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Abstract: In this paper we present a SOA (Service Oriented Architecture)-based platform, enabling the retrieval and 
analysis of big datasets stemming from social networking (SN) sites and Internet of Things (IoT) devices, 
collected by smart city applications and socially-aware data aggregation services. A large set of city 
applications in the areas of Participating Urbanism, Augmented Reality and Sound-Mapping throughout 
participating cities is being applied, resulting into produced sets of millions of user-generated events and 
online SN reports fed into the RADICAL platform. Moreover, we study the application of data analytics 
such as sentiment analysis to the combined IoT and SN data saved into an SQL database, further 
investigating algorithmic and configurations to minimize delays in dataset processing and results retrieval. 

1 INTRODUCTION 

Modern cities are increasingly turning towards ICT 
technology for confronting pressures associated with 
demographic changes, urbanization, climate change 
(Romero Lankao, 2008) and globalization. 
Therefore, most cities have undertaken significant 
investments during the last decade in ICT 
infrastructure including computers, broadband 
connectivity and recently sensing infrastructures. 
These infrastructures have empowered a number of 
innovative services in areas such as participatory 
sensing, urban logistics and ambient assisted living. 
Such services have been extensively deployed in 
several cities, thereby demonstrating the potential 
benefits of ICT infrastructures for businesses and the 
citizens themselves. During the last few years we 
have also witnessed an explosion of sensor 
deployments and social networking services, along 
with the emergence of social networking (Conti et 
al., 2011) and internet‐of‐things technologies (Perera 
et al., 2013; Sundmaeker et al., 2010). Social and 
sensor networks can be combined in order to offer a 

variety of added‐value services for smart cities, as 
has already been demonstrated by various early 
internet‐of‐things applications (such as WikiCity 
(Calabrese et al., 2007), CitySense (Murty et al., 
2007), GoogleLatitude (Page and Kobsa, 2010)), as 
well as applications combining social and sensor 
networks (as for example provided by (Breslin and 
Decker, 2007; Breslin et al., 2009) and (Miluzzo et 
al., 2007). Recently, the benefits of social 
networking and internet‐of‐things deployments for 
smart cities have also been demonstrated in the 
context of a range of EC co‐funded projects 
(Hernández-Muñoz et al., 2011; Sanchez, 2010).  

Current Smart City Data Analysis implies a wide 
set of activities aiming to turn into actionable data 
the outcome of complex analytics processes. This 
analysis comprises among others: i) analysis of 
thousands of traffic, pollution, weather, waste, 
energy and event sensory data to provide better 
services to the citizens, ii) event and incident 
analysis using near real-time data collected by 
citizens and devices sensors, iii) turning social 
media data related to city issues into event and 
sentiment analysis , and many others. Combining 
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data from physical (sensors/devices) and social 
sources (social networks) can give more complete, 
complementary data and contributes to better 
analysis and insights. In overall, smart cities are 
complex social systems and large scale data 
analytics can contribute into their sustainability, 
efficient operation and welfare of the citizens.   

Motivated by the modern challenges in smart 
cities, the RADICAL approach (RADICAL, 2016) 
opens new horizons in the development, deployment 
and operation of interoperable social networking and 
Internet of Things services in smart cities, notably 
services that could be flexibly and successfully 
customized and replicated across multiple cities. Its 
main goal is to provide the means for cities and 
SMEs to rapidly develop, deploy, replicate, and 
evaluate a diverse set of sustainable ICT services 
that leverage established IoT and SN infrastructures. 
Application services deployed and piloted involve: i) 
Cycling Safety Improvement, ii) Products Carbon 
Footprint Management, iii) Object‐driven Data 
Journalism, iv) Participatory Urbanism, v) 
Augmented Reality, vi) Eco‐ consciousness, vii) 
Sound map of a city and viii) City-R-Us: a 
crowdsourcing app for collecting movement 
information using citizens smartphones.   

