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Abstract: Usage of an electronic media is increasing day by day and consequently the usage of applications. This fact 
has resulted in rapid growth of an application's data which may lead to violation of service level agreement 
(SLA) given to its users. To keep applications SLA compliance, it is necessary to predict the SQL query 
response time before its deployment. The SQL query response time comprises of two elements, computation 
time and IO access time. The latter includes time spent in getting data from disk subsystem and 
database/operating system (OS) cache. Correct prediction of a SQL query performance needs to model 
cache behavior for growing data size. The complex nature of data storage and data access pattern by queries 
brings in difficulty to use only mathematical model for cache behavior prediction. In this paper, a Database 
Buffer Cache Simulator has been proposed, which mimics the behavior of the database buffer cache. It can 
be used to predict the cache misses for different types of data access by a SQL query. The simulator has 
been validated using Oracle 11g and TPC-H benchmarks. The simulator is able to predict cache misses with 
an average error of 2%. 

1 INTRODUCTION 

Cache plays a very crucial role in improving the 
performance of any query/system. A good cache can 
reduce I/O operations and lead to higher CPU 
utilization. Accurately predicting the behavior of a 
cache prior to the execution of a SQL query will 
help us to predict the execution time and resources 
that would be required. This paper is focused on 
building database buffer cache simulator, which can 
predict the behavior of the database buffer cache in 
terms of cache misses on SQL query execution for 
larger database size. 

A cost based optimizer database provides an 
execution plan of a query before its execution. 
Execution plan shows different types of operations 
occurred on tables participated in a query, for 
example the Full Table Scan or Index Scan. Full 
Table Scan accesses the data sequentially while the 
Index Scan accesses data blocks using an index 
created on one or more data field(s). Buffer cache 
behavior for query execution strongly depends on 
the type of data access and relative order of accessed 
data. A query accessing data through index scan 
require fetching of two types of blocks from storage 

system. First data blocks that contains the address of 
actual data and second, index blocks that contains 
the address of associated data blocks. 

Use of only mathematical model to simulate 
working of the database buffer cache does not 
capture the complexity in data access pattern. This 
inability to create mathematical model forces the 
adaption of programmatic approach. The proposed 
simulator mimics the behavior of the database buffer 
cache, which can be used to predict the cache misses 
for different types of data access by a query. Both 
data and index blocks are taken into account while 
developing and validating the database buffer cache 
simulator. Input to the simulator is various data 
access patterns from the storage subsystem while 
being transparent to the architecture of the storage 
subsystem. The simulator provides database buffer 
and OS cache hits, misses of blocks as output, which 
is useful to judge the behavior of cache. Studying 
the pattern of misses with respect to various data 
patterns can lead to detection of miss reason and 
optimization potentialities. 

The simulator needs several inputs, which 
include size of database buffer cache and OS cache, 
numbers of rows reside in each data block, numbers 
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of indices reside in each index block, data storage 
pattern on disk and data access pattern. The 
simulator provides output in the form of buffer 
cache misses and OS cache misses. The simulator 
output is validated with actual cache misses 
perceived by a query during its execution. The 
validation is performed by comparing cache misses 
collected from query execution plan with cache 
misses obtained from the simulator. For validation 
purpose, custom queries on TPC-H benchmark 
schema are used. The simulator can predict cache 
misses with an average 2% of prediction error. 

This paper is organized as follows. Section 2 
reviews the prior work on cache simulation. The 
design of database buffer simulator is presented in 
Section 3. It describes how database cache works, 
how simulation works and types of data access 
patterns which had been taken into account while 
building the simulator. Section 4 follows with 
elaboration of the validation process in simulation 
along with its results. The conclusion is given in 
Section 5. References are mentioned in last section. 

2 RELATED WORK 

Simulation is a well-established technique for 
studying the computer hardware and predicting the 
system performance. Over the years, many 
simulation systems with the goal of providing a 
general tool for such studies have been developed. 

