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Abstract: BPMN (Business Process Model and Notation) models are used to specify business knowledge in the 
language that is familiar for business people. They consist of multiple process diagrams that highlight 
different aspects of interaction among participants. Verification of BPMN models is important since 
graphical fragmentary presentation could be a source of errors such as incompleteness, deadlocks, livelocks, 
incorrect terminations etc. We consider verification of model completeness. The model is transformed to the 
topological functioning model (TFM) in order to check completeness of inputs, outputs and functioning 
cycles of the entire specified system. The proposed approach is dedicated to the verification of the model at 
the beginning of analysis, and it could be supplemented by other methods at the design stage. This approach 
is more dedicated to analysis of the whole system, than to the verification of the concrete fragment work.  

1 INTRODUCTION 

Business Process Model and Notation (BPMN) is a 
standard of a business process graphical notation 
that allows presenting business process steps from 
the start to the end (Object Management Group, 
2015). This has its advantages, namely, a business 
analyst can depict all steps of a business process, 
showing manual and automated steps, dependencies 
among them, data flows, step flows by business 
units etc. However, each process is only a fragment 
of the entire business that may have dozens of such 
processes. The question is how to check the 
correctness of each of them, correctness of 
dependencies among them, and completeness of 
them. 

The verification of business process 
specifications usually uses informal techniques, such 
as workshops, where stakeholders can determine and 
show possible issues in the defined processes 
(Falcioni et al., 2012). However, in some cases 
specifications may be simulated and formally 
verified. Formal verification allows discovering of 
unwanted behavior and situations, however, this 
requires derivation of formal model from informal 
business process specifications (Falcioni et al., 
2012). 

In this research we consider a formal 
mathematical model, the Topological Functioning 

Model (TFM), based on principles of the system 
theory and algebraic topology. It specifies the 
system in a holistic manner, showing its interaction 
with the external systems and inner functionality at 
the high level of abstraction.  

The research objective is to understand 
advantages and limitations of TFM application for 
verification of completeness of BPMN processes. In 
other words, the obtained results should clear what 
aspects the TFM can help to verify unlike other 
formal models such as Petri Nets, YAWL, or 
temporal logic. As other author work showed, 
analysis of the completeness of BPMN models, i.e. 
whether they specify the domain under the discourse 
completely, is not solved enough. 

In order to achieve the research goal, we have 
defined mappings from BPMN model elements to 
the TFM elements and discussed the verification of 
BPMN model completeness, illustrating the process 
on the example. 

The paper is organized as follows. Section 2 
describes related work on BPMN process 
verification. Section 3 describes elements of BPMN 
models and the TFM as well as mappings between 
them in brief. Section 4 illustrates application of the 
TFM for BPMN process verification and states main 
results. Conclusion summarizes advantages and 
limitations of the TFM application based on the 
research results.  
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2 RELATED WORK 

Although verification of BPMN models is not a new 
topic, it is still actual. BPMN model verification is 
based on mappings into other, more formal, 
languages, e.g. into programming languages such as 
Java and Prolog, formal languages such as 
PROMELA, Petri Nets, CSP (Communicating 
Sequential Processes), timed and process automata, 
and into mathematical languages such as temporal 
logic. 

In (Falcioni et al., 2012), authors indicated that a 
usage of formal languages (e.g., Petri Nets or 
Process Algebra) as a target language in mappings 
from BPMN specifications may lead to the loss of 
some concepts and verification from those aspects 
may be impossible. Another side effect of using 
formal languages as a target may be verification of 
unnecessary aspects that are native for those 
languages. In order to deal with such issues, the 
authors suggested using a Java model and an 
unfolding technique based verification approach for 
business processes depicted in the BPMN 2.0 
collaboration diagrams. This approach is 
implemented as an Eclipse plug-in and applied for 
several real scenarios. The authors noted that their 
approach reduces problems of state explosion and 
implementation/respect of synchronization policies 
of the target language. The interesting “side-effect” 
is discovering of the collaboration “anti-patterns”. 

