
KVFS: An HDFS Library over NoSQL Databases

Emmanouil Pavlidakis1, Stelios Mavridis2, Giorgos Saloustros and Angelos Bilas2

Foundation for Research and Technology – Hellas (FORTH), Institute of Computer Science (ICS),
100 N. Plastira Av., Vassilika Vouton, Heraklion, GR-70013, Greece

Keywords: Distributed File Systems, NoSQL Data Stores, Key-value Stores, HBase, HDFS.

Abstract: Recently, NoSQL stores, such as HBase, have gained acceptance and popularity due to their ability to scale-out
and perform queries over large amounts of data. NoSQL stores typically arrange data in tables of (key,value)
pairs and support few simple operations: get, insert, delete, and scan. Despite its simplicity, this API has
proven to be extremely powerful. Nowadays most data analytics frameworks utilize distributed file systems
(DFS) for storing and accessing data. HDFS has emerged as the most popular choice due to its scalability.
In this paper we explore how popular NoSQL stores, such as HBase, can provide an HDFS scale-out file
system abstraction. We show how we can design an HDFS compliant filesystem on top a key-value store. We
implement our design as a user-space library (KVFS) providing an HDFS filesystem over an HBase key-value
store. KVFS is designed to run Hadoop style analytics such as MapReduce, Hive, Pig and Mahout over NoSQL
stores without the use of HDFS. We perform a preliminary evaluation of KVFS against a native HDFS setup
using DFSIO with varying number of threads. Our results show that the approach of providing a filesystem
API over a key-value store is a promising direction: Read and write throughput of KVFS and HDFS, for big
and small datasets, is identical. Both HDFS and KVFS throughput is limited by the network for small datasets
and from the device I/O for bigger datasets.

1 INTRODUCTION

Over the last few years data has been growing at an
unprecedented pace. The need to process this data
has led to new types of data processing frameworks,
such as the Hadoop (White, 2012) and Spark (Zaharia
et al., 2010). In these data processing frameworks
data storage and access plays a central role. To access
data, these systems employ a distributed filesystem,
usually HDFS, to allow scaling out to large numbers
of data nodes and storage devices while supporting a
shared name space.

Although HDFS stores and serves data, it is de-
signed to serve read-mostly workloads that issue large
I/O requests. Therefore, applications that require data
lookups, use a NoSQL store over HDFS, to sort and
access data items. Figure 1 shows the typical layering
of a NoSQL store over HDFS in analytics stacks.

With recent advances in analytic frameworks,
there has been a lot of effort in designing efficient

1Also with Department of Computer Science, VU Univer-
sity Amsterdam, Netherlands.

2Also with the Department of Computer Science, Univer-
sity of Crete, Greece.

key-value and NoSQL stores. NoSQL stores typically
offer a table-based abstraction over data and support a
few simple operations: get, put, scan and delete over
a namespace of keys used to index data. Key-value
stores, offer similar operations, without however, the
table-based abstraction.

Our observation is that the get/put API offered by
NoSQL and key-value stores can be used to offer gen-
eral access to storage. In particular, with the emer-
gence of efficient key-value stores, there is potential
to use the key-value store as the lowest layer in the
data access path and to provide file-system abstrac-
tion over the key-value store.

There are two advantages to such an approach.
First, for cases where a key-value store runs directly
on top of the storage devices (Kinetic, 2016) with-
out the need for a local or distributed filesystem, there
is opportunity to reduce overheads during analytics
processing. With increasing data volumes, process-
ing overheads are an important concern for modern
infrastructures. Second, there is potential to offer dif-
ferent storage abstractions such as file, object-based,
or record-based storage over the same pool of stor-
age. The key-value store can function essentially as
a general purpose mechanism for metadata manage-

360
Pavlidakis, E., Mavridis, S., Saloustros, G. and Bilas, A.
KVFS: An HDFS Library over NoSQL Databases.
In Proceedings of the 6th International Conference on Cloud Computing and Services Science (CLOSER 2016) - Volume 1, pages 360-367
ISBN: 978-989-758-182-3
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



ment for all of these abstractions and layers.
In this paper we explore this direction by design-

ing an HDFS abstraction, KVFS, over a NoSQL store.
We implement KVFS as a client-side, user-space li-
brary that fully replaces the HDFS client and run un-
modified programs that require HDFS, such as Map-
Reduce. Although KVFS is able to run over any
NoSQL store, in our work and initial experiments, we
choose HBase because it is widely deployed.

