Hz, 
and RIP was sampled at 18Hz. Data were wirelessly 
transmitted to the logging device through Bluetooth. 
The ASL Mobile Eye system was used for eye-
tracking. It sampled the position and the dimension of 
the pupil of the right eye at approximately 30Hz. 

Sampled signals were then validated in terms of 
quality. All data were compared to theoretical 
boundaries and were investigated further if different 
from the expected range. Some levels of invalid data 
were tolerated (up to 20% over a moving window of 
10 seconds) to reflect operational conditions. This 
resulted in approximately 8% of the data removed 
for model training, validation, and testing. 

From the remaining validated signals, a series of 
attributes were calculated. These attributes are 
associated with the behavior of the eyes, cardiac 
activity or respiratory activity. 

Eye-related attributes included velocity, 
proportion of fixations, proportion of involuntary 
fixations, proportion of saccades, blink frequency, 

and blink duration. 
Several implementations of HRV measures exist 

and are typically categorized as being either in the 
temporal, frequency, or non-linear domains 
(Boonnithi and Phongsuphap, 2011). Since the 
frequency and temporal domains allow for precise 
analyses of the variability and was previously 
associated with mental effort, we adopted these two 
types. Attributes associated with HRV were 
extracted using the default values of the RHRV 
package (Mendez et al., 2014). The frequency bands 
were extracted over a short window of five minutes 
and a very short window of two minutes. 

In the present study, breathing rate and breathing 
amplitude were used as the attributes for respiratory 
activity. 

Since the signals were originally sampled at 
asynchronous rates, we interpolated the values of the 
attributes with the last valid value between two 
consecutive samples. The last valid value was used 
to replicate the functional constraint of the device 
used for wireless data collection and integration. In 
fact, all processing is feasible in real-time to 
acknowledge for operational requirements. All the 
attributes were then sampled down to 1Hz. The 
resulting data set was composed of roughly 28,000 
observations of 41 attributes. 

2.2 Ground Truth Parameters 

Decontextualized dynamic performance (DDP) was 
adapted from previous research and consists of a 
dynamic standardization of the median response 
times over the last N seconds (Gagnon et al., 2016). 
The median response times are standardized so that 
the resulting score is comparable across tasks. DDP 
represents the formalization of OFS and allows the 
direct comparison of multiple tasks in terms of 
performance. 

Aligned with the objectives of the paper, three 
parameters associated with the calculation (and 
prediction) of the DDP were manipulated (these 
parameters are reported in Table 1): 

(1) Length in seconds of the median response 
time window. Two windows were compared: 10 vs. 
70 seconds. The shortest window reflects a 
“punctual” state whereas the longest one represents a 
“general” state. 

(2) Threshold of the z score at which the sub 
functional level is specified. Three levels were 
tested: 0, -1 and -1.5. In Gagnon et al. (2016), this 
parameter was estimated with Yen and colleagues’ 
method (1995), but its impact was not systematically 
assessed. 

2000 ms

2000 ms
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(3) Finally, two types of classification modes 
were compared: Descriptive of actual state (bio-
signals and performance metrics come from the 
same time window) versus prospective (bio-signals 
come from a first time window, and performance is 
assessed using the subsequent time-window). 

The manipulation of these parameters results in 
12 versions of OFS ground truth which will be 
systematically assessed in the results section. 

Table 1: OFS Parameters. 

Window 
Sub 

functional  
threshold  
(z score) 

Punctual 
(10 sec) 

General 
(70 sec) 

0 Descriptive vs.  
Prospective 

Descriptive vs. 
Prospective 

-1 Descriptive vs.  
Prospective 

Descriptive vs. 
Prospective 

-1.5 Descriptive vs.  
Prospective 

Descriptive vs. 
Prospective 

Mental workload, as operationalized by task 
difficulty (easy vs. hard) was used as an additional 
ground truth. This ground truth is used to assess the 
additional difficulty associated with classification of 
OFS when compared to intermediate psychological 
states such as mental workload. 

2.3 Modeling 

In previous work, many classes of models have been 
used, including support vector machines, decision 
trees, and linear discriminant analysis, but none have 
been granted with superior performances (e.g., 
Gagnon et al., 2016). Because of this, we restrained 
the classifiers to two types: stochastic gradient 
boosting machine (GBM) and generalized linear 
model (GLM). Ensemble methods such as GBM 
have been used with success in similar contexts (Oh 
et al., 2015). We compare their performance with 
GLM, a classic modeling framework that is also 
known to be resilient to overfitting. 