Another interesting approach is a use of Prolog 
language (Ligeza et al., 2012) in order to check the 
correctness of data flows by using declarative 
specification of the BPMN model. 

In (Solaiman et al., 2015) the authors suggested 
automated transformation into PROMELA, the input 
language of the SPIN model checker, in addition 
applying also Linear Temporal Logic for verification 
of correctness properties (in other words, logical 
sequence). PROMELA is also a choice of authors in 
(Yamasathien and Vatanawood, 2014), where 
BPMN models are verified via workflow pattern 
transformations. The SPIN tool is mature enough to 
be used for verification of multi-threaded software 
applications (SPIN, 2015). As the authors noted, 
SPIN can verify safety and liveness properties of 
abstract models. The main issue that the authors 
meant is identification of semantically independent 
common correctness requirements for their 
verification by default, i.e. such principles as 
connectedness, well-threadedness, and coherence. 

Another formal model that is widely used is a 
Petri net. Petri nets (Universität Hamburg, 2015) is a 

formal language for modeling parallel and 
concurrent execution of the system. They can be 
used for verification of compensations and 
transactions in BPMN models (Takemura, 2008), 
time properties when the execution time of web 
services is not known (Huai et al., 2010) and others. 

Authors in (Flavio et al., 2010) proposed 
transforming BPMN models to CSP formal language 
in order to use benefits of CSP verification via 
model checking. In contrast to the previous work, 
they omitted “few constructs dealing with 
transactions, such as compensation events and 
cancel events, or time”. Their main goal is 
measuring quality of services in order to verify the 
efficiency of specified business processes. 

Another formal languages that can be used for 
BPMN model verification are Timed Automata (TA) 
and Process Automata (PA). The author in (Morales, 
2013) suggests transformation to TA-networks in 
order to verify controllability of BPMN models, i.e. 
“correctness against requirements expressed in 
temporal logic”. The author also (as we do) suggests 
grouping all partial behaviors in order to get the 
complete participant’s view. After that, the author 
checks the completeness of those views. This differs 
from our approach since we merge all participant 
behaviors into one model. In their turn, authors in 
(Tantitharanukul et al., 2010) verify deadlocks and 
multiple terminations in BPMN using PA. 

In order to check deadlocks and soundness of 
BPMN models, they could be transformed to YAWL 
(Ye et al., 2008), that is a workflow language with 
formal semantics.  

BPMN models can be transformed into formal 
specifications based on linear temporal logic (LTL) 
and computation tree logic (CTL) that allows 
checking such properties as safety, liveness, fairness, 
invariant properties, and response properties (El 
Hichami et al., 2014), deadlocks, livelocks and 
multiple terminations (Kherbouche et al., 2012). 

Summarizing, most of proposed formal 
techniques are used for verification of such 
important model properties as deadlocks, thread 
correctness, data flows, correct termination etc. The 
completeness of the model in system-theoretical 
viewpoint is attempted to be solved only in 
(Morales, 2013). The difference is that we consider 
the completeness of inputs, outputs and functioning 
cycles instead of completeness form a concrete user 
perspective. 
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3 VERIFICATION OF THE TFM 
TRANSFORMED FROM THE 
BPMN MODEL 

3.1 The TFM in Brief 

The TFM is a formal mathematical model that has 
been proposed at Riga Technical University (RTU), 
Latvia, by Janis Osis in 1969. At that time this 
model has been dedicated for mathematical 
specification of functionality of complex mechanical 
systems (Osis and Asnina, 2011).  

The TFM represents system functionality in a 
holistic manner from a computation independent 
viewpoint (Asnina and Osis, 2011c). It describes the 
functional and structural aspects of the software 
system in the form of a directed graph. The digraph 
vertices depict functional characteristics of the 
system named in human understandable language, 
while edges depict causal relations between them. 
Such specification is more perceived, precise and 
clear then the large textual descriptions.  