The RADICAL platform is an open platform 
having as added value the capability to easily 
replicate the services in other smart cities, the ability 
to co-design services with the involvement of cities' 
Living Labs, and the use of added value services that 
deal with the application development, the 
sustainability analysis and the governance of the 
services.  

The RADICAL approach emphasizes on the 
sustainability of the services deployed, targeting 
both environmental sustainability and business 
viability. Relevant indicators (e.g., CO2 emissions, 
Citizens Satisfaction) are established and monitored 
as part of the platform evaluation. End users 
(citizens) in modern smart cities are increasingly 
looking for media‐rich services offered under 
different space, context, and situational conditions. 
The active participation and interaction of citizens 
can be a key enabler for successful and sustainable 
service deployments in future cities. Social networks 
hold the promise to boost such participation and 
interaction, thereby boosting participatory connected 
governance within the cities. However, in order to 
enable smart cities get insight information on how 
citizens think, act and talk about their city it is 
important to understand their opinion and sentiment 
polarity on issues related to their city context. This is 
where sentiment analysis can play a significant role. 

As social media data bring in significant Big Data 
challenges (especially for unstructured data streams) 
it will be important to find effective ways to analyse 
sentimentally those data for extracting value 
information and within specific time windows.   

This paper has the following contributions: 
 Innovative smart city infrastructure for 

uniform social and IoT big data aggregation 
and combination. 

 Comperative study over Sentiment Analysis 
techniques efficiency, to reduce record, 
retrieval, update and processing time. 

 A novel technique for n-grams storage and 
frequency representation in the context of 
big data Sentiment Analysis. 

The rest of the paper is structured as follows: 
Section 2 gives an overview of related and similar 
works that can be found in the international 
literature and in projects funded by the European 
Commission. Section 3 presents the RADICAL 
architecture and approach. Section 4 presents details 
about the Sentiment Analysis problem and related 
experiments, while in section 5 we provide the 
future work to be planned in the context of 
RADICAL and the conclusions we have come into. 

2 RELATED WORK 

Recently, various analytical services such as 
sentiment analysis found their way into Internet of 
Things (IoT) applications. With the devices that are 
able to convey human messages over the internet 
meeting an exponential growth, the challenge now 
revolves around big data issues. Traditional 
approaches do not cope with the requirements posed 
from applications for analytics in e.g. high velocity 
rates or data volumes. As a result, the integration of 
IoT with social sensor data put common tasks like 
feature extraction, algorithm training or model 
updating to the test. 

Most of the algorithms are memory-resident and 
assume a small data size (He et al., 2010) and once 
this threshold is exceeded, the algorithms’ accuracy 
and performance degrades to the point they are 
useless. Therefore even if we focused solely on 
volume challenges, it is intuitively expected that the 
accuracy of the supervised algorithms will be 
affected. An attempt from (Liu et al., 2013) to use 
Naïve Bayes in an increasingly large data volume, 
showed that a rapid fall of the algorithms accuracy is 
followed by a continuous, smooth increase 
asymptotically tending from the lower end to the 
baseline (best accuracy under normal data load). 
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Rather than testing the algorithm’s limitations, 
most of the other approaches are focusing on 
implementing parallel and distributed versions of the 
algorithms such as (He et al., 2010; Read et al., 
2015). In fact most of them rely on the Map-Reduce 
framework so as to achieve high throughput 
classification (Amati et al., 2014; Sakaki et al., 
2013; Wang et al., 2012; Zhao et al., 2012) whereas 
a number of toolkits have been presented with 
implementations of distributed or parallel versions 
of machine learning algorithms such as (“Apache 
Mahout: Scalable machine learning and data 
mining,”, “MEKA: A Multi-label Extension to 
WEKA,”; Bifet et al., 2010). While these solutions 
put most of the emphasis in the model and the 
optimization of the classification task in terms of 
accuracy and throughput, there is a rather small body 
of research dealing with the problem of feature 
extraction in high pace streams. The standard 
solution that is considered is the use of a sliding 
window and the application of standard feature 
extraction techniques in this small set. In cases 
where the stream’s distribution is variable, a sliding 
window kappa-based measure has been proposed 
(Bifet and Frank, 2010). 