We first discuss the design and implementation of
the operations supported by KVFS and how these are
mapped to the underlying NoSQL abstraction. We
then perform some preliminary experiments with DF-
SIO in a small setup to examine the basic overheads
of our approach and to contrast KVFS with a native
HDFS deployment.

Both KVFS and HDFS achieve almost the same
read and write throughput, about 900 MBytes/s, for
small files. For large datasets KVFS has about 20%
lower throughputs for reads and about 11% higher
throughput for writes, compared to HDFS. Essen-
tially, both systems should be able to achieve the same
throughput, given that they operate with large I/O op-
erations.

The rest of this paper is organized as follows. Sec-
tion 2 presents background for HBase and HDFS.
Section 3 discusses our design and implementation of
KVFS. Section 4 displays our preliminary evaluation.
Section 5 presents related work. Finally, Section 6
concludes the paper.

2 BACKGROUND

2.1 HDFS

Hadoop Distributed File System (HDFS) (Borthakur,
2008) is a scale-out distributed filesystem, inspired by
Google File System (Ghemawat et al., 2003). HDFS
offers simpler semantics than traditional filesystems
in two ways: HDFS supports only large blocks, there-
fore all file metadata fit in memory and it supports
only append-to-file operations by a single writer re-
ducing the need for synchronization. In addition, its
scale-out properties and robustness makes it a good
fit for map-reduce style workloads, offered by frame-
works such as Spark and Map-Reduce.

HDFS uses centralized metadata service named
Namenode. Namenode is responsible for keeping the
catalogue of the filesystem consisting of files and di-
rectories. Files are split in fixed-size blocks (typically
64-MBytes). Blocks are replicated, usually between
2-6 replicas per block, and are distributed to datan-
ode. The large block size used by HDFS implies that

file metadata fit in memory and that updates to meta-
data are infrequent. Metadata are synchronously writ-
ten to persistent storage and are cached in memory. If
Namenode crashes a secondary Namenode takes over
by reading the persistent metadata.

2.2 HBase

HBase (George, 2015) is a prominent NoSQL store,
inspired from Google Big Table (Chang et al., 2008).
It offers a CRUD (Create, Read, Update, Delete) API
and supports range queries over large amounts of data
in a scale-out manner.

HBase supports a lightweight schema for semi-
structured data. It consists of a set of associative ar-
rays, named tables. Taqbles comprise of:

• Row: Each table comprises of a set of rows. Each
row is identified through a unique row key.

• Column family: The data in a row are grouped by
column family. Column families also impact the
physical arrangement of data stored in HBase.

• Column qualifier: Data within a column family is
addressed via its column qualifier. Column quali-
fiers are added dynamically in a row and different
rows can have different sets of column qualifiers.

The basic quantum of information in HBase is a cell
addressed by row key, column family and column
qualifier. Each cell is associated with a timestamp.
In this way HBase is able to keep different versions
of HBase cells.

Figure 1 shows the overall architecture of HBase.
HBase consists of a master node named HMaster, re-
sponsible for keeping the catalogue of the database
and also managing Region servers. Region servers
are responsible for horizontal partitions of each table
called regions. Each region contains a row-key range
of a table. Clients initially contact HMaster, which
directs them to the appropriate Region server(s) cur-
rently hosting the targeted region(s). HBase uses the
Apache Zookeeper (Hunt et al., 2010) coordination
service for maintaining various configuration proper-
ties of the system.

HBase uses a log structured storage organization
with the LSM-trees (O’Neil et al., 1996) indexing
scheme at its core, a good fit for the HDFS append-
only file system (Shvachko et al., 2010) it operates on.
Records inserted in an LSM-Tree are first pushed into
a memory buffer; when that buffer exceeds a certain
size, it is sorted and flushed to a disk segment in a
log fashion, named HFile. Read or range queries ex-
amine the memory buffer and then the set of HFiles
of the region. For improving indexing performance,
the number of HFiles for a region can be reduced

KVFS: An HDFS Library over NoSQL Databases

361



Figure 1: HBase over HDFS architecture (George, 2015).

by periodic merging of HFiles into fewer and larger
HFiles through a process called compaction (similar
to a merge sort). As the data set grows, HBase scales
by splitting regions dynamically and eventually mov-
ing regions between region servers through move op-
erations. For durability, HBase keeps a write-ahead-
log (WAL) in each region server. A WAL is an HDFS
file to which all mutations are appended.