A TFM is a topological space (X, Q), where X is 
a set of functional features and Q is a set of 
relationships between elements in X (Osis and 
Asnina, 2011b). The composition of the TFM is 
presented in (Osis and Asnina, 2011). 

A functional feature represents some system’s 
functional characteristic, e.g., a business process, a 
task, an action, or an activity (Osis and Asnina, 
2011a). It can be specified by a unique tuple <A, R, 
O, PrCond, PostCond, Pr, Ex>, where (Osis and 
Asnina, 2011b): 

 A is object’s action,  
 R is a set of results of the object’s action (it is 

an optional element),  
 O is an object that gets the result of the action 

or a set of objects that are used in this action,  
 PrCond is a set of preconditions or atomic 

business rules,  
 PostCond is a set of post-conditions or atomic 

business rules,  
 Pr is a set of feature’ providers, i.e. entities 

(systems or sub-systems) which provide or 
suggest an action with a set of certain objects,  

 Ex is a set of executors (direct performers) of 
the functional feature, i.e. a set of entities 
(systems or sub-systems) which enact a 
concrete action. 

The cause-and-effect relations between 
functional features define the cause from which the 
triggering of the effect depends (Figure 1).  

The formal definition of the cause-and-effect 

relations and their combinations are given in (Asnina 
and Ovčiņņikova, 2015) and are as follows: 

1) Formal definition of a cause-and-effect 
relation: A cause-and-effect relation Ti is a binary 
relationship that relates exactly two functional 
features Xc and Xe. Both Xc and Xe may be the same 
functional feature in case of recursion. Each cause-
and-effect relation is a unique 5-tuple (1). 

Ti = <ID, Xc, Xe, N, S>, where (1)
 ID is a unique identifier of a relation; 
 Xc is a cause functional feature; 
 Xe is an effect functional feature; 
 N is a Boolean value of the necessity of Xc for 

generating Xe (default value is true); 
 S is a Boolean value of the sufficiency of Xc 

for generating Xe (default value is true). 
2) Formal definition of a logical relation: A 

logical relation Li specifies the logical operator 
conjunction (AND), disjunction (OR), or exclusive 
disjunction (XOR) between two or more cause-and-
effect relations Ti. The logical relation denotes 
system execution behavior (e.g., decision making, 
parallel or sequential actions). Each logical relation 
is a unique 3-tuple (2). 

Li = <ID, T, RT>, where (2)
 ID is a unique identifier of a relation; 
 T is a set of cause-and-effect relations 

{Ti, ..., Tn} that participate in this logical 
relation; 

 RT is a logical operator AND, OR, or XOR 
over T; the default values is operator OR. 

The execution of the functional feature instance 
is illustrated in Figure 1. After triggering the 
instance is initiated, then executed and terminated. 
In case of successful execution its termination leads 
to triggering the initiation of the next (effect) 
functional feature instances. In case of failure, the 
triggering will not occur.  

The TFM is characterized by the topological and 
functioning properties (Osis and Asnina, 2011a). 
The topological properties are connectedness, 
neighborhood, closure and continuous mapping. The 
functioning properties are cause-and-effect relations, 
cycle structure, inputs and outputs. 

Rules of composition and derivation processes of 
the TFM from the system description is provided by 
examples and described in detailed in (Asnina, 
2006), (Osis et al., 2007), (Osis et al., 2008) and 
(Osis et al., 2008). Construction of the TFM with 
attention put on continuous mappings between 
problem and solution domain is provided in (Asnina 
and Osis, 2010). The TFM can also be generated 
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automatically from the business use case 
descriptions, which can be specified in the IDM 
toolset (Osis and Slihte, 2010), (Slihte et al., 2011), 
(Slihte and Osis, 2014). It also can be manually 
created in the TFM Editor from the IDM toolset. 

 
Figure 1: The execution of the functional feature instance. 