As reported in (Strohbach et al., 2015), another 
domain of intense research in the area of scalable 
analytics is for an architecture that combines both 
batch and stream processing over social and IoT data 
while at the same time considering a single model 
for different types of documents (e.g. tweets Vs 
blogposts). Sentiment analysis is a typical task that 
requires batch modeling in order to generate the 
golden standards for each of the classes. This 
process is also the most computationally intense, as 
the classification task itself is usually a CPU bound 
task (i.e. run the classification function). In a data 
streaming scenario the golden standards must be 
updated in a batch mode, whereas the feature 
extraction and classification must take place in real 
time.   

Perhaps the most prominent example of such an 
architecture is the Lambda Architecture (Marz and 
Warren, 2015) pattern which solves the problem of 
computing arbitrary functions on arbitrary data in 
realtime by combining a batch layer for processing 
large scale historical data and a streaming layer for 
processing items being retrieved in real time from an 
input queue or analytics in e.g. high velocity rates or 
data volumes. As a result, the integration of IoT with 
social sensor data put common tasks like feature 
extraction, algorithm training or model updating to 
the test. 

3 THE RADICAL APPROACH  

The RADICAL platform integrates components and 
tools from (SocIoS, 2013) and (SmartSantander, 
2013) projects, in order to support innovative smart 
city services, leveraging information stemming from 
Social Networks (SN) and Internet of Things 
devices. Using the aforementioned tools, it can 
collect, combine, analyze, process, visualize and 
provide uniform access to big datasets of Social 
Network content (e.g. tweets) and Internet of Things 
information (e.g. sensor measurements or citizen 
smartphone reports).  

The architecture of the RADICAL platform is 
depicted in Figure 1. As can be observed, all IoT 
data are pushed into the platform through the 
respective Application Programming Interfaces (IoT 
API and Repository API) and are forwarded to the 
RADICAL Repository, comprised by a MySQL 
database, formed based on the RADICAL Object 
Model.  The device-related data, as dictated by this 
object model, are saved in the form of Observations 
and Measurements. Observations correspond to 
general IoT events reported (e.g. a sensor report or 
bicycle "check-in" event), while Measurements to 
more specific metrics included in an Observation 
(e.g. Ozone measurements (mpcc) or bicycle current 
speed (km/h)). On the other hand, SN data are 
accessed in real time from the underlying SN 
adaptors, by communicating with the respective 
Networks’ APIs. In cases of Social Networks like 
Foursquare that provide plain venues and statistics, 
the adaptor-like data structures do not make sense, 
thus relevant Social Enablers are used to retrieve 
venue-related information data. 

 On top of the main platform, RADICAL 
delivers a set of tools (Application Management 
layer) that allow end users to make better use of the 
RADICAL platform, such as configuring the 
registered IoT devices or extracting general activity 
statistics, through the RADICAL Configuration API. 
Lastly, the RADICAL Data API allows smart city 
services to access the different sources of 
information (social networks, IoT infrastructures, 
city applications), combine data and perform data 
analysis by using the appropriate platform tools. 

As can be seen in the Service Application Layer, 
in the context of RADICAL a wide range of Smart 
City services of various scopes has been developed: 
 Citizen Journalism and Participatory 

Urbanism: Those two interrelated services 
allow citizens reporting events of interest in 
the city, by posting images, text and metadata 
through their smartphones. 
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Figure 1: RADICAL Platform Architecture. 

 Cycling Safety: Cyclists, acting as human 
sensors can report the situation in the city 
streets through their smartphones. 

