
Comparison of Distributed Computing Approaches to Complexity of
n-gram Extraction

Sanzhar Aubakirov1, Paulo Trigo2 and Darhan Ahmed-Zaki1
1Department of Computer Science, al-Farabi Kazakh National University, Almaty, Kazakhstan

2Instituto Superior de Engenharia de Lisboa, Biosystems and Integrative Sciences Institute / Agent and Systems Modeling,
Lisbon, Portugal

Keywords: Distributed Computing, Text Processing, n-gram Extraction.

Abstract: In this paper we compare different technologies that support distributed computing as a means to address
complex tasks. We address the task of n-gram text extraction which is a big computational given a large
amount of textual data to process. In order to deal with such complexity we have to adopt and implement
parallelization patterns. Nowadays there are several patterns, platforms and even languages that can be used
for the parallelization task. We implemented this task on three platforms: (1) MPJ Express, (2) Apache
Hadoop, and (3) Apache Spark. The experiments were implemented using two kinds of datasets composed
by: (A) a large number of small files, and (B) a small number of large files. Each experiment uses both
datasets and the experiment repeats for a set of different file sizes. We compared performance and efficiency
among MPJ Express, Apache Hadoop and Apache Spark. As a final result we are able to provide guidelines
for choosing the platform that is best suited for each kind of data set regarding its overall size and granularity
of the input data.

1 INTRODUCTION

Applications of many algorithms and methods of text
analysis depends on statistical information about text
(Riedl and Biemann, 2012), statistics about n-grams
are an important building block in knowledge dis-
covery and information retrieval (Berberich and Be-
dathur, 2013). In this paper we compare different ap-
proaches that deal with n-gram extraction tasks via
the distribution of computation and data across clus-
ters of processing and storage resources. The eval-
uated approaches follow a model where the ”com-
putation moves to the data” (instead of the data be-
ing transferred to feed the computation). We follow
this model, of moving code to available resources, to
deal with the n-gram extraction task where the tem-
poral and space complexity grows with the number,
n, of grams to extract. We adopted the current pat-
terns of task parallelization, such as the map-reduce
paradigm, and implemented the n-gram extraction
task using three different platforms, namely the MPJ
Express, the Apache Hadoop and the Apache Spark.
We also describe application architecture developed
for MPJ Express implementation in order to provide
reliability and fault-tolerance. The contributions from

our work include:

• comprehensive experimental evaluation on En-
glish Wikipedia articles corpora
• time and space comparison between implemen-

tations on MPJ Express, Apache Hadoop and
Apache Spark
• detailed guidelines for choosing platform regard-

ing size and granularity of the input data

We will start from introduction to each platform
and assumptions made, then we will introduce n-gram
extraction method and show results of the experi-
ments. Finally we will provide pros and cons of each
platform regarding particular data set.

1.1 Apache Hadoop

Apache Hadoop is a Java Virtual Machine (JVM)
based framework that implements Map/Reduce
paradigm. It is dividing main task into many small
fragments of work, each of which may be executed
or re-executed on any node in the cluster. Map/Re-
duce paradigm is very well suited for the text pro-
cessing tasks because input data could be divided into
equal chunks and processed separately (Lin and Dyer,

Aubakirov, S., Trigo, P. and Ahmed-Zaki, D.
Comparison of Distributed Computing Approaches to Complexity of n-gram Extraction.
DOI: 10.5220/0005943000250030
In Proceedings of the 5th International Conference on Data Management Technologies and Applications (DATA 2016), pages 25-30
ISBN: 978-989-758-193-9
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

25

2010). One of the main features of Apache Hadoop
is transparently provided reliability, fault tolerance
and data motion. It sends same task to a different
nodes that provides ability to avoid downtime in case
of failure of one of the computing nodes, but at the
same time it decrease overall performance of the clus-
ter. Hadoop Distributed File System (HDFS) used for
nodes communication and as temporary data storage.
HDFS abstraction layer provides ability to process big
amount of data that do not fits into fast random-access
memory. At the same time it is reducing performance,
seek times for random disk access are fundamentally
limited by the mechanical nature of the devices.