 
Figure 2: System analysis with the TFM as a start point. 

The UML use case diagram can be obtained from 
the TFM, according to (Osis and Asnina, 2011d), 
(Donins, 2012). According to (Osis and Donins, 
2010), (Donins et al., 2011) the TFM can be 
manually (but according to the precise rules) 
transformed into most used UML diagram types, 
including UML Activity Diagrams and State Chart 
Diagrams. 

The TFM can be used as a formal blueprint of 
the system functioning at the beginning of analysis 
and then transformed to BPMN processes (Asnina, 
2009). Such forward modeling and analysis allows 
formal determination of system boundaries, system 
completeness and causal dependencies between parts 
of functioning (Figure 2). Depending on the analysis 
context, business or system goals are criteria used 
for model decomposition into BPMN processes.  

3.2 BPMN Models in Brief 

Let us look at communications between participants 

defined according to the BPMN 2.0 standard (Object 
Management Group, 2011) as well as at other 
BPMN elements in brief. 

There are three basic types of sub-models within 
a complete BPMN model. The first type is Processes 
(Orchestration) that includes the following sub-
types, namely, private non-executable and private 
executable internal Business Processes as well as 
public Processes. The second type is called 
Choreography. And the third one is Collaborations. 
The last type may include Processes and/or 
Choreographies.  

If we look at them from the viewpoint of defined 
communications between participants, then we can 
conclude the following. Communications within 
BPMN sub-models exist in case of public Processes, 
Choreographies, Collaborations and Conversations. 
They are depicted as message flows (Message Flow) 
or a set of message exchanges (Choreography) 
between Participants (Pools). In case of 
Conversation diagrams, message exchanges are 
shown as Conversations (nodes and links). In other 
words, flow elements are modeled as processes, but 
the interaction between processes is modelled in 
terms of Collaboration and Choreography. 

As mentioned in (Object Management Group, 
2011, pp. 127-128), a Message Flow depicts the 
flow of communications (messages) between two 
Participants. Messages can be sent and received. 
The message can be depicted as a Choreography 
Task in a Choreography. In a particular case of a 
Collaboration diagram, namely, a Conversation 
diagram, a Conversation may be shown as a set of 
Message Flows.  

Summarizing BPMN elements, they are business 
or system actors represented by swim-lines (pools 
and lanes); system activities that define business 
system’ functionality represented by processes, sub-
processes, and tasks; decomposition of system 
processes where processes can be divided to sub-
processes to tasks; system events that initiate 
execution of functionality represented by start, 
intermediate, and end events; connecting elements (a 
sequence flow, message flow, and association) that 
connect to each other such constructs as activities, 
events and gateways; and, finally, gateways that 
determine different decisions (forking, merging, and 
joining of paths). 

3.3 Mappings from BPMN to TFM 

If BPMN models are used as a source of knowledge 
instead of textual descriptions of business/system 
use cases (Figure 3) than verification of the artifacts 
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become harder. Main issues in using BPMN 
diagrams are their fragmentary nature and a large 
number of modelling constructs in comparison with 
simple graphical or structural textual scenarios. The 
TFM as a formal start helps in avoiding these issues 
due to TFM formalism, a minimal number of 
modelling constructs and a holistic representation of 
the domain under discussion (Asnina, 2009). 

 
Figure 3: System Analysis with the BPMN model as a 
start point. 

Constructs of business process models and TFM 
constructs are intended to describe behavior of the 
system at the business process level, and, therefore, 
these constructs can be mapped, if they have the 
equal or similar semantics in the field of business 
process modeling.  

Table 1 illustrates mappings between BPMN and 
TFM elements. In short, tasks, events and data 
objects form TFM functional features. In their turn, 
sequence and message flows (as well as 
conversation and sub-conversation nodes) form 
TFM cause-and-effect relations. And, the last, 
gateways set logical operators on the combination of 
outgoing or incoming cause-and-effect relations. 