Several works have been carried out related with 
operating system’s cache simulation (Tao and 
Weidendorfer, 2004; Tao and Karl, 2006; Holliday, 
1992; Sugumar and Abraham, June 1993). Jie Tao 
and Wolfgang Karl have simulated cache in detail to 
detect bottleneck, reasons of misses and 
optimization potentialities (Jie and Wolfgang, 2006). 
Rabin A. Sugumar and Santosh G. Abraham have 
modified the OPT algorithm with variety and came 
up with efficient algorithm using which miss 
characterization can be performed via reasonable 
simulation resources (Sugumar and Abraham, 1993). 
Several methods for cache simulation have been 
developed; for example, use of address reference 
traces (Holliday, 1992), use of runtime 
instrumentation of applications (Tao and 
Weidendorfer, 2004). 

Along with OS cache, lot of work in the past few 
years has been carried out in web cache simulation 
as well (Cárdenas et al., 2005; Cárdenas et al., 
2004). L.G. Cárdenas and team have developed new 
techniques for proxy cache simulation (Cárdenas et 
al., 2004). In addition, L.G. Cárdenas has also 

proposed a proxy-cache platform to check the 
performance of a web object based on the multi-key 
management techniques and algorithms. The 
proposed platform developed in a modular way, 
which allows the implementation of new algorithms 
or policy proposals in an easy and robust manner 
(Cárdenas et al., 2005). 

There has been work done in literature on 
simulating functional behaviour of database buffer 
cache however they do not simulate cache misses for 
larger data sizes. Daniel Moniz and Paul Fortier 
have done the simulation analysis of a real time 
database buffer manager (Moniz and Fortier 1996). 
The authors have analysed the buffer management 
policies and presented two new algorithms for page 
replacement. However, they have not focussed on 
database cache hits and misses of data as well as 
index blocks for larger data size. Rekha Singhal and 
Manoj Nambiar has talked about estimation of IO 
access time on larger data size for various disk 
access patterns during SQL query execution, but 
does not  include the delay in IO access time due to 
effect of cache behaviour on larger data size 
(Singhal and Nambiar, 2013). The simulator 
proposed in this paper is about deriving database 
cache hits and misses depending on the data access 
pattern, which is not been analysed earlier. 

3 DATABASE CACHE 
SIMULATION 

When a query is executed on the database, to locate 
and retrieve any row in any table, several access 
paths can be used. For example, Full Table Scan, 
Row-id Scans Operation, Index Scans. When 
database server performs a full table scan, it reads 
blocks sequentially, while for index scan it first 
needs to get an address of data block from index 
block, hence reads blocks randomly. Thus for each 
row, two physical blocks are demanded. Both these 
blocks are first looked in the database buffer cache 
and otherwise demanded from the OS. The OS then 
itself looks for the blocks in its own cache and if still 
not found, fetches them from the disk or physical 
storage by calling an I/O operation. An important 
thing to note is that index blocks can store a much 
larger number of indices than the number of rows 
stored in a data block. This means that the 
probability of repetitive access of an index block is 
always significantly higher than the probability of 
repetitive access of a data block.  

The relative order of data access block and data 
storage location impacts the cache behavior. 
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Table 1: Varieties of data access and storage patterns. 

Sr. No. Data Access Pattern Data Storage Pattern Repetition in storage Sorting in storage Uniformity in storage 

1 Ordered 
Ordered 

(1,2,3,4,5,6…) 
NO YES YES 

2 Ordered 
Ordered 

(1,1,1,2,2,2,3,3,3…) 
YES YES YES 

3 Ordered 
Ordered 

(1,1,2,2,2,2,3,3,4…) 
YES YES NO 

4 Ordered 
Ordered 

(1,2,3,4,1,2,3,4…) 
YES (Range) YES YES 

5 Ordered 
Pseudo-random 

(1,21,41,2,22,42,3…) 
YES (Pattern) NO YES 

6 Random 
Random 

(5,9,1,5,2,9,12,5…) 
YES NO NO 

7 Random 
Ordered 

(any order) 
NO NO NO 

8 Random 
Random 

(4,9,1,2,7,12,19,3…) 
NO NO NO 

 