1.2 Apache Spark

Apache Spark is a JVM based framework that uses
abstraction layer for cluster communication named
Resilient Distributed Dataset (RDD). RDD provides
ability to store data as a certain collections distributed
in the cluster memory (Zaharia et al., 2012). Apache
Spark uses micro-batch task execution model based
on techonology called D-Streams. D-Streams tech-
nology streaming computation as a series of stateless
and deterministic batch computations on small time
intervals (Zaharia et al., 2013). Both RDD and D-
Streams provide reliability and fault-tolerance of task
execution, because the system can recover all inter-
mediate state and results on failure. Also Apache
Spark can be easily integrated with HDFS and Apache
Yarn.

1.3 MPJ Express

MPJ Express is Java implementation of Message
Passing Interface (MPI). The MPI has become a de
facto standard for writing High Performance Com-
puting (HPC) applications on clusters and Massively
Parallel Processors (MPP). It is inherits all advantages
and disadvantages of MPI. The main disadvantages is
the difficulty of writing and debugging distributed ap-
plications. The main advantages are flexibility, cus-
tomizability and high performance of the application.

MPJ do not have built-in task manager that pro-
vides fault-tolerance and reliability, thus failure of one
of executors leads to task failure. We propose appli-
cation architecture in order to compete with applica-
tions based on Apache Spark and Apache Hadoop, it
is shown on the figure 1.

In order to minimize communication between
nodes and reduces network latency overhead each
cluster node processing one file at a time. We are
using HDFS to avoid data motion and transactional
queue synchronizing pattern to provide reliability.

Figure 1: Architecture of application based on MPJ Ex-
press.

2 METHOD

We are extracting n-gram statistical model from the
Wikipedia articles corpora. The data set description
is shown in table 1. The overall corpora size is 4 Gb
and consist of 209716 articles, each article’s size is
approximately 20 Kb. In order to cover most possible
data set types we divided all corpora into 6 volumes:
64 Mb, 256 Mb, 512 Mb, 1024 Mb, 2048 Mb and
4096 Mb. Each volume is divided into two sets: A) a
large number of small files, and B) a small number of
large files. For data set A we keep Wikipedia articles
as is, for B data set we concatenate articles into bigger
files.

Table 1: Description of the corpora.

size # articles # tokens
64 Mb 3277 6∗106

256 Mb 13108 25∗106

512 Mb 26215 51∗106

1024 Mb 52428 102∗106

2048 Mb 104858 206∗106

4096 Mb 209716 412∗106

Our goal is to extract statistical n-gram model
from all corpora and from each article separately. We
consider that full n-gram model is the all extracted n-
grams, where n ∈ [1,k] and k is the length of longest
sentence in the dataset. We are using method that
is described by Google in their paper (Brants et al.,
2007) and consider improvements suggested by work
(Berberich and Bedathur, 2013). Both algorithms
based on MapReduce paradigm. Method proposed
by (Berberich and Bedathur, 2013) optimized mem-
ory consumption overall performance, but at the same
time rejecting not frequent n-grams. For experiments
we are using Google’s algorithm because our goal is
to obtain full n-gram model.

We adopted algorithm for our goal of n-gram ex-
traction from the individual articles. Our method
operates with sentences, text of the articles is
represented as set of sentences S, where S =
(S1,S2,S3, . . . ,Sn), and each sentence Sn is a list of

DATA 2016 - 5th International Conference on Data Management Technologies and Applications

26

words Sn = (W1,W2,W3, . . . ,Wm), where Wn is a sin-
gle word.

Algorithm 1: Pseudo code for n-gram extraction.