3 SYSTEM DESIGN AND
IMPLEMENTATION

We modify the existing Hadoop stack as seen in 2(a).
We replace HDFS with a shared block device and
place KVFS above HBase. This results in the stack
shown in 2(b). KVFS exposes to applications a hierar-
chical namespace consisting of files and folders which
are stored persistently. File operations supported in
KVFS are the same as in HDFS; append only writes
and byte range reads in random offset within a file. In
the rest of this section first we explain how the hier-
archical namespace of KVFS is mapped and stored in
HBase. Subsequently we provide information about
the basic file operations.

HBase runs on a global file namespace provided
by a distributed filesystem, typically HDFS. Essen-
tially, HDFS provides the ability to HBase to access
any file from any node, it offers data replication, and
space management (via the filesystem allocator and
the file abstraction).

Running HBase on top of a shared block device

requires small modifications: Each HTable in HBase
is decomposed in regions. Each region can be allo-
cated on a portion of the shared block device, such
as the ones provides by a virtual storage area network
(vSAN). Similar to HDFS files, such portions of the
address space are visible to all nodes for load balanc-
ing and fail-over purposes. The information about
which region maps to which address portion and
which server is responsible for a particular address
space is stored as metadata in Apache ZooKeeper,
similar to the original HBase.

Additionally, shared block devices can and usu-
ally are replicated for reliability purposes. This pro-
vides the same level of protection as HDFS, with ad-
ditional options to use different form of replication
or encoding. Finally, shared block devices offered
by modern storage systems are typically thin provi-
sioned, which allows them to grow on demand, based
on available space, similar to individual files. There-
fore, regions that map to device portions can grow
independently, without the need to statically reserve
space upfront.

KVFS maps files and directories into HBase’s row-
column schema. We generate row keys for files
and directories by hashing the absolute file path (e.g.
hash(”/folder/file”)). This eliminates any chance of
collision for files with the same names residing in dif-
ferent folders (e.g. ”/test1/file” and ”/test2/file”). As
shown in Table 1, every HTable row contains all meta-
data of a single file or directory. Every row contains
Column Qualifiers (CQ), where every CQ contains
metadata relevant to a specific file or folder. All rows
in an HTable contain CQs that are typical file meta-

DataDiversityConvergence 2016 - Workshop on Towards Convergence of Big Data, SQL, NoSQL, NewSQL, Data streaming/CEP, OLTP
and OLAP

362



Table 1: Mapping of files and directories to HBase in KVFS.

Rowkey Column Family name

Type Permissions Block
size Length Timestamp Seed hash

(”Dir1”)
hash

(”Dir1/foo2”)
hash

(”Dir1/foo2#0”)
hash

(”Dir1/foo2#1”)

hash(Dir1) D Read - Write NOT
Exist Exist NOT

Exist
NOT
Exist

hash(Dir1/foo2) F Read - Write NOT
Exist

NOT
Exist Exist Exist

(a) HBase over HDFS. (b) KVFS over HBase
Figure 2: Hadoop architectures.

data such as permissions,file block size, and file size.
We also have a seed and timestamp CQ, both of which
are used for our namespace manipulation operations,
explained later in this section.

We create a new file/folder by initially calculating
the new file row key. Using the key we create a new
row and initialize it with the metadata provided by
the user and set the timestamp with the current time.
We also set the seed CQ with the result of the hashed
concatenation of (filename,timestamp). On successful
creation of the new row, we update the parent folder.
We add a new empty CQ using the hash of the new file
as the qualifier key. This bottom-up order of names-
pace mutations ensures namespace consistency in the
presence of failures. Delete operations work in re-
verse order, first removing the child CQ and then re-
moving the child row. For both operations, the worst
case scenario is having a ’zombie’ row which could
be later garbage collected by the system. Finally us-
ing CQs for the files metadata ensures good locality.

Locating a file or folder is accomplished by re-
cursively traversing the respective rows of each folder
hierarchy (e.g. for ”/file/test”, ”/file” then ”/file/test”).
Although we could simply access directly the file in
question we traverse the path ensuring consistent view
of the namespace. Clients send in parallel a window
of size N requests which can hit different servers.
Continuing, clients traverse the full path in a top-
down approach. If a failure is detected we correct this
by checking the existence of the row of the next level
and updating the parent node.