Table 1 shows, few types of data access pattern, 
data storage pattern along with their specifications. 
Due to variation in data access patterns, sequence of 
blocks demanded to cache is also variable; hence, 
cache behaves differently for different data access 
pattern. Though cache behavior is mainly depends 
on data access patterns, there are few other 
parameters which affect the cache behavior. The 
parameter list includes size of database buffer cache 
and OS cache. As cache is larger, it can 
accommodate more blocks and this will reduce the 
number of misses, hence number of misses is 
inversely proportional to the cache size. Along with 
these, number of rows reside in each data block and 
number of indices reside in each index block is also 
important. Though data block size is constant, due to 
variable length of row in table, number of rows 
reside in data block varies from table to table. 
Similarly, number of indices reside in each index 
block also depends on width and depth of the tree 
structures used to store the particular index. As more 
number of data rows corresponds to single block, 
less number of misses will occur. Finally, data 
storage pattern on disk and data access pattern also 
affect the quantity of misses. Therefore, these six 
parameters need to be provided as inputs to the 
cache simulator. Moreover, we can judge the cache 
behavior from buffer cache misses of data and index 
blocks; hence, these will be outputs of the simulator 
as shown in Figure 1. 

 

Figure 1: Database Buffer Cache Simulator. 

Initially, a mathematical approach had been tried 
to develop a simulator. Inputs to a model, other than 
data access pattern and storage pattern are single 
number, which can easily be taken as input. 
However, for patterns the mathematical function was 
needed to be generated. Such functions were 
generated for sorted and uniformly distributed data, 
for e.g. pattern number 1, 2 and 4 in Table 1. 
Nevertheless, incorporating all previously discussed 
patterns resulted in complexity. Difficulties in 
creating a mathematical model resulted in 
elimination of this approach. Later, a programmatic 
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approach has been followed. Incorporating all 
patterns mentioned in Table 1 can be fulfilled by 
developing a code to build the simulator. 

The aim of this simulation is to mimic the actual 
working of a database cache. The first step is to 
virtually realize a file system made up of blocks, 
which will contain all the data. It has been achieved 
by writing a function that will calculate block 
number from the data value. As this functionality 
was different for various data storage patterns, 
unique functions were written for every data storage 
pattern. The cache developed will fetch these blocks 
when requested. Data stored in these blocks may 
have some pattern or complete random fashion. The 
next step is to build a cache on this file system that 
follows the Least Recently Used (LRU) policy. This 
requires a queue that maintains the blocks present in 
the cache in the order by which they have been 
accessed and moves them according the 
specifications of LRU replacement policy. Linked 
List was the best suitable option to implement cache 
in this case. Various operative functions were 
written to add, update and delete entry in Linked 
List, means cache, to maintain LRU policy. The max 
size of this queue is predefined; actually, this will be 
buffer cache size. Along with it, we need to provide 
simulator the number of data rows per data block 
and number of keys per index block as input. 
Number of data rows per data block was calculated 
by dividing total number of rows of table by the 
number of blocks used by same table while, number 
of keys per index block was calculated by dividing 
total number of rows in the index by the number of 
leaf blocks in the same index. In Oracle, the values, 
number of rows and blocks of table, were collected 
from USER_TABLES view (USER_TABLES), 
while number of rows and leaf blocks in the index 
were collected from USER_INDEXES view 
(USER_INDEXES). These views are generated and 
maintained by Oracle itself. These values must be 
read only after execution of gather statistics 
command on the schema.  