1: function MAP(list sentence, int size) . map
2: return rangeClosed(1,size)
3: .map(n→ sliding(sentence,n,size))
4: end function
5: function REDUCE(stream ngrams) . reduce
6: return ngrams.collect(groupByCount())
7: end function
8: function SLIDING(list sentence, int n, int size)
9: return rangeClosed(0, size - n)

10: .map(idx → join(” ”, list.subList(idx, idx +
n)))

11: end function

We implemented sliding(), map() and reduce()
functions, pseudo-code is shown in figure 1. Func-
tion map() takes list of sentences S and for each Si
executes sliding() function with the parameter n =
(0,1,2, . . . ,m), where n is size of slides (n-grams) that
function will produce and m is number of words W in
sentence Si. Function reduce() takes output of map()
function, which is the list of n-grams (list of list of
words) and count similar ones. As a results it re-
turns list of objects (n-gram,v), that is usually called
Map, where v is the frequency of particular n-gram in
the text. This approach provide ability to execute in-
dependent map() and avoid communication between
nodes until reduce() stage.

2.1 MPJ Express Implementation

We are using transactional queue synchronization pat-
tern as a process task management for MPJ Express.
Transactions guarantees message delivery to a sin-
gle recipient. Thus in case of failure transaction can
be aborted and message will be delivered to another
worker. We fill queue with the file names, each node
takes file name from queue, process it and takes an-
other one. This solution provides reliability, fault-
tolerance and scalability. And one more benefit is that
workers can be implemented in any language or plat-
form, not only JVM based applications.

2.2 Apache Hadoop Implementation

Word count application is probably the most common
example of Apache Hadoop usage. We use algorithm
from the Apache Hadoop community official site as
basis for our task. The count part remaining almost
the same, with the adoptions to n-gram extraction
task. Pseudo-code of map() and reduce() functions
shown on Algorithm 2.

Algorithm 2: Pseudo-code of Apache Hadoop implementa-
tion.

1: function MAP(key, value, context) . map
2: list sentences = getSentences(value)
3: for (sentence : sentences) do
4: for (n← 1, sentence.size()) do
5: ngrams = sliding(sentence, n)
6: ngrams
7: .forEach(ngram→ write(ngram, 1))
8: end for
9: end for

10: end function
11: function REDUCE(key, values, context) . reduce
12: sum = 0
13: for (value : values) do
14: sum += value.get()
15: end for
16: result.set(sum)
17: write(key, result)
18: end function

2.3 Apache Spark Implementation

Applications based on Apache Spark framework can
be implemented using one of three programming lan-
guages: Python, Scala and Java. Scala is a functional
programming language that fully executes in JVM.
It provide advantages such as immutable data struc-
tures, type safety and pure functions. This language
features simplifies code parallelization by reducing
the biggest headache in distributed programming such
as race conditions, deadlocks, and other well-known
problems. As a results code written in Scala become
cleaner, shorter and easy to read. Apache Spark ap-
plication was implemented in Scala, pseudo-code of
implementation is described in Algorithm 3.

Algorithm 3: Pseudo-code of Apache Spark map and reduce
functions.

1: function MAP(sentence,N) . map
2: (1 to N).toStream.flatMap(n ⇒ sen-

tence.sliding(n))
3: end function
4: function REDUCE(text) . reduce
5: text.flatMap(sentence⇒ sliding(sentence))
6: .map(ngram⇒ (ngram,1))
7: .reduceByKey((a,b)⇒ a+b)
8: .saveAsTextFile()
9: end function

2.4 Assumptions

We implemented n-gram extraction library that is
used by Hadoop and MPJ, while Spark use built-
in functions. All implementations use HDFS for

Comparison of Distributed Computing Approaches to Complexity of n-gram Extraction

27

input/output tasks and there is one separate ma-
chine that serves it. MPJ work with files splitted in
chunks, while both Spark and Hadoop works with
data streams.

Spark and Hadoop use built-in task management,
while MPJ implementation use messaging queue.
Messaging queue service was installed on separate
server and was not included into a cluster as a usual
node.