 Monitoring the Carbon Footprint of 
Products, People and Services: By using a 
range of sensors, the CO2 emissions in 
specific places in a city may be monitored. 

 Augmented Reality in Points of Interest 
(POI): Tourists use their smartphones to 
identify and receive information about points 
of interest in a city. 

 Propagation of Eco-consciousness: 
Leverages on the viral effect in the 
propagation of information in the social 
networks as well as the recycling policy of a 
city, through monitoring and reporting 
relevant actions on citizens' smartphones. 

 Social-orientated Urban Noise Decibel 
Measurement Application: Noise sensors are 
employed throughout the city and citizens are 
able to report and comment noise-related 
information through SNs under a hashtag. 

 City Reporting Application for the use of 
Urban Services: This service gathers sensory 
data along with SN check-ins in city venues, 
to construct a traffic map throughout the city, 
leveraging the process load of anycentralized 
decision making process. 

 

The aforementioned services are piloted in six 
European participating cities: Aarhus, Athens, 
Genoa, Issy les Moulineaux, Santander and the 
region of Cantabria. Figure 2 illustrates a screenshot 
example of the RADICAL Cities' Dashboard, where 
general statistics on device registration and activity 
for a service throughout different cities in a specific 
time period is provided. In overall, during the last 
pilot iteration, RADICAL Repository had captured a 
total of 5.636 active IoT devices sending 728.253 
Observations and 5.461.776 Measurements. 

Most of the services above depend on the 
aggregation of those IoT data with social data 
stemming from online Social Network sites. E.g. in 
the Participatory Urbanism service, citizens' reports 
sent through smartphones and saved in RADICAL 
Repository are combined with relevant tweets (under 

Big IoT and Social Networking Data for Smart Cities - Algorithmic Improvements on Big Data Analysis in the Context of RADICAL City
Applications

399



 
Figure 2: RADICAL Cities Dashboard presents smartphone registrations and measurements for the AR service in the cities 
of Santander and Cantabria over a period. 

that can be collected from similar SNs. 
Thus, given the size of the datasets acquired by 

smart city services, along with the rich social media 
content that can be retrieved through the RADICAL 
platform adaptors, big data aggregation and analysis 
challenges arise. Data Analysis tools are the ones 
that further process the data in order to provide 
meaningful results to the end user, i.e. Event 
Detection or Sentiment Analysis.  

When it comes to Big Data, as in the RADICAL 
case, where millions of user-reported events are 
aggregated along with millions of SN posts and an 
extraction of general results is required, the 
challenge accrued is two-fold: First, the tool must 
ensure the accuracy of the analysis, in the sense that 
data classification is correct to a certain and 
satisfactory extent, and second, processing time 
must be kept under certain limits, so that results 
retrieval process delay is tolerable by end-users. 
Moreover, it is apparent in such analysis that a trade-
off between effectiveness and efficiency exists. The 
latter is a most crucial issue in Big Data analysis and 
apart from the policy followed in data querying (e.g. 
for queries preformed in an SQL database), it is also 
related to the algorithmic techniques employed for 
analysing those datasets. 

In the context of this work, we focus on the 
Sentiment Analysis on the big IoT and SN related 
datasets of RADICAL, as this was the most popular 
functionality among participating cities and almost 

all of the RADICAL Smart City services presented 
above make use of it. The goal of the Sentiment 
Analysis service is to extract sentiment expressive 
patterns from user-generated content in social 
networks or IoT-originated text posts. The service 
comes to the aid of the RADICAL city 
administrators, helping them to categorize polarized 
posts, meaning sentimentally charged text, e.g. 
analyse citizens’ posts to separate subjective from 
objective opinions or count the overall positive and 
negative feedback, concerning a specific topic or 
event in the city. 

