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Abstract: Human Activity Recognition (AR) is an area of great importance for health and well-being applications includ-
ing Ambient Intelligent (AmI) spaces, Ambient Assisted Living (AAL) environments, and wearable healthcare
systems. Such intelligent systems reason over large amounts of sensor-derived data in order to recognise users’
actions. The design of AR algorithms relies on ground-truth data of sufficient quality and quantity to enable
rigorous training and validation. Ground-truth is often acquired using video recordings which can produce de-
tailed results given the appropriate labels. However, video annotation is not a trivial task and is, by definition,
subjective. In addition, the sensitive nature of the recordings has to be foremost in minds of the researchers
to protect the identity and privacy of participants. In this paper, a hierarchical ontology for the annotation
of human activity recognition in the home is proposed. Strategies that support different levels of granularity
are presented enabling consistent, and repeatable annotations for training and validating activity recognition
algorithms. Best practice regarding the handling of this type of sensitive data is discussed.

1 INTRODUCTION

Healthcare needs have changed dramatically in re-
cent times. An ageing population and the increase in
chronic illnesses, such as diabetes, obesity, cardiovas-
cular and neurological conditions, have influenced re-
search, directing it towards Information Communica-
tion and Technology (ICT) solutions. Technology has
also advanced enabling low cost sensors and sensing
systems to become widely available, and rapid devel-
opments in the Internet of Things (IoT). These tech-
nologies complement research in field of Ambient In-
telligent (AmI) spaces, including Activity Recogni-
tion (AR) and Ambient Assisted Living (AAL) for
healthcare applications.

The design and implementation of AmI applica-
tions pose many challenges including, but not limited
to: the selection of suitable hardware (sensors and
gateways); system architecture and infrastructure de-
sign; software design, including the training and vali-
dation of data mining/data fusion algorithms; system
testing and deployment; and the appropriate dissemi-
nation of collected knowledge. Each of these steps re-
quires the consideration of the needs and preferences
of particular stakeholders. This paper will focus on a
specific aspect of the training and validation process:

the acquisition of usable ground-truth data.
AmI spaces process large quantities of sensor-

derived data and require robust and accurate data min-
ing strategies in order to recognise activities of inter-
est to monitor health, well-being, or other personal
benefits such as fitness level. To validate these strate-
gies, the output from these algorithms is usually com-
pared with ground-truth or benchmark data i.e labels
or semantics that describe what the data actually rep-
resents in the same form as the algorithm’s output.
Ground-truth data is also often used to train algo-
rithms when using supervised training strategies.

Acquiring ground-truth data has three main
stages: 1) collecting suitable information upon which
to base the ground-truth data; 2) determining the ap-
propriate labels to be applied to the raw data; and
3) annotating or labelling the data. The first step is
challenging and requires a suitable strategy to ensure
there is enough known about the activities being con-
ducted, to enable precision and detailed annotation.
Often studies are focused on specific aspects of activ-
ity, such as gait and ambulation, transitions, postures,
or specific diseases. As such, for the second stage,
labels are often research specific and often not glob-
ally applicable. The final step is to annotate or trans-
form this data to carry the same labels/semantics as
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output of the algorithms. However, accurate and con-
sistent annotation of video to provide labels for the
design and validation of algorithms for activity recog-
nition is expensive and time consuming. The task is
not trivial and if performed by multiple annotators can
result in vastly different and inconsistent results. Re-
searchers want to ensure consistency and high-quality
of annotations, while annotators need clear and con-
cise instructions on how to perform this task. Multi-
ple strategies can be applied, yet there is no definitive
solution to this problem.

In this paper, background on methods to collect
and annotate ground-truth data are described. A
method for collecting data for annotation is provided
based on a script including prescriptive and informal
activities (stage 1). An ontology for the annotation
of activities in the home environment for healthcare
applications is then described with an emphasis, not
only on the activity a person is performing, but the
context of the activity (stage 2). The translation of
the ontology into a framework for annotating human
activities in the home is described including the de-
velopment of strategies to provide consistent and re-
peatable annotation (stage 3). This paper concludes
after a discussion on the efficacy of the annotation
framework presented in this paper for the acquisition
of high quality ground-truth data.