Once this cache is in place, it acts as a black-box 
which takes all required inputs and gives output in 

the form of block hits and misses. This black-box is 
a very strong tool as any type of query, be it single 
table, multiple table or even many simultaneous 
queries running over many tables; any type of access 
can be described as a block access order. Once this 
order learnt accurately black-box is expected to map 
this order to the exact number of hits and misses. 
Thus, a major task is to build functions that convert 
data access pattern in any query to a corresponding 
block access pattern. 

4 SIMULATION VALIDATION 

This simulation validation was conducted on a Linux 
machine, having 4GB RAM and 400GB SAN Hard 
disk, using Oracle 11G and TPC-H benchmark. The 
Simulator was developed in java using JDK 1.6 
version on Windows 8 Platform. 

The validation of simulation is carried out for 
different custom queries as shown in Table 2. The 
queries may require unique or repeated access, 
ordered or random access, complete or partial 
access. In addition, the storage order of the data 
blocks may be variable. The data could be sorted or 
random, it could be in single or multiple instances, 
where these instances could be arranged in various 
different fashions. Hence, for validation purpose 
queries were selected, which consequently created 
data access patterns described in Table 1. This list of 
queries, mentioned in Table 2, generates first five 
data access patterns described in Table 1. 

In each case, it was made sure that the column 
accessed has an index built on it. First, row-ids will 
be fetched from this index block and then the exact 
row will be returned. Furthermore, special focus was 
on getting accurate results for the index hits and 
misses. The task was to write the exact function that 
will map the data elements to their corresponding 
blocks. Then, the block access patterns returned to 
the cache were fed to predict hits and misses. Along 
with it, the exact query fired on an Oracle database 
and the actual numbers of physical reads were noted 
from the query plan. Comparisons of these numbers

Table 2: Varieties of data access and storage patterns. 

Access Pattern Query 

1 select  /*+ index(orders pk_orders) */ o_custkey from orders where o_orderkey >0; 

2 select /*+ index(ps pk_partsupp) */ * from partsupp ps where ps_partkey>=0; 

3 select /*+ index(lineitem pk_lineitem) */ l_quantity from lineitem where l_orderkey>=0; 

4 select /*+ index(s supp_nk) */ * from supplier s where s_nationkey>=0; 

5 select /*+ index(ps partsupp_sk) */ ps_partkey from partsupp ps where ps_suppkey>=0; 

(Note: First column of Table 2 corresponds to the serial number of first column of Table 1) 
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can be used to calculate the error percentage. The 
results, errors and possible reasons for the errors 
have been discussed in the following sections. 

4.1 Ordered Access and Data Storage 

In this section, the first five access patterns 
mentioned in Table 1 have been discussed. In these 
cases, the location of each data element is precisely 
known. It means that, all the blocks that need to be 
fetched for every element are known. Hence, it was 
easy to write the exact mathematical function to 
mimic these access patterns. 

For each of these patterns, the exact blocks 
where each element is present are known. Thus, the 
order in which blocks are going to be accessed is 
known. This block access pattern can be fed to the 
buffer cache simulator to predict the data and index 
misses.  

This validation was conducted on three data sizes 
(see Table 3). Efficient synthetic data generator 
(Phalak and Singhal, 2016) is been used to generate 
data of various sizes. The simulator works almost 
perfectly for all these patterns and negligible error 
(approx 1%-2%) had been observed. 

It can be seen from Table 3, a few errors are over 
3%. However, these occur only when the data size is 
very small and thus can be ignored. The other errors, 
though very small, are arising because the number of 
rows per block is taken as a constant number. 
However, this number is actually the average 
number of rows per block rounded off to the nearest 

integer. For example, if this number comes out to be 
43.458 for the customer table then, the simulator 
will assume each block to contain 43 rows and will 
predict the total number of blocks to be much greater 
than the actual value. This is the reason behind the 
1% to 2% error in the above validation. 