4 SENTIMENT ANALYSIS 
EXPERIMENTS AND 
PERFORMANCE 
IMPROVEMENT 

4.1 Introduction 

The term Sentiment Analysis refers to an automatic 
classification problem. Its techniques are trying to 
distinguish between sentences of natural language 
conveying positive (e.g. happiness, pride, joy), 
negative (e.g. anger, sadness, jealously) or even 
neutral (no sentiment texts like statements, news, 
reports)emotion (called sentiment for our purposes) 
(Pang et al., 2002).  

DataDiversityConvergence 2016 - Workshop on Towards Convergence of Big Data, SQL, NoSQL, NewSQL, Data streaming/CEP, OLTP
and OLAP

400



A human being is capable of understanding a 
great variety of emotions from textual data. This 
process of understanding is based on complicated 
learning procedures that we all go through while 
using our language as a means of communication, be 
it actively or passively. It requires imagination and 
subjectivity in order to fully understand the meaning 
and hidden connections of each word in a sentence, 
two things that machines lack. 

The most common practice is to extract 
numerical features out of the natural language 
(Godbole et al., 2007). This process translates this 
complex means of communication into something 
the machine can process. 

4.2 Natural Language Processing 

In order to process the natural language data, the 
computer has to take some pre-processing actions. 
These actions include the cleansing of irrelevant, 
erroneous or redundant data and the transformation 
of the remaining data in a form more easily 
processed. 

Cleansing the data has become a subjective task, 
depending on the purposes of each researcher and 
the chosen machine learning algorithms. The 
transformation of the sentences in another form now 
is clearly studied and each approach has some 
advantages and disadvantages. This paper will detail 
three approaches, two widely used and one that had 
some success in improving the accuracy of the 
algorithms: the bag of word, N-Grams and N-Gram 
Graphs (Aisopos et al., 2012; Fan and Khademi, 
2014; Giannakopoulos et al., 2008; Pang and Lee, 
2008). 

The bag of words approach is perhaps the most 
simple and common one. It regards each sentence as 
a set of words, disregarding their grammatical 
connections and neighbouring relations. It splits 
each sentence based on the space character (in most 
languages) and then forms a set of unrelated words 
(a bag of words as it is commonly called). Then each 
word in this bag can be disregarded or rated by a 
numerical value, in order to create a set of numbers 
instead of words. 

The N-Grams are a bit more complex. They also 
form a bag of words but now each sentence is split 
into pseudo-words of equal length. A sliding 
window of N characters is rolling on the sentence 
creating this bag of pseudo-words. For example if 
N=3 the sentence “This is a nice weather we have 
today!” will be split in the bag {‘Thi’, ‘his’, ‘is ’, ‘s 
i’, ‘ is’, ‘is ’, ‘s a’, ‘ a ’, ‘a n’, ‘ ni’, ‘nic’, ‘ice’, ‘ce ’, 
‘e w’, ‘ we’, ‘wea’, ‘eat’, ‘ath’, ‘the’, ‘her’, ‘er ’, ‘r 

w’, ‘ we’, ‘we ’, ‘e h’, ‘ ha’, ‘hav’, ‘ave’, ‘ve ’, ‘e t’, 
‘ to’, ‘tod’, ‘oda’, ‘day’, ‘ay!’}.  

This technique takes into regard the direct 
neighbouring relations by creating a continuous 
stream of words, it still ignores the indirect relations 
between words and even the relations between the 
produced N-Grams. Of course it is impossible to 
have a predefined set of numerical ratings for each 
one of these pseudo-words because each sentence 
and each N number (which is defined arbitrarily by 
the researcher) produces a different set of pseudo-
words (Psomakelis et al., 2014). So machine 
learning is commonly used to replace these words 
with numerical values and create sets of numbers 
which can be aggregated to sentence level. 