Such elements as Text Annotation, Category, 
Message (decoration), ParticipantMultiplicity, 
ParticipantAssociation, Conversation Link, Task 
markers (loop, multi-instance, and compensation), 
Compensation and Data Store have not any 
corresponding notion in the TFM. We should note 
that information of the multi-instance mode, looping 
or canceling of BPMN processes or activities will be 
lost in the result of such transformation. 

Another aspect is that in the TFM information 
about participants is held in the description of 
functional features. Besides that participants may be 
as providers as executors of the functional features. 
By default it is assumed that participants are the 

same as executors, since the other case is rare even 
in BPMN models. 

Such TFM element as a functioning cycle does 
not have direct correspondence with any BPMN 
elements. However, the cycle should be determined 
after gluing all transformed BPMN diagrams.  

The only BPMN diagram which transformation 
may lead to the natural appearance of the 
functioning cycles is the Conversation Diagram. 
Transformation of other diagrams requires 
understanding of the sequence and dependency 
between each pair of them. 

Summarizing, transformation from the BPMN to 
the TFM raises the level of abstraction and allows 
specifying processes holistically, thus, allowing 
verification of completeness of process descriptions 
from the functional point of view (that will be 
discussed in the next sub-section). 

3.4 Verification of the Obtained TFM 

The verification of the obtained TFM consists of two 
parts. The first one is structural verification, and the 
second one is functional verification. 

As mentioned in Section 3.1, the structurally 
valid TFM must satisfy four topological and four 
functioning properties, i.e. it is structurally valid if: 

 Has no isolated vertices,  
 Preserves continuous mapping among different 

levels of abstraction,  
 Has functioning cycles,  
 Has inputs and outputs, 
 Has mathematically proved boarders, i.e. 

contains only system’s functional features for 
inner functioning and interaction with the 
external systems. 

The TFM is functionally valid if:  
 All cause-and-effect relations or their 

combinations are necessary and sufficient in 
order to trigger subsequent functional features. 

 Functioning cycles contain all the necessary 
functional aspects in the order that is required 
by the domain logic.  

 Both sets of inputs and outputs are complete.  
Any incompliance with the mentioned 

characteristics means that the BPMN model is not 
complete or specifies the functional business logic 
incorrectly. The incorrectness could be expressed as 
absence of inputs or outputs as well as incorrect 
cycles and paths in the obtained digraph. 
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Table 1: Mappings between BPMN and TFM elements. 

BPMN element TFM element 
Association A fact that Flow Object belongs to the artifact 
Group (visualization) A group (visualization) 
Text Annotation none 
Category none 
Message (decoration) none 
Sequence Flow A cause-effect relation between functional features with the same executor 
Collaboration, 
Conversation (diagram) 

A part of the topological space where executors of functional features are 
different 

Pool (Participant), PartnerEntity, 
PartnerRole 

An executor (or a provider) of the functional feature 

ParticipantMultiplicity none 
ParticipantAssociation none 
Message Flow, 
Conversation (node), 
Sub-conversation (node) 

A cause-and-effect relation between functional features with different 
executors; conversation nodes must be expanded 

Conversation Link none 
Process (within pools), Sub-Process A part of the topological space where the same executor is set for all 

functional features; process resources are functional features executors. 
Lane (sub-partition within a Process) A part of the topological space where functional features are logically joined 

in some set according to some purpose 
Choreographies (between pools) A part of the topological space; however, information of the sender and 

recipient is split among functional features  
Activity (atomic) or Task An action with the object/result of the functional feature; a resource of the 

activity is an executor of the functional feature (or a provider) 
Task marker (loop, multi-instance, 
compensation) 

none 

Service Task, User Task, Manual Task, 
Business Rule Task, Script Task 

An action with the object/result of the functional feature 

Send Task A cause functional feature in the cause-effect relation where functional 
features with different executors take part 

Receive Task An effect functional feature in the cause-effect relation where functional 
features with different executors take part 