4.2 Un-ordered Access and Unknown 
Data Storage Order 

The previous section shows that the cache simulator 
can give excellent predictions, when it has 
knowledge about the access pattern and data storage 
pattern. In this section, the performance when data is 
not accessed in any particular order or when it is not 
stored on the disk in any particular order or both is 
analyzed. In other words, it can be said that the 
query will demand blocks in a pattern that is 
completely random. At start, queries that randomly 
access ordered data are considered. 

For the first test case, a query that repeatedly and 
randomly selects the entries in the custkey column of 
customer table is designed. To achieve this, a nested 
loop is forced on this column in the order of custkey 
present in orders table. As orders table is 10 times 
larger than the customer table each custkey will be 
demanded 10 times. In addition, this table is sorted 
by orderkey, thus, the custkey column is unsorted. 
This is the case of a repeated random access on the 
ordered data. It is simulated by generating random 
numbers up to 10 times the range and then dividing 
them by 10. Later, the calculated number fed to the 

Table 3: Validation results for ordered access and known data patterns. 

Pattern DB SIZE DB-MISS DB-index MISS OS-MISS 

 Predicted Actual Error Predicted Actual Error Predicted Actual Error 

1 

1GB 24194 24046 0.615 3304 3309 -0.15 439968 445280 -1.193 

4GB 96775 95669 1.156 13334 13331 0.02 1761744 1771776 -0.5662 

128GB 3147541 3132000 0.496 450705 451000 -0.07 57571936 57492768 0.1377 

2 

1GB 16667 16459 1.264 2111 2112 -0.05 300448 304968 -1.4821 

4GB 66667 66135 0.804 8816 8811 0.06 1207728 1214248 -0.537 

128GB 2133334 2137000 -0.172 302065 301000 0.35 38966384 39173264 -0.5281 

3 

1GB 109091 108245 0.782 15790 15755 0.22 1998096 2008648 -0.5253 

4GB 436364 436585 -0.051 63493 63415 0.12 7997712 8041528 -0.5449 

128GB 14222223 13875000 2.503 2127424 2125000 0.11 261594352 262564352 -0.3694 

4 

1GB 223 209 6.699 20 21 -4.76 3888 5744 -32.312 

4GB 852 834 2.158 78 79 -1.27 14880 17340 -14.187 

128GB 27235 26728 1.897 2496 2495 0.04 475696 476496 -0.1679 

5 

1GB 16667 16459 1.264 1674 1674 0 36682 37128 -1.2012 

4GB 266748 263973 1.051 7033 7027 0.09 147400 164249 -10.258 

128GB 8533416 8548000 -0.171 231152 231000 0.07 17529136 17588470 -0.3373 

(Note: First column of Table 3 corresponds to the serial number of first column of Table 1) 

Database Buffer Cache Simulator to Study and Predict Cache Behavior for Query Execution

75



cache after mapping to its corresponding block and 
the results are shown in Table 4. 

Table 4: Validation results of randomly accessed ordered 
data. 

DB SIZE TYPE Predicted Actual Error 

128 GB 
DB-MISS 160659873 170000000 -5.49 

DB-index MISS 36878380 6616000 457.4 

 

From Table 4, it can be seen that prediction of 
index misses is erroneous with huge margin. What 
could be the reason of such large error? 

4.2.1 Skewness in Data 

After the study of custkey column in orders table, it 
can be seen that custkey columns entries are highly 
skewed. They are not even close to being uniform as 
in the assumption during the simulation. It was 
assumed that each custkey must occur exactly ten 
times at some random places in the orders table. The 
truth however is that one-third of the total number of 
custkeys is not even present in this column! 
Furthermore, the custkeys which are present are not 
uniformly repeated as well with their repetition 
ranging from 1 to 25. It is a perfect example of a 
highly skewed data, i.e. data where certain elements 
in the range are more frequent than others. 