2 BACKGROUND

Ground-truth data acquisition involves three stages:
collecting data upon which to base the ground-truth,
deciding what labels are appropriate to describe the
data, and applying these labels annotating the data to
obtain the ground-truth. These stages are not nec-
essarily applied linearly, but are often developed as
a result of an iterative process to determine the best
data collection methods, most appropriate labels to
use, and a suitable way to annotate the data to pro-
duce consistent and informative ground truth.

Self report or diaries are imperfect as they rely
purely on participant’s compliance and their subjec-
tive perception and may not be accurate enough to
use for developing activity recognition algorithms and
validation. It is also unrealistic to expect detailed ac-
tivity diaries with the exact timings of the activities.
Allen et al. (Allen et al., 2006) collected unsuper-
vised activity data in the home using a computer set
up to take participants through a routine. Input from
the user was in the form of a button press from which
the data was annotated. Bao and Intille (Bao and In-
tille, 2004) used a semi-supervised strategy to collect
annotated data for AR based on scripts. Unobserved

participants labelled the beginning and end time of
the activities. Kasteren et al. (van Kasteren et al.,
2008) asked participants to wear a Bluetooth headset
that used speech recognition to label the ground-truth
data. This method is inexpensive, however there is a
limit to the amount of detail that can be captured.

Another strategy is for the researcher to record the
activity and context during data collection (Pärkkä
et al., 2006; Maurer et al., 2006). Pärkkä et al.
(Pärkkä et al., 2006) adopted a semi-supervised ap-
proach to collecting data for AR classification based
on realistic activities. A single researcher followed
the participant during the experiment and used an an-
notation app to record the activities. Even with this
approach it was noted that there were annotation in-
accuracies that might explain inaccuracies in classifi-
cation.

Method using video recordings provide an objec-
tive reflection of participant’s activities enabling a
far more accurate and detailed activity ground-truth
data, however these require additional attention in the
form of ontology. Data can also be collected in an
unsupervised environment, encouraging natural be-
haviour; however it can also be perceived as intrusive
and will only capture actions with no room for par-
ticipant interpretation. Atallah et al. (Atallah et al.,
2009) used video to annotate activities during labo-
ratory experiments to train AR classifiers. Tsipouras
et al. (Tsipouras et al., 2012) used video recordings
to annotate data to develop a system for the automatic
assessment of levodopa-induced dyskinesia in Parkin-
son’s disease.

Video annotation can be costly and time consum-
ing. Active learning is a technique that can reduce the
amount of annotated data needed for training a clas-
sifier. In this approach, classifiers are initially trained
on a small set of data. When the classifier is applied
to unlabelled data, the user is asked to label only data
that, for example, is classified with low confidence or
those with disagreement between classes (Stikic et al.,
2008). Hoque and Stankovic (Hoque and Stankovic,
2012) employed a clustering technique to group smart
home environmental data into activities and the user
labelled the clusters. Another application for active
learning, is to update classifiers or personalise them
(Longstaff et al., 2010). While attractive, these meth-
ods rely on a collaborative effort on the part of the
user.

An alternative to attempting to reduce the amount
of annotated data required could be to increase the
number of annotators to label the data. By crowd-
sourcing, video annotation tasks can be opened up
to the online community. Vondrick et al. (Vondrick
et al., 2013) developed an open platform for crowd-
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sourcing video labeling, VATIC (Video Annotation
Tool from Irvine, California). This platform enables
the labelling and tracking of objects of interest within
the scene and associate attributes to the object using
bounding boxes.

There are a number of available software tools
which are suitable for video annotation, such as
ANVIL1 video annotation tool (Kipp, 2012) or
ELAN2 (Brugman and Russel, 2004) developed by
the Max Planck Institute for Psycholinguistics, The
Language Archive, Nijmegen, The Netherlands.

