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Abstract: The model-based engineering technique Reactive Blocks supports the development of reactive systems by
UML-based graphic modeling of control and data flows, model checker supported analysis, and automated
code generation. Moreover, it facilitates the cooperation of teams of engineers by enabling the definition of
formally precise behavioral interfaces that make the separation of the modelling process into various work
packages easy. In this paper, we illustrate the use of Reactive Blocks for a joint student project that realized
the monitoring and control of Lego Mindstorms-based trains in Norway through a control center in Australia.
In particular, we explain how the Reactive Blocks interfaces and the applied communication protocols were
used to split the project into work packages separately handled by the students involved.

1 INTRODUCTION

Development, operation and maintenance of larger
software systems is often done using teams of soft-
ware engineers often working in distant places. Dif-
ferent companies may develop, deploy, maintain or
operate different components of a system. Capabil-
ities may be distributed over several locations, such
as off-shore service centres and operations in other
places. This is, e.g., the case in oil, gas and mining.
In this paper, we regard transport systems which are
spatially distributed. Trains and track controllers are
inherently geographically separated from each other.

Well-defined responsibilities as well as clear in-
terfaces between tasks help the work organisation and
the documentation of system components for mainte-
nance. The benefit may be increased by using mod-
elling and formal techniques (Lee, 2008). For in-
stance, with respect to software development in the
transportation domain, we can distinguish two levels
in which formal specifications can assist the collabo-
ration of various stakeholders. On the software com-
ponent specification level, formal specifications assist
the engineering teams in developing, deploying and
maintaining different software components. Often the
teams need only limited coordination and can there-
fore be geographically distributed. In contrast, on the
operation model level, the operation of trains may be
formally modeled which assists us in conducting the

control of a railway system in practice. Both levels
have some interdependencies. For example, protocols
may be derived from software component interfaces
that influence the operation model level.

In this paper, we concentrate on the software com-
ponent specification level and investigate the use of
the model-based technique Reactive Blocks for coop-
eration of engineering teams. We illustrate the ap-
proach with the development of a distributed system
that enables the remote monitoring and control of a
Lego Mindstorms-based train system (Hordvik et al.,
2016) residing in Trondheim through the visualiza-
tion infrastructure VxLab (Blech et al., 2014) in Mel-
bourne.

Below, we will discuss related work followed by
an introduction to Reactive Blocks in Sec. 3 and a dis-
cussion in Sec. 4 how this technique can be used to
coordinate different teams of engineers. Thereafter,
we describe our train demonstrator in Sec. 5 and ex-
plain the ways, the involved students coordinated in
Sec. 6. We complete the paper by a short discussion
about future work.

2 RELATED WORK

Tool support for the collaboration of different stake-
holders has been studied for various engineering do-
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Figure 1: Building block TrainMonitoringModule.

Figure 2: ESM of building block TrainMonitoringModule.

mains. Early examples comprise tool support for doc-
ument sharing, e.g., (Toye et al., 1994) and work
on collaborative software development environments,
e.g., (Booch and Brown, 2003). Another study (Feiler
et al., 2006) lists challenges for the development of
ultra-large-scale systems. The analysis of collabora-
tion patterns using social networks has been studied
in (Cross et al., 2002). Results can be used to suggest
team structures.

On the formal side of our work, methodologies for
specifying components or work entities are of impor-

tance. Overall, we follow a design-by-contract ap-
proach (Meyer, 1992). We are primarily interested
in contracts that specify the behavior of a component
or an interface such as interface automata (De Alfaro
and Henzinger, 2001). The work described in this pa-
per integrates with behavioral types. Behavioral types
have been used for the specification of real-time sys-
tems (Lee and Xiong, 2004). Furthermore, behavioral
types are a formal description method that have been
applied for software components (Blech et al., 2012),
industrial automation systems (Blech et al., 2014) and
cyber-physical systems (Blech and Herrmann, 2015).
The idea is to have descriptions that allow for auto-
matic checks of interactions between entities in very
much the same way as type compatibility and com-
pliance checking works in higher programming lan-
guages.

Furthermore, a connection of the work described
in this paper to the collaborative engineering project
is envisaged (Blech et al., 2015). Collaborative engi-
neering provides means for different stakeholders to
interact with each other focusing on maintenance and
operation of large industrial systems.
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3 REACTIVE BLOCKS

Reactive Blocks (Bitreactive AS, 2016; Kraemer
et al., 2009) is a model-based engineering technique
for reactive systems. It is Java-based and uses UML
activities (Object Management Group, 2011) to spec-
ify control and data flow behavior. To make the ap-
proach scalable, an activity may be enclosed in a so-
called building block. Further, one can represent a
building block as nodes in other activities that are
named call behavior actions in UML terminology.
Thus, one can describe models as hierarchies of build-
ing blocks and their activities.