Another major concern for filesystems besides
namespace management is data allocation and place-
ment. In KVFS, files are mapped into configurable
size blocks, typically of size 64MB. Blocks are repre-
sented as rows dedicated to storing file contents able

Figure 3: Splitting files to blocks and segments for write
operations.

to grow up to block size. During file growth with
append operations, client keep track of the file size.
Since file data are split into fixed size blocks clients
can calculate the next block row key in the follow-
ing way. The key is calculated by hashing the seed
value of the files and the block offset (e.g. for the
first block of ”/file”,hash(”/file#0”)). After allocat-
ing the block we update the file by updating the file
size, ensuring correctness in the presence of a failure.
Since block row keys are calculated in a determinis-
tic way we don’t need to keep explicitly the blocks
into file metadata reducing its size. Seed is used for
being able to track file blocks after file rename opera-
tions. When a file is renamed, we create a new entry
in the namespace discarding the old one. If however
we were based solely on file name to produce deter-
ministic the row keys this would impose rename of the
block keys. With the use of seed, we create a unique
id on file creation which can be used even after re-
name operations to locate the blocks of the file.

Similar to the dir/file lookup, we could locate a
given block directly. In order to ensure consistency
with failures, we must first check the file size to en-
sure the requested block resides inside the file size.
We then get the requested block from HBase. If we
successfully find the requested block although the file
size did not ’contain’ it then a failure occurred. We
recover by adding the missing CQ and updating the
file size CQ.

HDFS supports variable sized reads at random
offsets which results in a random read operation at
a block. HDFS datanodes, serve this request effi-
ciently, by using the metadata of the local filesystem.
In particular, blocks which are mapped in local files
by HDFS Datanode use directly the local FS ability
to read from a random offset in that file. However,
HBase API, where KVFS is built upon does not pro-
vide this capability in its API. As we presented above,

KVFS: An HDFS Library over NoSQL Databases

363



each block in KVFS maps to row where its value is of
size typically 64MB. This is good fit for 64MB reads
but imposes significant overhead for small reads. For
example, in order for a client to read 64KB from a
block, this would impose the region server to send
to the client 64MB to pick the corresponding 64KB.
To this end we enrich our blocks with CQs metadata
named segments, as shown in Figure 3. Each block
row consists of a set of segments. Each segment ad-
dress a configurable size data typically 64KB. With
this addition, small reads are served by requesting
from the block row only the appropriate segments and
then by adding to the request the corresponding seg-
ments. The drawback from this approach is that we
amplify the metadata but we should optimize this in a
later version.

KVFS supports single writer append only writes
as original HDFS. For exclusive write access to a file
HDFS uses Namenode as the central lock manager.
Namenode grants a lease to the client which ensures
exclusive write access. Since Namenode is absent
in KVFS we redesign the distributed locking mech-
anism with the use of Zookeeper (Hunt et al., 2010).
Zookeeper is a scalable and fault tolerant coordination
service which is already part of the HBase stack. It ex-
poses a filesystem like API for implementing a variety
of distributed synchronization protocols. It achieve
this by using callbacks to clients. In our design, each
time a client wants to be granted write access to a
file, it tries to create a Zookeeper node (znode) using
hash(filename) as the znode id. If the znode exists, it
means that some other client is already writing to the
file. If this is the case, client will request for a call-
back when the znode is deleted. In the opposite case,
the client will start appending to the file and at the end
it will remove the znode.

MapReduce and other applications tend to pro-
duce small write appends (Kambatla and Chen, 2014).
For this reason, we use a write buffer to merge multi-
ple small writes into a 64-KByte segment. We batch
multiple segments and send them to the region server
for network efficiency. In the current version of the
prototype, we have tuned the size of the write buffer
and the batching factor over the network, thus we are
able to overlap computation with network communi-
cation.

4 PRELIMINARY EVALUATION

4.1 Experimental Setup

Even though KVFS is in an early prototype stage,
it is able to run unmodified map-reduce workloads.