The labels used to annotate data is another anno-
tation consideration. Labels are often application spe-
cific, e.g. Pärkkä et al. (Pärkkä et al., 2006) used a hi-
erarchical list of labels, aimed at capturing the context
of the activities, where as, (Tsipouras et al., 2012) fo-
cused purely on a specific disease and the associated
symptoms. Logan et al. (Logan et al., 2007) presented
a detailed activity ontology for the home using a cus-
tom tool that enabled annotators to label foreground
and background activities for when the participant’s
attention is focused on another activity, addressing
the fact that humans naturally multitask. Roggen et
al. (Roggen et al., 2010) used a four ”track” annota-
tion scheme for annotating human activities based on
video data including tracks for locomotion, left and
right hand activities (with an additional attribute that
indicates the object they are using), and the high level
activity.

In the SPHERE project data mining algorithms
are initially trained and validated against recordings
from a head-mounted video camera worn by partic-
ipants. The data originates from the three differ-
ent sensing modalities (depth-camera, wearable ac-
celerometer and environmental sensors) deployed in a
real house, which constitutes the testbed (Woznowski
et al., 2015). The same ontology, presented in this
paper, underpins system-generated data and the con-
trolled vocabulary used in video annotation. In this
paper we propose two annotation strategies – based
on a controlled vocabulary derived from SPHERE on-
tology of activities of daily living (ADL) – which
provide simple frameworks for video annotation of
ground-truth video data.

3 DATA COLLECTION

The script-based data collection took place in the
SPHERE testbed – a typical two storey, two bedroom
house with two bedrooms on the upper flow and two

1http://www.anvil-software.org/
2https://tla.mpi.nl/tools/tla-tools/elan/

rooms on the ground floor. The platform deployed
in this testbed is based on three sensing technologies:
a Body Sensor Network made up of ultra low-power
wearable sensors; a Video Sensor Network focusing
on recognition of activities through video analysis of
home inhabitants; and an Environment Sensor Net-
work made up of hardware sensing the home ambi-
ence. More detailed description of the sensing plat-
form, together with system architecture can be found
in (Woznowski et al., 2015). The presented taxonomy
applies more widely and is not limited to the testbed
setup. Scripted data has been collected for 11 partici-
pants.

3.1 Script

The script for data collection has been designed based
on several objectives and involves one participant at a
time. Firstly, it aims at exercising all types of sen-
sors deployed in the house – from electricity moni-
toring of individual appliances to RGB-D cameras in
the hallway. Secondly, the participant is asked to visit
all locations in the house which allows us to observe
sensor activations, their coverage, temporal relation-
ships, etc. Finally, the script consists of a represen-
tative set of activities and posture transitions which
provides data mining algorithms with training data.

3.2 Protocol

Prior to data collection each participant was issued
with a consent form and a copy of the script. Copy
of the script was provided in order to ensure partic-
ipants were fully aware of the tasks they would be
asked to do and also to resolve any questions or ambi-
guities before the start of an experiment. Each par-
ticipant was asked to execute the script twice with
a short break in between the two runs. This break
was not only to allow the participant to rest/ask fur-
ther questions but also to reassure that all the systems
were working correctly and no data was lost.

Participants were asked to wear three devices.
A head-mounted, wide-angle, 4K resolution camera
(Panasonic HX-A500E-K3). A Motorola TLKR T80
walkie talkie consumer radio4 with hands-free VOX
setup over an earpiece headset. The third device, worn
on the dominant hand, was the wearable device in-
corporating two three-axial accelerometers (Fafoutis
et al., 2016). The full setup in Fig. 1.

3http://www.panasonic.com/uk/consumer/cameras-camco
rders/camcorders/active-hd-camcorders/hx-a500e.html

4http://www.motorolasolutions.com/en xu/products/consu
mer-two-way-radios/t80e.html
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Figure 1: Data collection participant setup: head mounted
camera (head and left arm), wearable accelerometer (domi-
nant, right arm) and walkie talkie (belt + earpiece).