As an example, Fig. 1 depicts the activity of the
building block TrainMonitoringModule. At its edges,
the activity is provided by parameter nodes that are
sources and sinks of flows, e.g., a parameter node
init through which flows containing objects of the
Java class HashMap may pass. The call behavior ac-
tions of a building block are endued with pins that cor-
respond to the parameter nodes of its activity. For in-
stance, our activity contains a call behavior action of
building block RabbitAMQP that shows all the param-
eter nodes of its activity as pins (e.g., init, ready,
and publish).

The parameter nodes of an activity are used to
model flows from the activity of a building block to
the one enclosing its call behavior action and vice
versa. Our example specifies a flow that is started
somewhere in the environment of building block
TrainMonitoringModule and passes through pin/pa-
rameter node init of this block. Thereafter it con-
tinues in the activity in Fig. 1 and reaches the opera-
tion action init which is a container of a Java method
of the same denominator being carried out when the
flow passes. Afterwards, the flow reaches the pin of
call behavior action RabbitAMQP such that it contin-
ues within the activity of the corresponding building
block.

The building block concept makes it possible to
specify functionality, that recurs in various applica-
tions, only once in one building block and to reuse its
call behavior actions at various places. The Reactive
Blocks tool contains hundreds of building blocks cov-
ering aspects reaching from flow control via commu-
nication protocols and encryption to domain-specific
functions, e.g., for the Internet of Things, see (Bi-
treactive AS, 2016). To alleviate this reuse capabil-
ity, each building block is accompanied by an Exter-
nal State Machine (ESM) (Kraemer and Herrmann,
2009). An ESM is a UML State Machine that mod-
els which pins/parameter nodes may be traversed in
a certain state of the building block. As an example,
we depict the ESM of building block TrainMonitor-

ingModule in Fig. 2. It consists of two states, i.e.,
an initial one showing that the block is not active,
as well as active. By tags on the edges, one de-
scribes which flows may appear in a certain state of
the block and into which state the block changes. For
instance, a flow through parameter node init is only
allowed in the initial state and afterwards the block
will be in state active. Tags within a state desig-
nator1 (e.g., removeTopic /) describe that the corre-
sponding flows may occur in the particular state but
do not change the state. Several flows may enter and
leave a block within a single atomic transition which
is described by a list of parameter node identifiers
(e.g., stop / stopped).

Reactive Blocks is provided by formal seman-
tics (Kraemer and Herrmann, 2010) such that the tool
uses a model checker verifying whether both, the ac-
tivity enclosed in a block and the one using its call
behavior action, indeed, comply with the ESM of the
block. Moreover, the tool contains a code generator
creating automatically executable Java code (Kraemer
et al., 2006; Kraemer and Herrmann, 2007).

4 COORDINATING ENGINEERS
WITH REACTIVE BLOCKS

The building block concept seems ideal to foster co-
operative software engineering carried out by various
teams of software engineers. In particular, it allows to
structure the software architecture into several work
packages. A building block can be used to define
such a work package while its call behavior actions
refer to places in which the results of this work pack-
age are used. The ESM of the building block provides
then a behavioral interface description that facilitates
the coordination between a team carrying out a work
package and one using it.

The project planning corresponds to defining a hi-
erarchy of building blocks that each describes a work
package. In this phase, only an initial frame of a block
is constructed. It does not contain the complete activ-
ity but only the parameter nodes to be used as well as
the ESM. Moreover, the Java classes assigned to the
parameter nodes are established at this stage.

After defining the building block hierarchy, the
block frames are handed over to the various teams
that develop the activities of the blocks and program
the Java methods to which the operation actions of the

1The position of the / symbol describes whether a flow
is triggered in the building block itself (left of the parameter
node name, e.g., / failed) or by its environment (on the
right side, e.g., init /).
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Figure 3: The Lego Mindstorms train layout used.

activity refers. Here, more complex behavior will lead
to the separation of sub-functions in other building
blocks that are also developed by the particular team
or taken from the tool libraries. In addition, call be-
havior actions of blocks referring to other work pack-
ages may be used. When a team completes a building
block, it verifies with the model checker of Reactive
Blocks that their solution fulfills its ESM. Further, the
model checker proves that the ESMs of the blocks re-
ferring to other work packages are preserved as well.