Activity (non-atomic) A set of functional features 
Performer An executor of the functional feature 
Start Event An indicator of initialization of the input/cause functional feature; timer, 

conditional and signal start events contain preconditions for triggering the 
functional feature 

End Event An indicator of finishing the output/effect functional feature; the end event 
may contain the post-condition of the functional feature 

Middle Event An indicator of triggering the functional feature; in case of catching events it 
may indicate the input functional feature or the precondition of the triggered 
functional feature; link events indicate the cause (source) and the effect 
(target) functional features in the cause-effect relations 

Gateway;  
Event-Based Gateway 

A decision node that is expressed as logical operators in combination of 
cause-and-effect relations; exclusive gateways are equal to operator XOR; 
inclusive gateways are equal to OR; parallel gateways are equal to AND; 
complex gateways are equal to decision tables assigned to the combination of 
outgoing cause-effect relations.  

Compensation none 
Data Object,  
Data Object Reference 

An object or a result of the functional feature; however, the collection may be 
expressed using only the plural form of the noun 

Data Store none 
Data Association An indicator to which functional feature the object belongs 
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4 THE EXAMPLE 

4.1 Domain Description 

Let us take as an example a system for sport event 
organization. Let us call it “Registration at the sport 
event”. A short version of the systems description is 
as follows: “The visitor may visit and leave the sport 
event website after doing some tasks in the website. 
He/she may request sport event data and after that 
the website returns the requested data to the visitor. 
The visitor may request the list of participants and 
see all participants in the list or may request a 
registration form, register to the sport event and fill 
participant data. When participant’s data is added it 
needs to be checked. If participant’s data is correct 
and all mandatory fields are filled, then the price of 
participation needs to be automatically determined 
and provided, according to the distance, count of 
participants and the date of registration. After that 
the visitor needs to pay for participation. When the 
sport event website receives the payment, the visitor 
becomes a participant. The participants are added to 
the participants list, unique identifiers and existing 
groups are assigned for each participant. 
Registration confirmation is send by the e-mail. 
After that the visitor receives the registration 
confirmation”.  

The created specification in BPMN is illustrated 
in Figure 4. There are three participants: Visitor, 
Participant and Website (the system itself).  

4.2 Results of Transformation 

According to the mappings (Table 1), the created 
BPMN model is transformed to the TFM (Figure 5). 
End events “Leave sport event website” are 
transformed to functional feature “4 Leaving sport 
event website”. Intermediate event “Receive 
payment” to functional feature “14 Receiving 
payment”. Other elements are specified as functional 
feature tuples <ID, A, R, O, Ex, Pr, PreCond, 
PostCond> (Table 2) modified for better readability 
and cause-effect relations in the model. 

If the BPMN model contains more than one task 
between start and end event, than the last task is a 
cause for the first task triggering, since the TFM 
specifies cyclic creation of process instances 
(certainly, taking into account all the necessary and 
sufficient causes).  

The obtained TFM may contain functional 
features that belong to the external systems. Thus, 
this aspect, system boarders, also must be verified. 

4.3 Verification Results 

First, let us verify structural validity of the TFM. It 
has no isolated vertices, has cycles, inputs and 
outputs. In order to verify system’s boarders let us 
closure the set N of system inner properties, i.e. 
those where both the provider and executor is Sport 
Event Website. N = {3, 6, 8, 10, 11, 12, 14, 15, 16, 
17, 18}. The set of Sport Event Website functional 
features called X = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 
13, 14, 15, 16, 17, 18, 19}.  

 
Figure 4: The BPMN model of “Registration at the sport event”. 
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Figure 5: The topological space of “Registration at the sport event” based on transformation of BPMN diagrams. 

Table 2: TFM functional features, where V denotes Visitor, SEW – the Sport Event Website, and P - Participant. A set of 
post-conditions is empty, and therefore is not presented in the table. 