Experiments involved two people: participant and
experimenter. The experimenter remained on site, out
of sensors’ view, and read instructions over the walkie
talkie radio to the participant. Instructions were pre-
cise enough for the participant to understand what
was required from them, however allowed for some
degree of variability since participants were only in-
structed on what to do but not precisely on how to do
it i.e. prepare yourself a cup of tea (without explicit
instructions on how to do it, where cups and teabags
are, etc.). Each experiment started and finished with
jumping in front of the mirror activity in order to pro-
vide alignment point between and within the three
sensing modalities and the head-mounted camera. Al-
though the sensing platform is NTP-synchronised,
this was seen as a good practise and a backup strategy
if any of the sensing modalities was out of sync. There
are more sophisticated techniques for time synchro-
nisation in AAL spaces e.g. (Cippitelli et al., 2015)
used a series of LED lights, however having a unique
stamp of participant’s jump (clear accelerometer and
video signatures) was seen satisfactory.

4 ONTOLOGY FOR ACTIVITIES
OF DAILY LIVING

The SPHERE ontology for activities of daily living
lists and categorises activities occurring in the home
environment. No model is fully complete, hence this
ontology is expected to evolve over time. The ini-
tial dictionary of ADLs was compiled during project
meetings between researchers and clinicians involved
on the project. The result of this collaborative ef-
fort has been extended for completeness mainly with
activities found in the Compendium of Physical Ac-
tivities5. The final stage involved merging it with
BoxLab’s Activity Labels6 and thus extending their
model. Compliance with existing models ensures in-
teroperability and applicability of collected datasets
beyond the project.

In-line with BoxLab’s model, ACTIVITY has the
following properties: activity, physical state (pos-
ture/ambulation in BoxLab’s model), social context
and room. Furthermore, as represented by Fig. 2, the
ontology has been extended with additional proper-
ties, namely physiological context, (at) time, (involve)
object, (involvedAgent) person, ID, and sub-activity
with a self referencing relation. Thus, each activity
occurs at a certain point in time, is identifiable by
some unique ID. Moreover it can involve physical ob-
jects, people and might be made up of a number of
sub-activities. Physiological context is also of impor-
tance due to application of this ontology for health-
care and monitoring people living independently in
their own homes. Overall, AAL technologies have
to ensure user’s safety and monitoring physiological
signs is one possible method. The growing wearable
sensor market and smart-phone apps reflects this in-
terest, as more products offer heart rate monitoring
features. Fig. 2 depicts the structure of the proposed
ontology, the latest version of which, in the OBO7

format, is available from http://data.bris.ac.uk (DOI:
10.5523/bris.1234ym4ulx3r11i2z5b13g93n7).

4.1 Activity Hierarchy

In the proposed ontology, ADL are organised hierar-
chically. Activity has 20 sub-classes out of which 15
are present (albeit some names may differ slightly)
in the BoxLab ontology. Five categories were added
to the original ontology to capture additional ADL
and to reflect aspects related to health. These include

5https://sites.google.com/site/compendiumofphysicalactivi
ties/Activity-Categories/home-activity

6http://boxlab.wikispaces.com/Activity+Labels
7http://oboedit.org/
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Figure 2: High-level view of proposed ADL ontology.

Atomic home activities, Health condition, Social in-
teraction, Working, and Miscellaneous (shortened to
”Misc”). These categories are further described in the
reminder of this section. Detailed description of the
15 sub-classes which are present in both ontologies,
can be found at BoxLab website6.