When all work packages are completed, the build-
ing blocks are assembled and the code for the entire
system is generated. It can be used to test that the used
objects conform with each other. Due to the compre-
hensible graphical UML models, these tests are usu-
ally easy.

The coordination of engineers is particularly im-
portant for geographically distributed systems. It
profits from the fact that communication is tradi-
tionally service-oriented, see, e.g., (Tanenbaum and
Wetherall, 2011). That means, distributed applica-
tions access the communication features via a com-
munication service, that defines a set of functions like
connection establishment or data transfer. The func-
tions are provided by communication protocols. The
engineers of different physical components can nego-
tiate suitable communication services and protocols.
They guarantee a correct communication by devel-
oping their applications such that the communication
services are fulfilled.

Traditionally, communication services and proto-
cols are specified formally using established tech-
niques like SDL (ITU-T, 2011). Reactive Blocks is

an alternative to these techniques. The local unit of
a protocol can be realized as a building block while
its ESM forms the corresponding communication ser-
vice. For instance, the building block RabbitAMQP,
used in the activity in Fig. 1, realizes a stack of
the Advanced Message Queueing Protocol (AMQP),
see (AMQP.org, 2016), that is popular in the Internet
of Things domain. By following its ESM and by us-
ing the correct Java objects in the flows through its
pins resp. parameter nodes, the correct usage of the
protocol is guaranteed.

5 A TRAIN DEMONSTRATOR
BASED ON REACTIVE BLOCKS

As mentioned in the introduction, a Lego
Mindstorms-based train system, see (Hordvik
et al., 2016), positioned in Trondheim, Norway,
was connected to the visualization infrastructure
VxLab (Blech et al., 2014) in Melbourne, Australia.
Thus, the trains can be remotely monitored and, with
some limitations, controlled. The work was done by
some master student projects. One project (Svendsen,
2016) covered the development of the autonomous
train control unit while a second one (Svae, 2016)
realized the transfer of sensor data from Trondheim
to Melbourne and the control commands the other
way around. A third task, i.e., the access of the
monitor and control data on the VxLab is still under
progress.

In Fig. 3, we depict the layout of the tracks that
connect five separate stations. The colors refer to
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Figure 4: A Lego train.

Figure 5: The remote AMQP infrastructure.

four Lego EV3 controllers that are used to operate
the switches in the layout. A train includes a motor,
an EV3 controller unit as well as a color sensor that
may detect the color of the sleepers, the train passes
(see Fig. 4). As described in (Svendsen, 2016), the
trains operate autonomously. To guarantee a correct
and safe operation, the EV3 controller of a train has
to communicate with the controllers of the other trains
as well as the ones operating the switches. For that,
the AMQP protocol (AMQP.org, 2016) is used based
on a local server.

To be flexible in defining track layouts, a layout
to be used is modeled with the freeware layout editor
BlueBrick (McKenna and Nanty, 2015). The model
is automatically transformed into an internal map ap-
plied by the train controllers to state the current posi-
tion of a train.

AMQP is also used for the remote monitoring and
control of the trains (Svae, 2016). Besides to the local
server, the EV3 controllers of the trains and switches
keep also a connection to a remote AMQP server
residing on the Australian cloud infrastructure Nec-
tar (Nectar, 2016). Status information like the current
position and speed of a train on a track or the settings
of the switches is sent to the remote AMQP server al-
lowing us to monitor train systems from the VxLab
and other places “in the cloud”. Likewise, control
commands from the VxLab are sent via the remote
server to the train controller and can be directly ex-
ecuted. The used AMQP infrastructure is shown in
Fig. 5.

{
” i d ” : 1 ,

” t imes t amp ” : 1449832076300 ,
” sequenceNumber ” : 334 ,
” e v e n t ” : ”SPEED” ,
” speed ” : 15

}

Figure 6: A JSON communication object example.

6 COLLABORATION BETWEEN
THE STAKEHOLDERS

To coordinate the student projects, the interfaces be-
tween the work packages had to be defined. As dis-
cussed in Sec. 4, building blocks and communication
protocols are suitable formal means to facilitate this
coordination. We used both methods. For the transfer
of monitoring and control data between Trondheim
and Melbourne, the involved students agreed about
the communication protocol and service to be used.
To coordinate the control and remote communication
parts within the EV3 controllers, the affected stake-
holders negotiated a building block interface and the
Java classes used in the control flows via this inter-
face. Both interfaces are described in the following.