DFSIO is a read/write benchmark for HDFS. DF-
SIO measures an HDFS cluster total read and write
throughput, simulating IO patterns found in MapRe-
duce workloads. We conduct two experiments, one
for reads and one for writes. Both experiments are
performed for datasets of 8-GBytes and 96-GBytes
respectively with default block size of DFSIO set
to 32-MByte. Dataset of 8-GBytes fits in memory
whereas the 96-GBytes dataset is IO intensive as it no
longer fit in the buffer cache. In the first case we satu-
rate the network and in the second we saturate the de-
vice. Moreover the number of mappers, are from 1 till
8 for both datasets. The dataset is split equally across
mappers. The number of concurrent tasks is defined
for both read and write operations and equals to the
number of mappers. The sever uses 4 Intel X25-E
SSDs (48-GBytes) in RAID-0 using md Linux driver.
Table 2 presents the configuration of the servers we
use.

Table 2: Hardware configuration of evaluation setup.

CPU Xeon(R) CPU E5520
Memory 48-GBytes
NIC 10GBit Myricom NIC
Hard Disk WD Blue 160-GBytes
OS CentOS 6.3
HBase version 0.98
HDFS version 2.7.1

4.2 Results

Figures 4 and 5, show our results for writes/reads
with datasets of 8-GBytes and 96-GBytes respec-
tively. DFSIO reports throughput per mapper. We
plot the aggregate throughput of all mappers.

Writes: Write throughput of KVFS and HDFS for
both 8-GBytes and 96-GBytes datasets is almost
equal. Figure 4(a) shows that for the 8-GBytes
dataset, KVFS achieves 908-MBytes/s and HDFS
achieves 938-MBytes/s maximum write throughput.
For 96-GBytes dataset, KVFS achieves maximum
throughput 460-MBytes/s and HDFS 410-MBytes/s.

In more detail, Figures 4(a) and 5(a) show that the
write throughput of HDFS and KVFS is almost equal,
when the number of mappers is 8. For the dataset
of 8-GBytes, when the number of mappers ranges
from 1 to 4, KVFS’s write throughput is 25.4% higher
than HDFS’s. For the dataset of 96-GBytes, when the
number of mappers is 1 KVFS’s write throughput is
2.5 times the throughput of HDFS. Whereas, as we
increase the number of mappers write throughput of
both HDFS and KVFS becomes almost identical.

DataDiversityConvergence 2016 - Workshop on Towards Convergence of Big Data, SQL, NoSQL, NewSQL, Data streaming/CEP, OLTP
and OLAP

364



Reads: We note that KVFS’s throughput exceeds
HDFS’s throughput when the number of mappers
is small. From Figure 4(b) we observe that when
the number of mappers range from 1 to 4, KVFS’s
read throughput is almost 2 times the throughput of
HDFS. This improvement is due to KVFSs use of
asynchronous I/O using zeromq(Hintjens, 2013) for
data requests. As the number of mappers increases,
HDFS’s and KVFS’s throughput become almost equal
as the benefits of asynchronous I/O diminish. The
maximum throughput achieved by KVFS, for the 8-
GBytes dataset, is 1170-MBytes/s and for HDFS is
1200-MBytes/s. For the 96-GBytes datasets the max-
imum throughput for KVFS is 390-MBytes/s, whereas
for HDFS is 490-MBytes/s with 4 mappers respec-
tively. These difference in performance between are
due to the fact that HDFS has a more efficient cache
policy. In future versions we are planning to improve
the caching policy and we believe that, after tuning,
KVFS could outperform the native HDFS setup.

Our results for both read and write comply with
the throughput of the SSDs for the big dataset (96-
GBytes) and with the network speed for the small the
dataset (8-GBytes). In both cases we almost achieve
the maximum throughput.

5 RELATED WORK

Similar to our approach, the Cassandra File System
(CFS) runs on top of Cassandra (Lakshman and Ma-
lik, 2010). CFS aims to offer a file abstraction over
the Cassandra key-value store as an alternative to
HDFS. Cassandra does not require HDFS but runs
over a local filesystem. Therefore in a Cassandra in-
stallation there is no global file-based abstraction over
the data. Our motivation differs, in that we are inter-
ested to explore the use of key-value stores as the low-
est layer in the storage stack. Although we are cur-
rently using HBase, our goal is to eventually replace
HBase with a key-value store that runs directly on top
of the storage devices, without the use of a local or
a distributed filesystem. This motivation is similar to
the Kinetic approach (Kinetic, 2016), which however,
aims at providing a key-value API at the device level
and then build the rest of the storage stack on top of
this abstraction.