Activities often involve interactions with one or
more object. These interactions/activities have been
reflected in the ontology in the Atomic home activi-
ties class and its subclasses. These capture the low-
level activities or simple actions which form the basic
building blocks for other activities (evidencing sub-
activities). Video annotators can use these labels to
identify short actions for use in AR algorithms. With
the increasing sophistication of wearable technology
and sensing, research into identifying these types of
activities will become more prominent. In the cur-
rent version of the ontology, Atomic home activities
has the following subclasses: door interaction, win-
dow interaction, object interaction, tap interaction,
cupboard interaction, draw interaction, and electri-
cal appliance interaction, each with a further level of
subclasses (omitted for brevity).

The Health condition class is essential to describe
activities and behaviours in the context of a persons
health. By training algorithms for AmI or AAL appli-
cations and associating activities (or lack of) with a
persons well-being, early warning signs that someone
is unwell or in need of assistance or medical treatment
could be predicted. This is especially important given
the health challenges and the inherent socioeconomic
impact facing society today. This category currently
includes: coughing, fall, fever/infection, shaking and
sweating.

Social interaction is comprised of: receive vis-
itors, social media, talking (with subclasses), and
video calling activities. Finally, Working is further
divided into intellectual and physical work. Every

subclass of Activity has a misc member to enable an-
notation of knowledge which the ontology does not
explicitly capture. Misc is for activity labels which do
not fit into any of the existing classes and currently
has smoking tobacco.

4.2 Ambulation, Posture & Transition

The structure of Physical state directly reflects
BoxLab’s ontology posture/ambulation category, yet
has been extended with additional entities. It has three
subclasses, namely ambulation, posture, and transi-
tion. Since activities do not always describe a per-
son’s posture (with some exceptions e.g. running
where the posture is inherent in the activity), it is im-
portant to capture this information separately.

4.3 Contextual Information

Room/location, social context and physiological con-
text make up contextual information. For any activ-
ity it is beneficial to know the context in which it
occurred. Some activities are associated with a par-
ticular location (bathing activity in bathroom loca-
tion) where some can occur anywhere inside or out-
side the home environment. From the healthcare point
of view, it is also important to capture social context
as people’s behaviour can be affected by presence of
other individuals. Finally, physiological context such
as blood pressure or glucose level have influence on
our well-being and behaviour. Information captured
without context is of limited value as it does not fully
reflect reality.

In addition, activities consist of (involved) object
and (involvedAgent) person properties, which capture
object(s) and people involved in a particular activ-
ity. Since some activities can be made up of shorter
(in duration) activities, sub-activity relation was intro-
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duced. For completeness, (has) ID attribute was intro-
duced to allow to differentiate between activities. All
these properties and relations are captured in Fig. 2

5 PROPOSED ANNOTATION
STRATEGIES

Given the proposed ontology, a structure was devel-
oped to map the ontology into a form that could be
intuitively used by a human annotator. Video and au-
dio annotation software, such as Anvil1 and ELAN2

provide a tier-based solution that lends itself well to
the hierarchical activity structure of the proposed on-
tology. These tiers can also be used to provide the
context of the activities, e.g. the time, location, and
social context. The work presented in this paper uses
ELAN for annotating the script video data.

Three tiers were assigned to describe activities in
terms of detail from high level activities to low level
activities called ADL: Tier1 e.g. cleaning, ADL: Tier2
e.g. hoovering, and ADL: Tier3 e.g. object interac-
tions. For each tier a controlled vocabulary (CV) was
defined using ontology labels. Further tiers were as-
signed with CVs based on the ontology, to annotate
physical state (Posture/ambulation), room (Location),
and social context (Social Interaction).

Two annotation strategies have been explored.
The first annotation method directs the annotator to
label the activity the participant is focused on at
the time. Some researchers report that “Humans
(...) don’t do lots of things simultaneously. Instead,
we switch our attention from task to task extremely
quickly”(Hamilton, 2008). With this view in mind,
this strategy assumes no concurrency in annotated ac-
tivities. In this strategy, the three activity tiers, ADL:
Tier 1 - 3, are used. Such an approach may result
in annotating a large number of short and potentially
unfinished activities. The second annotation method
allocates two sets of activity tiers enabling the capture
of concurrent activities.