It is a well-known fact that caches perform much 
better, if there is even a slight amount of skew in the 
data. This is because if there are some blocks that 
are more frequently accessed than others, then there 
is a higher chance of them being in the cache and 
causing cache hits. Whereas if the data is completely 
uniform, then all the blocks compete for a position 
in the cache leading to much lower cache hits. This 
effect on index blocks is much higher as each block 
store large number of indices. Thus, the skewness in 
data blocks gets magnified for index blocks. 

Therefore, the reason of difference between 
predicted results and that of the actual ones is that a 
highly skewed data is assumed to be uniform. As 
expected, the simulation returned much higher 
number of misses than what actually were observed. 
To confirm this, the next test case was taken, where 
the data actually was accessed uniformly. 

In this test case, the orderkey column in lineitem 
is accessed in a random order. To achieve this, the 
oracle (with help of hints) is forced to select 
orderkey from orders table by taking a hash join of 
custkey columns in customer and orders table. This 
returns all the orderkeys exactly once but in a 
random order. Then, the oracle is asked to select 
orderkey from lineitem in this order. The exact 

query: 
 

select /*+USE_NL(l) ORDERED 
USE_HASH(c o) */ c.c_custkey, 
c.c_name,o.o_totalprice,l.l_return
flag, o.o_orderkey from customer 
c, orders o, lineitem l where 
o.o_orderkey=l.l_orderkey and 
c.c_custkey = o.o_custkey; 
 

In the code, it is simulated by using a random 
number generator to return a random value of 
orderkey. This value is converted into its 
corresponding blocks and then given as an input to 
the simulator. The results are shown in Table 5. 

As expected, the predictions are much closer to 
the actual values, especially in the case of index 
misses. This was expected as index hit rates are the 
ones that are highly affected by any kind of skew in 
the data. However, the error is still very high and 
there must be more factors to be understood. 

4.3 Order in Randomness – Pseudo 
Randomness 

The next major source of error comes from the fact 
that every random sequence is unique in itself and 
cannot be equivalent to the other. This is because 
after any random sequence is being generated it is 
always possible that there are some hidden 
undetectable patterns running through it. Thus, there 
is no magnitude that can be associated with 
randomness and all random patterns are actually 
pseudo random. 

Table 5: Validation results of randomly accessed ordered 
data (Uniformly distributed data). 

DB SIZE TYPE Predicted Actual Error

128 GB 
DB-MISS 195799034 182000000 7.582

DB-index MISS 183175650 103000000 77.84

 

In the last test case, the random order in which 
lineitem table is accessed can be derived from the 
hash join between two other tables. The random 
order, used for simulation is obtained from an 
algorithm that makes use of the random number 
generator, which is inbuilt in the java. Thus, these 
two sequences, though both random, cannot be 
assumed to be equivalent. The process of hash join 
is giving rise to certain internal patterns, patterns 
that can never arise from the entirely different 
algorithm that the java inbuilt random number 
generator uses. Thus, assuming these two to be 
equivalent is also one of the sources of the error we 

DATA 2016 - 5th International Conference on Data Management Technologies and Applications

76



observed. Again, the effect is more on index blocks 
as any pattern in data access will give rise to a more 
compact pattern in index access. 

To verify the entire idea, the next test case is 
considered where there is random access to 
randomly arranged data. This is with the hope that 
any patterns left after the hash join will be destroyed 
now when they are mapped to their corresponding 
block. For this, a hash join between partkey columns 
in part and partsupp table is taken. This returns all 
the partkeys in some random order. These partkeys 
are mapped to the partkey column in lineitem table 
in the same order with the help of a forced nested 
loop. As lineitem is sorted by the orderkey column, 
the partkey column is arranged completely 
randomly. Thus, in this case there is random access 
on randomly arranged data. For simulating this 
query, first a random number generator is used to get 
the order of access. Then another generator is used 
to determine the location of the data requested in the 
table. This location is divided by block size to get 
the block in which it is present, which is given as 
input to the cache. The results obtained are displayed 
in Table 6. 

Table 6: Validation results of randomly accessed random 
distributed data. 