GBM model training was performed using a 
cross validation procedure implemented in the R 
caret package (Kuhn et al., 2015). The procedure 
involved leaving out the data of one participant at a 
time for training. Data were shuffled prior to input. 

The procedure was performed for 4620 (2 X 154 
X 3 X 5) iterations: manipulated parameters were 
interaction depth (2), number of trees (154), 
shrinkage (3), and minimal observations in node (5). 

The threshold used for labelling the data 

generated imbalanced classes. For instance, the -1 
and -1.5 Z score threshold generates sub-functional 
vs. functional classes comprising ~16% vs. 84% and 
~7%vs. 93% of samples, respectively. In order to 
minimize complications associated with class 
imbalance, we performed a SMOTE procedure 
(Torgo, 2010)  and classifiers were evaluated using 
balanced accuracy: ݈݀݁ܿ݊ܽܽܤ .ܿܿܣ = ݕݐ݂݅ܿ݅݅ܿ݁ݏ) + 2(ݕݐ݅ݒ݅ݐ݅ݏ݊݁ݏ  (1)

This statistic measures classifier accuracy while 
correcting for class imbalance. It therefore 
represents a good impartial measure when 
comparing several scenarios with different class 
distributions.  

For each ground truth (i.e., combination of OFS 
time window, sub-functional threshold, and mode, 
and mental workload levels), the best set of 
parameters was used to train a final model with the 
data of the 15 training participants. Results report 
statistics on the testing sample. The test set was 
divided into eight data bins for each of which 
balanced accuracy values, sensitivity, and specificity 
were calculated. 

3 RESULTS 

Before the development of the psychophysiological 
models, we first validated that the experimental 
conditions did have a significant impact on 
performance of the participants. Analyses revealed 
that responses times were statistically different 
between low and high workload conditions for both 
N-Back t(16) = 8.29, p < .001 and visual search 
t(16) = 10.63, p < .001. The distributions are 
visually represented in Figure 3 and Figure 4. 

 
Figure 3: Distribution of response times for the N-Back 
task by condition. 
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Figure 4: Distribution of response times for the Visual 
Search task by condition. 

Results showed that balanced accuracy was 
significantly higher for the best mental workload 
classifier compared to the best OFS classifier    
t(15)= 4.85, p < .001. Indeed, the best average 
balanced accuracy values on the test set was of     
.77 (.05) for mental workload whereas it was of    
.66 (.04) for OFS. Moreover, for the best 
combination of parameters, both mental workload 
t(7) = 14.58, p < .001 and OFS t(7) = 11.29, p < .001 
predictive accuracy was significantly superior to 
chance. 

A repeated measures analysis of variance 
(ANOVA) was carried out to test the effect of 
classifiers (GBM vs. GLM), time frame (punctual 
vs. general), mode (descriptive vs. prospective), and 
threshold (-1.5, -1, 0) on balanced accuracy, 
specificity, and sensitivity. Statistics are reported in 
Table 2, 3 and 4 for balanced accuracy, sensitivity 
and specificity respectively. Data for sensitivity and 
specificity are reported in Figure 5 and Figure 6 
respectively. 

Table 2: ANOVA - Effect of threshold, window, mode, 
and classifier on balanced accuracy. 

df F p 
Threshold 2 1.1745 0.3112 
Window 1 27.5743 < .001*** 
Mode 1 3.8706 0.0506 
Classifier 1 0.2908 0.5903 
Residuals 186     

Table 3: ANOVA - Effect of threshold, window, mode, 
and classifier on sensitivity. 

  df F p 
Threshold 2 3.9429 0.0210* 
Window 1 3.2754 0.0719 
Mode 1 3.349 0.0688 
Classifier 1 5.9328 0.0158* 
Residuals 186     

Table 4: ANOVA - Effect of threshold, window, mode, 
and classifier on specificity. 

  df F p 
Threshold 2 5.2295 0.0061** 
Window 1 7.2587 0.0077** 
Mode 1 0.4965 0.4819 
Classifier 1 17.4499 < .001*** 
Residuals 186     

Balanced accuracy was not statistically different 
across OFS classifiers. However, classifiers had an 
effect on both sensitivity and specificity. Indeed, 
mean sensitivity was higher for GLM than GBM, 
and conversely for specificity. 