An improvement on that approach aims to take 
into consideration the neighbouring relations 
between the produced N-Grams. This approach is 
called N-Gram Graphs and its main concept is to  
create a graph connecting each N-Gram with its 
neighbours in the original sentence. So each node in 
this graph is an N-Gram and each edge is a 
neighbouring relation (Giannakopoulos et al., 2008). 
This approach gives a variety of new information to 
the researchers and to the machine learning 
algorithms, including information about the context 
of words, making it a clear improvement of the 
simple N-Grams (Aisopos et al., 2012). The only 
drawbacks are the complexity it adds to the process 
and the difficulties of storing, accessing and 
updating a graph of textual data. 

4.3 Dataset Improvements 

At the core of sentiment analysis is its dataset. We 
are gathering and employing bigger and bigger 
datasets in order to better train the algorithms to 
distinguish what is positive and what is negative. 
Classic storage techniques are proving more and 
more cumbersome for large datasets. ArrayLists and 
most Collections are adding a big overhead to the 
data so they are not only enlarging the space 
requirements for its storage but they are also 
delaying the analysis process. So new techniques for 
data storage and retrieval are needed, techniques that 
will enable us to store even bigger datasets and 
access them with even smaller delays. 

The most commonly used such technique is the 
Hash List (Fan and Khademi, 2014), which first 
hashes the data in a certain, predefined amount of 
buckets and then creates a List in each bucket to 
resolve any collisions. This method’s performance is 
heavily dependent on the quality of the hash 
function and its ability to equally split the data into 
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the buckets.  The target is to have as small lists as 
possible. That is the case because finding the right 
bucket for a certain piece of data is done in O(1) 
time but looking through the List in that bucket for 
the correct spot to store the piece of data is done in 
O(n) time where n is the number of data pieces in 
the List. 

Moreover, in Java which is the programming 
language that we are using, each List is an object 
containing one object for each data piece. All these 
objects create an overhead that is not to be ignored. 
In detail the estimated size that a hash list will 
occupy is calculated as:  

 

12	 	൫ሺB െ Eሻ ∗ 12൯ 	ሺE ∗ 4ሻ
	൫U ∗ ሺN ∗ 2  72ሻ൯ 

Equation 1: Size estimation of Hash List where N=NGram 
Length, U=Unique NGrams, B=Bucket Size, E=Empty 
Buckets. 

The constant values in Equations 1 and 2 are the 
approximated sizes of the used objects in bytes. The 
exact sizes depend on the java virtual machine used 
so they cannot be pre-calculated. The worst case for 
storage but best for access time is when almost each 
data piece has its own bucket. In this case, if S is the 
number of samples, for N=5, S=11881376, U=S, 
B=(26^N)*2,  E=11914220, we have a storage size 
of 1110 MB. The best case for storage but worse for 
access time is when all data pieces are in a small 
number of buckets, in big lists. In this case for N=5, 
S=11881376, U=1, B=(26^N)/2,  E=200610 we have 
a storage size of 23 MB. In an average case of N=5, 
S=11881376, U=7510766, B=26^N, E=2679046 we 
have 682 MB of storage space needed. The sample 
for the above examples was the complete range of 5-
Grams for the 26 lowercase English characters 
which are 26^5 = 11881376. 

Our proposed technique now, the one that we 
call Dimensional Mapping, has a standard storage 
space, depending only on the length of the N-Grams. 
The idea is to store only the weight of each N-Gram 
with the N-Gram itself being the pointer to where it 
is stored. That is achieved by creating an N-
dimensional array of integers where each character 
of the N-Gram is used as an index. So, in order to 
access the weight of the 5-Gram ‘fdsgh’ in the table 
DM we would just read the value in cell 
DM[‘f’][‘d’][‘s’][‘g’][‘h’]. A very simple mapping 
is used between a character and an integer: after a 
very strict cleansing process where we convert all 
characters in lowercase and discard all characters but 
the 26 in the English alphabet, we are just 
subtracting the ASCII value of ‘a’. Due to the serial 

nature of the characters that gives us an integer 
between 0 and 26 that we can use as an index. A 
more complex mapping can be used in order to 
include more characters or even punctuation that we 
now ignore. 