The last few years there has been a lot of work
on both DFSs (Depardon et al., 2013; Thanh et al.,
2008) and NoSQL stores (Abramova et al., 2014;
Klein et al., 2015) from different originating points of
view. Next, we briefly discuss related work in DFSs
and NoSQL stores.

DFSs have been an active area over many years
due to their importance for scalable data access. Tra-
ditionally, DFSs have strived to scale with the number
of nodes and storage devices, and to eliminate syn-
chronization, network, and device overheads, with-
out compromising the richness of semantics (ideally
offering a POSIX compliant abstraction). Several
DFSs are available and in use today, including Lus-
tre, BeeGFS, OrangeFS, GPFS, GlusterFS, and sev-
eral other commercial and proprietary systems. Pro-
viding a scalable file abstraction while maintaining
traditional semantics and generality has proven to be
a difficult problem. As an alternative, object stores,
such as Ceph (Weil et al., 2006), draw a different bal-
ance between semantics and scalability.

With recent advances in data processing, the addi-
tional interesting and important realization has been
that in several domains it suffices to offer simpler
APIs and to design systems for restricted operating
points. For instance, HDFS uses very large blocks
(e.g. 64 MBytes) which simplifies dramatically meta-
data management. In addition, it does not allow up-
dates, which simplifies synchronization and recovery.
Finally, it does not achieve parallelism for a single
file, since each large chunk is stored in a single node,
simplifying data distribution and recovery. Given
these design decisions, HDFS and similar DFSs are
efficient for read-mostly, sequential workloads, with
large requests.

NoSQL stores have been used to fill in the need
for fine-grain lookups and the ability to scan data in
a sorted manner. NoSQL stores can be categorized in
four groups: key-value DBs (Level DB, Rocks DB,
Silo), document DBs (Mongo DB), column family
stores (HBase, Cassandra), and graph DBs (Neo4j,
Sparksee).

Such, data-oriented (rather than device-oriented)
approaches to storage and access bare a lot of merit
because they draw yet a different balance between se-
mantics and scalability. Until to date these approaches
have become popular in data processing frameworks,
however, they have little application in more general
purpose storage.

We foresee, that as our understanding of key-value
stores and their requirements and efficiency improves,
they will play an important role in the general-purpose
storage stack, beyond data processing frameworks.

6 CONCLUSIONS

In this paper we explore how to provide an HDFS ab-
straction over NoSQL stores. We map the file abstrac-
tion of HDFS to a table-based schema provided by

KVFS: An HDFS Library over NoSQL Databases

365



0

200

400

600

800

1000

1200

1400

1 2 4 8

Th
ro

u
gh

p
u

t 
(M

B
yt

es
/s

ec
)

Number of mappers

KVFS HDFS

(a) Write

0

200

400

600

800

1000

1200

1400

1 2 4 8

Th
ro

u
gh

p
u

t 
(M

B
yt

es
/s

ec
)

Number of mappers

KVFS HDFS

(b) Read
Figure 4: Write and read throughput for 8-GBytes dataset with increasing number of mappers.

0

200

400

600

800

1000

1200

1400

1 2 4 8

Th
ro

u
gh

p
u

t 
(M

B
yt

es
/s

ec
)

Number of mappers

KVFS HDFS

(a) Write

0

200

400

600

800

1.000

1.200

1.400

1 2 4 8

Th
ro

u
gh

p
u

t 
(M

B
yt

es
/s

ec
)

Number of mappers

KVFS HDFS

(b) Read
Figure 5: Write and read throughput for 96-GBytes dataset with increasing number of mappers.

NoSQL stores. Our approach combines the versatility
of the key-value API with the simpler (compared to
traditional DFS) semantics of HDFS. We implement
a prototype, KVFS, which runs on top of HBase, a
popular and widely deployed NoSQL store, supports
the full HDFS API and is able to run unmodified data
analytics applications, such MapReduce tasks. KVFS
runs as a library that replaces entirely the HDFS client
library.

We perform preliminary experiments to contrast
the performance of our approach to a native HDFS
deployment. We find that KVFS’s maximum through-
put of reads is 390-MBytes/s and 1100-MBytes/s, for
big and small datasets, respectively. These through-
puts are slightly smaller than the ones achieved by
HDFS. For writes KVFS’s maximum throughput is
460-MBytes/s and 910-Mbytes/s, for big and small
datasets, respectively. KVFS’s write throughput for
small datasets is very close to HDFS’s throughput,
whereas for big datasets it exceeds it.