To demonstrate the impact of these different
strategies consider a situation in which a person is
cooking (kitchen) and watching TV (living room) at
the same time – as illustrated in Fig. 3. Using the first
strategy i.e. annotating based on the user’s attention,
cooking would have a total duration of 1h with the
same duration of 1h for watching tv. Using the second
strategy, i.e. labelling concurrent activities, cooking
activity could be annotated as lasting 1.5h and watch-
ing tv as 2h long activity.

In the strategy 1, the user’s attention shifts be-
tween the two activities with a physical change in lo-
cation. Without further information or context these

Figure 3: Example of concurrent activities.

tasks are considered independent. For many applica-
tions, this may be suitable and is often the annota-
tion strategy used to annotate much of the research
in AR. However, if additional information is present
that indicates the bouts of cooking are related, i.e. the
same meal being prepared, annotating both activities
concurrently maybe more suitable. This would be es-
pecially useful for modelling higher level behaviour
routines and trends.

6 VIDEO ANNOTATION

Video annotation task is not simple due to multiple
factors such as complexity of human actions, mul-
titasking/switching between tasks, complex interac-
tion with surrounding environment, angle/orientation
of the camera, etc. Moreover, human annotators use
their own subjective judgment and can interpret the
same actions/activities in different ways. Video (with
audio) is a very rich source of information and hence
some clues/pieces of information are not always ap-
parent. Furthermore, people execute the same activi-
ties in different ways.

6.1 Recruitment

Annotators for the video annotation task were re-
cruited via an internal job advertisement. A half-
day workshop was organised to train and select un-
dergraduate students from the University to perform
the annotation. During the workshop students were
given an overview of the SPHERE project, the ADL
ontology, and the annotation task at hand. The two
different annotation strategies described in this paper,
and the relationship of the controlled vocabulary to
the ontology, were explained with examples of each.
The workshop concluded with two annotation tasks
to be completed using the ELAN video and audio an-
notation tool where attendees had the opportunity to
apply these strategies. For each task, students were
provided with a 10min long video, annotation tem-
plates with preloaded controlled vocabularies, and 40
minutes to annotate as much as possible of the video.
Prior to attempting these tasks they were given an op-
portunity to practise simple annotations and ask ques-
tions. At the end of the workshop, attendees submit-
ted their video annotations for both tasks which were
visually evaluated for attention to detail, application
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of appropriate annotation labels, and consistency of
annotations.

6.2 Annotation of Scripted Experiments

The annotation of scripted experiments to provide
ground-truth serves several purposes. One of which
being to provide researchers addressing data min-
ing/activity recognition problem with a base-line to
compare the results from their algorithm’s to. Vali-
dation of AR algorithms is required to demonstrate
how well they work and to calculate accuracy met-
rics such as precision and recall. Providing annotators
the ADL ontology via controlled vocabularies opens
up an opportunity to test the integrity of the ontol-
ogy. Annotators were asked to report on any prob-
lems faced including missing labels which then could
be added to the ontology. Since every video is anno-
tated by two different annotators, there is scope for
comparing the two annotations to highlight conflicts
(and remove bias) and/or merge the two to provide a
more complete picture of the real world.

Annotation of videos, performed by students us-
ing two different strategies, allowed us to compare the
usefulness of each technique and identify their short-
comings. In the provided workshop, annotators were
asked to make a note of any difficulties experienced
while performing the task, such as missing activity la-
bels, inability to capture some information, etc. Qual-
itative data collected in this way has been analysed
and some suggestions were adopted.

The ontology of ADL was found to be fairly com-
plete with few amendments made based on annota-
tors’ feedback. Most of the annotators’ comments
contributed to the growth of classes in the atomic
home activities category. Moreover, the ongoing
video annotation task provides continuous feedback
and annotators are reporting (as they get to know the
dictionary better) to spend less time on every subse-
quent annotation.