The Dimensional Mapping has a standard storage 
size requirement, dependent only on the length of 
the N-Grams as we mentioned before. The size it 
occupies can be estimated by the following formula: 

ሺ26ேሻ ∗ 4 ቀሺ26ேିሻ ∗ 12ቁ

ୀே

ୀଵ

 

Equation 2: Dimensional Mapping size estimation with N 
being the length of N-Grams. 

This may seem large but for the 5-Grams the 
estimated size is just 51 MB. Compared to the worst 
case of Hash Lists (1110 MB) or even the average 
case (682 MB) it seems like a huge improvement. 
This is caused due to the fact that the 
multidimensional array stores primitive values and 
not objects, which reduces the overhead greatly. 
Moreover, we can now say that accessing and 
updating a certain data piece can be done in O(1) 
time with absolute certainty, with no dependency on 
the data itself or a hash function. This had 
significant results in speeding up the execution times 
of the analysis, enabling us to look into streaming 
data and semi-supervised machine learning 
algorithms. 

4.4 Results 

We measured three main KPIs for the result 
comparison. Two of them (success ratio, kappa 
variable) were measuring the success ratio of 
classification and one (execution time) the 
algorithmic improvement. We present them below. 

We run experiments on 5-Grams stored in classic 
ArrayList format, in Hash Lists and in Dimensional 
Mapping. After storing the N-Grams in these 
formats we applied a 10-fold cross validation on 
each one of the seven machine learning algorithms 
we chose: Naïve Bayesian Networks, C4.5, Support 
Vector Machines, Logistic Regression, Multilayer 
Perceptrons, Best-First Trees and Functional Trees. 
Then we recorded the three KPIs for each one of 
these 21 experiments. The results for the first two 
KPIs are shown in Figure 3. In the same chart we 
have included the KPIs for a threshold based 
classification, using an arbitrarily set threshold. 

In Figure 3 we can see five sets of columns 
forming. The  first  one, titled Kappa,  shows  us  the 
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Figure 3: A comparison of the three KPIs as shown in the sentiment analysis experiments. 

kappa variable for each algorithm tested. The 
second, third and fourth show us the success rates in 
positive, neutral and negative tweets respectively for 
each algorithm tested. The final set shows us the 
overall success rate achieved by each algorithm. As 
of the execution times the following table (Table 1) 
contains a summary of the results. We can see the 
execution times in seconds of each algorithm tested 
using the same machine and dataset with the only 
difference being the method of storing the N-grams 
to memory. The first column shows us the results of 
the traditional ArrayList storing, the second column 
shows us the more advanced Hash Lists and the third 
one shows us the results of Dimensional Mapping. 

Table 1: Execution time in seconds summary - comparing 
for the various algorithms and techniques. 

 ArrayLists Hash 
List 

Dimensional 
Mapping 

Thresholds 1691 5 4 

Naïve Bayes 12302 7 7 

C4.5 21535 9 8 

SVM 20662 147 177 

Logistic 
Regression 

22251 9 11 

MLP 21224 41 48 

BFTree 23319 25 19 

FTree 22539 16 16 
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5 CONCLUSIONS 

RADICAL platform, as presented in the current 
work, successfully combines citizens' posts retrieved 
through smartphone applications and Social 
Networks in the context of smart city applications, to 
produce a testbed for applying multiple analysis 
functionalities and techniques. The exploitation of 
resulting big aggregated datasets pose multiple 
challenges, with timely-efficient analysis being the 
most important. Focusing on data storage and 
representation, multiple techniques were examined 
in the experiments performed, in order to come up 
with the optimal algorithmic approach of 
Dimensional Mapping. In the future the authors plan 
to use even larger and more complex datasets, 
further leveraging on the effectiveness of these 
social networking services. 
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