Overall, our approach shows that the key-value
abstraction is a powerful construct and can be used
as the lowest layer in the storage stack as a basis for
building all other storage abstractions (blocks, files,
objects, key-value pairs). We believe that this direc-
tion is worth further exploration and that it can lead
to more efficient, scale-out data storage and access in
modern data centers and infrastructures.

REFERENCES

Abramova, V., Bernardino, J., and Furtado, P. (2014). Ex-
perimental evaluation of nosql databases. In Inter-
national Journal of Database Management Systems,
pages 01–16.

Borthakur, D. (2008). Hdfs architecture guide. HADOOP
APACHE PROJECT http://hadoop. apache.
org/common/docs/current/hdfs design. pdf.

Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wallach,
D. A., Burrows, M., Chandra, T., Fikes, A., and Gru-
ber, R. E. (2008). Bigtable: A distributed storage sys-
tem for structured data. ACM Transactions on Com-
puter Systems (TOCS), 26(2):4.

Depardon, B., Mahec, G., and Seguin, C. (2013). Analy-
sis of six distributed file systems. In HAL Technical
Report.

George, L. (2015). HBase: The Definition Guide. O’Reilly
Media.

Ghemawat, S., Gobioff, H., and Leung, S.-T. (2003). The
google file system. ACM SIGOPS Operating Systems
Review - SOSP ’03, 37(5):29–43.

Hintjens, P. (2013). ZeroMQ: Messaging for Many Appli-
cations. ” O’Reilly Media, Inc.”.

Hunt, P., Konar, M., Junqueira, F. P., and Reed, B. (2010).
Zookeeper: Wait-free coordination for internet-scale
systems. In Proceedings of the 2010 USENIX Con-
ference on USENIX Annual Technical Conference,
USENIXATC’10, pages 11–11, Berkeley, CA, USA.
USENIX Association.

Kambatla, K. and Chen, Y. (2014). The truth about mapre-
duce performance on ssds. In Proc. USENIX LISA.

DataDiversityConvergence 2016 - Workshop on Towards Convergence of Big Data, SQL, NoSQL, NewSQL, Data streaming/CEP, OLTP
and OLAP

366



Kinetic (2016). Open storage kinetic project. http://www.
openkinetic.org/. Accessed: January 2016.

Klein, J., Gorton, I., Ernst, N., Donohoe, P., Pham, K., and
Matser, C. (2015). Performance evaluation of nosql
databases: A case study. In Proceedings of the 1st
Workshop on Performance Analysis of Big Data Sys-
tems, PABS ’15, pages 5–10, New York, NY, USA.
ACM.

Lakshman, A. and Malik, P. (2010). Cassandra: A de-
centralized structured storage system. SIGOPS Oper.
Syst. Rev., 44(2):35–40.

O’Neil, P., Cheng, E., Gawlick, D., and O’Neil, E. (1996).
The log-structured merge-tree (lsm-tree). Acta Inf.,
33(4):351–385.

Shvachko, K., Kuang, H., Radia, S., and Chansler, R.
(2010). The hadoop distributed file system. In
Mass Storage Systems and Technologies (MSST),
2010 IEEE 26th Symposium on, pages 1–10.

Thanh, T., Mohan, S., Choi, E., Kim, S., and Kim, P.
(2008). A taxonomy and survey on distributed file
systems. In Networked Computing and Advanced In-
formation Management, 2008. NCM’08. Fourth Inter-
national Conference on, volume 1, pages 144–149.

Weil, S. A., Brandt, S. A., Miller, E. L., Long, D. D. E.,
and Maltzahn, C. (2006). Ceph: A scalable, high-
performance distributed file system. In Proceedings
of the 7th USENIX Symposium on Operating Systems
Design and Implementation - Volume 7, OSDI ’06,
pages 22–22, Berkeley, CA, USA. USENIX Associ-
ation.

White, T. (2012). Hadoop: The definitive guide. ” O’Reilly
Media, Inc.”.

Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S.,
and Stoica, I. (2010). Spark: Cluster computing with
working sets. HotCloud, 10:10–10.

KVFS: An HDFS Library over NoSQL Databases

367