7 DISCUSSION

The model described in this paper and visualised in
Fig. 2 captures all the necessary information required
to describe some activity. It provides a hierarchical
structure of activities, together with all the relevant
and important contextual information. Hence, when
the AR algorithm recognises a particular activity, it
can produce an output in the format conforming to
the proposed ontology. Therefore, the inferred activ-
ity would happen in a particular time interval, in a

particular room, involving certain object(s) and peo-
ple, in a given social context with the subject being in
a particular physical state and physiological context,
and could be composed of a number of sub-activities
– all of which can be captured via use of available
properties.

Both annotation strategies presented in this paper
reflect the hierarchical structure of the activity classes
allowing for different levels of precision when anno-
tating videos. For example, with limited human or
financial resources, or based on the application of the
AR algorithms, one may wish to annotate videos only
at Tier 1 to know the classes of the activities occur-
ring. Mirroring the ontology structure allows for di-
rect comparison between annotation labels and activ-
ities recognised by AR algorithms. The choice of the
annotation strategy can be based on the type of the al-
gorithm which is to be validated and its underlying as-
sumptions. The first annotation method is well suited
for e.g. (Filippaki et al., 2011) which uses the con-
cept of activity resources (tangible and intangible). In
their work, “two complex activities are in conflict, if
their time-intervals overlap and they use common re-
sources’ (Filippaki et al., 2011). Since user attention
is an intangible resource, cooking and watching tv ac-
tivities would be identified as conflicting cases and the
conflict resolution strategy would resolve it resulting
in activities which do not overlap in time. The sec-
ond annotation method is more annotator-friendly, in
the sense that fewer annotations are required, and is
well suited for AR algorithms which work with the
assumption that humans can multitask and/or look for
unique sensor signatures which indicate start and fin-
ish of the activity (and hence assume that the activity
continued from start to finish time) e.g. (Woznowski,
2013). Holding the assumption about people’s abil-
ity to multitask, a limit has to be set in order not
to have three or more tracks to capture concurrent
activities (as this would complicate the task and re-
sult in far too many annotation tracks). However, if
the subject in the annotated video switches between
three or more tasks, the first annotation strategy (task-
switching) can be applied to the two activity tracks of
the second strategy.

8 FUTURE WORK

The work presented in this paper can be taken fur-
ther in multiple directions. Firstly, since every video
is annotated twice by randomly selected annotators,
it is possible to carry out intra-annotation correlation
analysis. Such analysis would take into consideration
agreement between individual labels in a given tier
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(Activity, Physical state, etc.) as well as start and fin-
ish time (and duration) of each annotation. Labels
with low agreement score, could then be revisited and
resolved.

One way to improve, or rather make activity
labels more intuitive, would be to provide more
user-friendly activity labels by considering their syn-
onyms. This information can either be acquired from
dictionaries or by running a user study with annota-
tors. Currently the naming of activity categories and
actual activities is more scientific/encyclopedic than
commonly used language. More colloquial naming
would enable annotators to navigate quicker and more
freely in the ontology hierarchy.

Since only scripted experiments’ data has been
considered in the presented study, analysis of free-
living recordings is the next logical step. This
would stress-test the ADL ontology for missing la-
bels. Moreover, data collection subjects could be
asked to annotate their own video. Such approach
would remove ambiguities, yet would require partic-
ipants to undertake some training in order to famil-
iarise themselves with the video annotation software
and the controlled vocabulary.

9 CONCLUSION

The aim of this work and presented video annota-
tion strategies was to design two approaches which
provide good and easy to follow annotation frame-
works. The purpose of annotating videos captured
during scripted experiments is to provide ground-truth
data against which activity recognition algorithms can
be trained and validated. Based on the hypothesis
undermining AR algorithms (whether multitasking is
considered or not), one can chose an annotation strat-
egy which supports that assumption. Furthermore, al-
gorithms can work at different levels i.e. from pro-
viding a very fine level (at the atomic home activi-
ties level) of detail to only producing high-level ac-
tivity labels (cleaning). The two presented annotation
approaches work at different level of granularity and
hence e.g. only Tier 1 activities, which correspond to
the high-level activity categories, might be annotated
if required.