The effect of time window on balanced accuracy 
was statistically significant. Indeed, observed 
balanced accuracy on test set was higher for 
punctual window (M = .59, SD = .07) than general 
window (M = .54, SD = .07). The time window also 
had an effect on specificity, but not sensitivity. 
Indeed, specificity was lower when OFS was 
conceptualized with a general window than when 
compared to a punctual window. 

 
Figure 5: Sensitivity by classifier (left: GBM, right: GLM) 
and threshold on test data. 

PhyCS 2016 - 3rd International Conference on Physiological Computing Systems

20



 
Figure 6: Specificity by classifier (left: GBM, right: 
GLM), threshold, and time window (top: 10s., bottom: 70 
s.) on test data. 

There was no effect of threshold on balanced 
accuracy, but its impact was significant on both 
sensitivity and specificity. Lower thresholds were on 
average associated with higher specificity, but lower 
sensitivity. 

Finally, the effect of the classification mode 
(descriptive vs. prospective) on balanced accuracy 
was marginally significant. Indeed, balanced 
accuracy in descriptive mode (M = .58, SD = .07) 
was almost higher than in the prospective mode    
(M = .56, SD = .07). There was no effect on 
specificity and sensitivity. 

4 DISCUSSION 

This study investigated the potential link between 
bio-behavioral state of individuals and the likelihood 
of performance decrements (i.e., OFS). First, we 
compared model accuracy when classifying 
performance vs. mental workload. Second, we 
assessed the impact of key parameters that must be 
selected when operationalizing an OFS ground truth 
metric to support supervised learning. Namely, this 

study investigated if OFS is better conceptualized as 
a punctual or a general state, as a small or a large 
variation of performance, and whether a prospective 
approach can lead to results comparable to the 
descriptive mode. 

As anticipated, results show that the link between 
the bio-behavioral state of individuals and 
performance is less strong than the link between that 
state and intermediate variables such as level of 
mental workload. Indeed, classifier performance is 
higher when discriminating workload level 
compared to OFS level (functional vs. sub-
functional). This is not surprising as it was 
hypothesized before that the concept of performance 
is dependent on contextual factors not captured in 
bio-behavioral signals. Moreover, because results 
show that it is possible to classify workload 
relatively well, we can affirm that the collected data 
does in fact carry valid information about the state of 
the operator.  

Results show that it is possible to classify OFS 
above chance level but that more information is 
needed to achieve high levels of accuracy. This 
suggests that if such models are to be used in 
operational contexts, they should be complemented 
with other sensor data or contextual information to 
increase their accuracy. Notably, in this context, we 
did not provide as inputs the time of the day nor the 
gender or the age of the participants, which are all 
known to have an impact on physiological patterns 
(e.g., Carter et al., 2004). Indeed, without a larger 
sample and sufficient counterbalancing of these 
factors, such information will lead to model that 
overfit the data (e.g., learn the experimental design 
and idiosyncrasies in the dataset) and that generalize 
poorly on new data. Still, OFS classifiers with 
moderate accuracy can be valuable assets since they 
provide unique information about the individual’s 
state that could help prevent major errors. On the 
other hand, results also indicate that more work 
needs to be carried out to boost model 
generalization. Specifically, while out-of-sample 
generalization was the priority here, a limiting factor 
of the current work is that it did not address cross-
task generalization even though it is known to be a 
challenging issue (Wang et al., 2012).  

From a theoretical standpoint, results show that 
OFS is better conceived as a punctual than a general 
state. Indeed, the short time window has shown to be 
more easily classified than the long window. This 
replicates a previous finding observed on a different 
data set (Gagnon et al., 2016) and suggests that the 
bio-behavioral signals used for this study (which 
were all peripheral sensors) are capturing 
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physiological dynamics that operate on relatively 
short time scales. Further work should focus on 
quantifying the prominence of different attributes 
and their origin (i.e., cardiac, eye, respiratory) with 
respect to the time window used. 

Interestingly, there was no effect of threshold on 
balanced accuracy. However this parameter, as well 
as time window and classifier type, had significant 
impacts on specificity and sensitivity. This is very 
important, especially in the context of safety critical 
systems, since you may want to boost one of these 
metrics over the other. As such, the present findings 
provide useful insights about parameter tradeoffs 
and how to prioritize true-positives or true-negatives 
without compromising balanced accuracy.  

Future work will concern training and validation 
of OFS models in ambulatory contexts, another key 
challenge to address in order to transit models from 
the laboratory to the field.  
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