DB SIZE TYPE Predicted Actual Error 

4 GB 

DB-MISS 18871831 19000000 - 0.675

DB-index MISS 710390 645000 10.1 

 

As seen, the error has now gone down from 
77.8% to 10.1% for index blocks and from 7.5% to 
0.6% for data blocks. Thus, the thinking that there 
must be some hidden patterns in the random 
sequence returned by hash join was probably 
correct. Mapping that sequence to another random 
pattern may have lead to reduction in its impact on 
cache hits. In all, it can be concluded that different 
random sequences can lead to very different 
response from the cache. 

To see this practically, a little change is made in 
the way the random block of any element was 
calculated. A random number generator used to 

determine the element location.  However, to get the 
corresponding block the modulus of this number is 
calculated with the total number of blocks. The 
sequence now generated is also a random sequence 
and is fed into the cache. Table 7 describes the 
results. 

Table 7: Validation results of randomly accessed data with 
known location. 

DB SIZE TYPE Predicted Actual Error 

4 GB 
DB-MISS 17899324 19000000 -5.793 

DB-index MISS 705675 645000 9.41 

 

It can be seen; there is significant change both in 
the data and index misses predicted. This shows that 
the choice of an algorithm for generating the 
required random sequence can have an impact on the 
accuracy of the predicted result. It is required that a 
random sequence must be chosen which would be 
closest to the one actually generated. This task is 
difficult and sometimes impossible, as many local or 
global patterns may exist in the access patterns 
which are unknown. This is the shortcoming of this 
simulation that without proper information about 
block access pattern, approximating it is difficult 
and sometimes impossible. 

However, expecting the simulator to work on 
random queries is like expecting the correct answer 
without giving out the proper problem statement! On 
the better side, it can be concluded that once proper 
information about the type of access is known, the 
proposed cache simulator will give almost 100% 
accurate results. To show this practically, one last 
validation was carried out. Here, the exact order of 
access is extracted from a query and then given to 
the simulator. Now that the code knows the exact 
random order in which the table was accessed 
accurate predictions are expected about the hits and 
misses for both data and index blocks. This same 
process was carried out on four different tables. The 
results are shown in Table 8.  

Thus, proposed cache simulator has handled the 
case of random access accurately. This accuracy is 
possible because the simulator has knowledge of the 
exact order of access of the rows in table.

Table 8: Validation results of randomly accessed data with exact known location of blocks. 

Query type DB SIZE DB-MISS DB-index MISS 

Predicted Actual Error Predicted Actual Error 

12345678… 1GB 24194 23963 0.964 3304 3313 -0.27 

exactly 11112222…. 1GB 16667 16400 1.628 2111 2115 -0.19 

almost 11112222… 1GB 550421 546000 0.81 16301 15880 2.65 

appox. 1234512345… 1GB 3334 3413 -2.315 300 294 2.04 
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Hence it is safe to state that errors observed in 
the other test cases, where randomness was 
involved, arise only due to lack of information about 
the ‘kind’ of random pattern being dealt with. Once 
this gap is filled, the simulator definitely gives 
accurate results for any type of query. 

5 CONCLUSIONS 

A simulator is discussed to mimic the behavior of 
buffer cache during query execution. It is used to 
predict cache misses perceived by the query 
execution on a given data size. Various types of data 
access and storage patterns are discussed which 
plays a significant role in deciding the cache misses. 
The cache simulator built, works with negligible 
errors for the cases, where we have complete 
information about the query access pattern and the 
data distribution pattern. In these cases, approximate 
2% error prediction was observed. Hence, the 
simulator can handle any query as long as most of 
the dynamics of the query are known. In case of 
random queries, where we have no information 
about data access and distribution pattern, the 
simulator has difficulty in making predictions, thus, 
simulator cannot be used for such queries. The error 
that arises from this lack of information is higher in 
magnitude for index blocks than for data blocks. 
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