6.1 The Remote Control Connection

We discussed in Sec. 5 that the stakeholders agreed
on using the Advanced Message Queueing Protocol
(AMQP) (AMQP.org, 2016) with a remote server run-
ning in the Australian Nectar cloud (Nectar, 2016).
Moreover, it was decided to use the JavaScript Object
Notation (JSON) (ECMA International, 2013) as data
interchange format. In JSON, information units can
be defined as objects of sequences of pairs containing
a name string and a value. Agreement on the exact
JSON object formats for the various train parameters
(e.g., train identifier, position, train length, speed, di-
rection, switch position) as well as for the protocol
control information (e.g., sequence numbers and time
stamps) was reached.

Tests revealed that sending all train parameters in
each communication message consumes much band-
width. Therefore, the students decided to send only
monitoring data that has changed in update messages.
As an example, Fig. 6 lists the JSON object to be
transmitted if a train changed its speed. Its pairs are
the identifier of the train ("id" : 1), a time stamp
and sequence number as protocol control informa-
tion, event information ("event : "SPEED"), and
the measured speed ("speed" : 15). To make the
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Figure 7: Measured round trip time delays between Trondheim and Melbourne.

communication more reliable, the update messages
are accompanied by confirmed synchronization mes-
sages that are sent in certain time intervals. By check-
ing the sequence numbers of the synchronization mes-
sages, one can find out which update messages were
lost and resend the corresponding data. Further, re-
mote control commands for the trains are sent via the
AMQP link.

The handling of the update and synchroniza-
tion messages in the EV3 controllers is realized
by the building block TrainMonitoringModule (see
Fig. 1). For instance, the Java method encapsulated in
the operation handlePropertyChangeAndCreate-
UpdateMessage receives a list of all train parameters
and checks which of them were changed since send-
ing the last update message. For the altered param-
eters, an update message is created and sent via the
communication block RabbitAMQP.

To find out about delays of the AMQP connection,
the students carried out intensive round trip time tests.
Figure 7 refers to a test checking if the round trip de-
lay is fluctuating. For that, ping messages were sent
every other second for 24 hours. As the figure shows,
the delays were very stable between 350 and 360 ms
with only very few fluctuations that never exceeded
880 ms.

6.2 Linking Train Control and
Communication

The building block TrainMonitoringModule depicted
in Fig. 1 defines the interface between the control and
communication software part in the EV3 controllers.
The involved students agreed on the data formats:
The Java hashmap sent via parameter init contains
the information necessary to build up AMQP connec-
tions. The Java class TrainPropertyChange used in
parameter node propertyChange includes the rele-
vant train and switch parameters to be send when up-

dated. Messages received from the remote control are
handed over to the block environment via parameter
node receiveMessage.

Knowing about these formats as well as about the
ESM of block TrainMonitoringModule, it was not dif-
ficult to build its call behavior action into the control
software (Svendsen, 2016). The following issues had
to be solved:

• Maintaining the link to the AMQP server in the
Nectar cloud,

• after the change of at least one train resp. switch
parameter, sending the parameter values in a Java
object of class TrainPropertyChange via pa-
rameter node propertyChange,

• interpreting the JSON objects in messages, re-
ceived via parameter node receiveMessage, and
adjusting the train or switch control accordingly.

After incorporating the call behavior action of block
TrainMonitoringModule and conducting the neces-
sary changes, the model checker of Reactive Blocks
verified that the ESM of this block is satisfied by
the control software embedding it2. Thereafter, Re-
active Blocks automatically generated an executable
Java bundle that can be loaded into the EV3 controller
and carried out there. Finally, some conformance tests
were carried out revealing that the Java objects were
correctly programmed.

7 CONCLUSION AND FUTURE
WORK

We explained the capabilities of Reactive Blocks to
facilitate collaboration for development and mainte-

2Further, the developer of block TrainMonitoringMod-
ule used the model checker to prove that the block fulfills
its own ESM.
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nance of software systems. In particular, we have
been looking at transportation systems that, with re-
spect to their software control, have a cyber-physical
flavour. We demonstrated the capabilities using a re-
mote train monitoring case study.

Future work comprises extensions for formaliz-
ing cyber-physical aspects and components and auto-
matic tools to suggest tasks and supporting informa-
tion for different distributed teams.
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