The two annotation approaches were tested on a
group of students with different backgrounds. The
analysis of feedback from the video annotation work-
shop reassured us that the selected annotation strate-
gies are easy to comprehend and work with. More-
over, it highlighted areas which needed improving
i.e. missing activity labels. The approach to map the
controlled vocabulary to the ontology of ADL was

found to be appropriate as it enables direct compar-
ison of output of AR algorithms against annotated
activity labels. Moreover, adopted approaches pro-
vide other contextual information such as location,
social context, physiological context, physical state
(posture/ambulation/transition) and to some extent in-
teraction with objects (via ADL Tier 3). All these
pieces of information captured during the annotation
process are important in the context of validating AR
algorithms. Moreover, annotations resulting from ei-
ther of the presented approaches can validate other
algorithms such as those sitting behind various ser-
vices that intelligent spaces can provide e.g. real-time
location service (RTLS). In order to accelerate re-
search in AmI and AAL spaces, sensors’ data together
with ground-truth data from the SPHERE project will
be made available online to the research community.
Since design, implementation and collection of intel-
ligent spaces’ data (with ground-truth data for vali-
dation) is time consuming and expensive, we share
the view that results of efforts in this space should be
made publicly available.
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Pärkkä, J., Ermes, M., Korpipää, P., Mäntyjärvi, J., Peltola,
J., and Korhonen, I. (2006). Activity classification us-
ing realistic data from wearable sensors. IEEE Trans-
actions on Information Technology in Biomedicine.

Roggen, D., Calatroni, A., Rossi, M., Holleczek, T., Forster,
K., Troster, G., Lukowicz, P., Bannach, D., Pirkl, G.,
Ferscha, A., Doppler, J., Holzmann, C., Kurz, M.,
Holl, G., Chavarriaga, R., Sagha, H., Bayati, H., Crea-
tura, M., and Millan, J. d. R. (2010). Collecting com-

plex activity datasets in highly rich networked sensor
environments. In 2010 Seventh International Con-
ference on Networked Sensing Systems (INSS), pages
233–240. IEEE.

Stikic, M., Van Laerhoven, K., and Schiele, B. (2008). Ex-
ploring semi-supervised and active learning for activ-
ity recognition. 2008 12th IEEE International Sympo-
sium on Wearable Computers, pages 81–88.

Tsipouras, M. G., Tzallas, A. T., Rigas, G., Tsouli, S., Fo-
tiadis, D. I., and Konitsiotis, S. (2012). An automated
methodology for levodopa-induced dyskinesia: as-
sessment based on gyroscope and accelerometer sig-
nals. Artificial intelligence in medicine, 55(2):127–35.

van Kasteren, T., Noulas, A., Englebienne, G., and Kröse,
B. (2008). Accurate activity recognition in a home set-
ting. In Proceedings of the 10th international confer-
ence on Ubiquitous computing - UbiComp ’08, New
York, New York, USA. ACM Press.

Vondrick, C., Patterson, D., and Ramanan, D. (2013).
Efficiently Scaling up Crowdsourced Video Anno-
tation. International Journal of Computer Vision,
101(1):184–204.

Woznowski, P. (2013). Rule-based semantic sensing plat-
form for activity monitoring. PhD thesis, Cardiff Uni-
versity.

Woznowski, P., Fafoutis, X., Song, T., Hannuna, S.,
Camplani, M., Tao, L., Paiement, A., Mellios, E.,
Haghighi, M., Zhu, N., et al. (2015). A multi-modal
sensor infrastructure for healthcare in a residential en-
vironment. In IEEE ICC Workshop on ICT-enabled
services and technologies for eHealth and AAL.

A Human Activity Recognition Framework for Healthcare Applications: Ontology, Labelling Strategies, and Best Practice

377