Id Action (A) Result (R) Object (O) Executer 
(Ex) 

Provider (Pr) Preconditions 

1 Visiting  sport event 
website 

V SEW  

2 Requesting data [of] sport event  V SEW  
3 Providing data [of] sport event SEW SEW  
4 Leaving  sport event 

website 
V SEW  

5 Requesting list [of] participants V SEW  
6 Providing list [of] participants SEW SEW  
7 Requesting form [of] registration V SEW  
8 Providing form [of] registration SEW SEW  
9 Filling data [of] participants V SEW (If registration is 

available) 
10 Checking [validity of data 

of] 
participants SEW SEW  

11 Determining  price SEW SEW (All mandatory fields are 
filled) AND (Entered data 
are correct) 

12 Providing  price SEW SEW  
13 Sending payment [for] participation 

[registration] 
V External system  

14 Receiving  payment SEW SEW  
15 Adding participants [to] list [of 

participants] 
SEW SEW (If payment is received) 

16 Assigning identifiers [to] participants SEW SEW  
17 Assigning groups [to] participants SEW SEW  
18 Sending confirmation [of] registration SEW SEW  
19 Receiving  confirmation [of] registration P External system  
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Functional features 2, 4, 5, 7, 9, and 13 shows 
system’s input signals from Visitor to the website, 
while 19 – website’s output signal to Participant. 

Next, let us examine functioning cycles. The 
TFM has three cycles: checking participant data (9 – 
10 - 9), requesting sport event website information 
(2 – 3 – 5 – 6 – 2 and 2 – 3 – 7 – 8 - 2), and the main 
cycle of the registration process (3 – 7 – 8 – 9 – 10 – 
11 – 12 – 14 – 15 – 16 – 17 - 3). The cycles contain 
all necessary functional features. 

The last is verification of cause and effect 
combinations. Verification of single incoming 
cause-and-effect relations showed that they all are 
necessary and sufficient. Table 3 shows verification 
of combinations of incoming combinations of cause-
and-effect relations.  

Table 3: Necessity and sufficiency of incoming cause-and-
effect relations in the TFM. 

Combination of Cause-and-
Effect Relations 

Necess-
ary 

Suffi-
cient 

XOR {(6-2), (8-2)} True True 
XOR {(2-3), (17-3)} True True 
XOR {(8-9), (10-9)} True True 
XOR {(6-4), (3-4), (8-4), (12-4)} True True 
AND {(13-14), (12-14)} True True 

Output combinations of cause-and-effect 
relations are XOR {(3-5), (3-4)}, XOR {(6-2), (6-
4)}, XOR {(10-11), (10-9)), OR ((17-18), (17-3)}, 
XOR {(8-2), (8-4), (8-9)}. These also represent 
complete sets of effects of functional feature 
execution. 

Therefore, the constructed BPMN model is 
complete (from the functional viewpoint), but 
contains one task that is out of system boarders, i.e. 
“Visit sport event website”. 

5 CONCLUSIONS 

The presented approach aims to verification of 
completeness of problem domain specification in 
BPMN models. It does not solve such problems as 
determination of deadlocks, multiple terminations, 
transactions, compensations and so on.  

The defined mappings between BPMN and TFM 
elements allow transformation of a set of BPMN 
diagrams to the TFM. Verification of topological 
and functioning properties of the TFM helps in 
checking completeness of sets of inputs, outputs and 
inner functional characteristics as well as 
connectedness and causal dependencies of functional 
characteristics of the system.  

However, to a greater extent the presented 
verification approach is manual. Verification of the 
logic still requires expert knowledge, and it is a 
significant limitation of the approach. The hardest 
task is to identify all functioning cycles, since they 
are not evident when use output and input events. 
However, check of input and output sets of 
functional characteristics allows determination of 
missed or incorrectly specified triggering conditions. 

The future work is dedicated to definition of 
patterns for model transformations and a way for 
automation of speculations, e.g., using domain 
ontologies as a set of valid facts about the domain. 
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