3 EXPERIMENTAL RESULTS

Technical characteristics of the cluster is shown in ta-
bles 2 and 3. There are 16 nodes, each node has the
same characteristics. Figure 2 shows overall picture
for results of the experiments, parallelization gives
good efficiency and speedup on all platforms.

Table 2: Cluster specification.

CPU RAM HDD Net
Intel Core 500GB
i5-2500 16Gb 7200RPM 1Gbit/s

3.30GHz 6Gb/s

Table 3: Software specification.

Name Version
MPJ Express 0.44

Apache Hadoop 2.6.0
Apache Spark 1.5.0

Java 1.8.0 60
Scala 2.11.7

Ubuntu OS 14.04

During our experiments Apache Hadoop shows
inefficient processing time for data sets of type A (a
large number of little files). Processing time of even
the most smallest data set expressed in hours. Re-
searches (Andres and A, 2013), (Vorapongkitipun and
Nupairoj, 2014) and (Andrews and Binu, 2013) shows
that Apache Hadoop works faster if input data is rep-
resented as few big files instead of many little files.
This is because of HDFS design, which was devel-
oped for processing big data streams. Readings of
many little files leads to many communications be-
tween nodes, many disk head movements and as a
consequence leads to extremely inefficient work of
HDFS.

Figure 3 shows results of experiments with dataset
of type A. As we mentioned before Apache Hadoop
is ineffective for such type of dataset, we exclude its
results from the graph. For this type of data Apache
Spark application processing time is higher than MPJ

Figure 2: Shows overall picture. Simple sequential process-
ing on the left side of the plot.

Express. The most effective time shows application
based on MPJ Express platform. Both implementa-
tions MPJ and MPJ+MR shows almost the same time,
but in an average MPJ+MR is 1.5 times faster. MPJ
Express application architecture was designed specif-
ically for such kind of data type where each node pro-
cessing one file at a time avoiding communication be-
tween nodes.

Figure 4 shows results of experiments with dataset
B. Results are varying depending on dataset volume
size. In an average Apache Hadoop is the slowest
platform, MPJ Express is the fastest. For data sizes
from 64 Mb to 1024 Mb MPJ Express is most effec-
tive, in an average it is 3 times faster than Apache
Spark and 5 times faster than Apache Hadoop. Start-
ing from 2048 Mb dataset sizes Apache Spark shows
better effectiveness, with size of 4096 Mb it is 2 times
faster than other platforms.

Figure 3: Experiments with dataset of type A.

4 SUMMARY

Figures 5 and 6 shows efficiency and speedup, it was
computed using the best suited data set type of each
platform. There is ideal line to simplify evaluation.

DATA 2016 - 5th International Conference on Data Management Technologies and Applications

28

Figure 4: Experiments with dataset of type B.

Figure 5: Shows speedup of each platform.

The graph shows that Hadoop speedup and efficiency
are far from ideal, while MPJ is very close, Spark is
always in the middle.

For the dataset type A we are dealing with a very
specific task - n-gram model extraction for every arti-
cle. It is requires to process large number of small
files. Application based on MPJ Express was de-

Figure 6: Shows efficiency of each platform.

signed specifically for such type of data set and thus
shows the highest performance. But challenges in
writing distributed software using MPJ Express are
great. Programmer must manage details across sev-
eral threads, processes, or machines. We have to
use low-level devices such as mutexes and to apply
high-level design patterns such as producer-consumer
queues to tackle these challenges. Concurrent pro-
grams are difficult to reason about and even harder
to debug. Apache Hadoop is the platform that re-
quires high administrative skills during cluster setup
and detailed knowledge of documentation and best
practices. For small data set it is considerably slower
than other implementations. Apache Spark is fast and
easier to configure. Code written for Apache Spark
is cleaner and shorter. It is showing good efficiency
on both data types and for all data set sizes. Short
summary would be:

• MPJ Express can be adopted for almost any task

– Very flexible

Comparison of Distributed Computing Approaches to Complexity of n-gram Extraction

29

– The highest performance
– Difficult to implement and to debug code

• Apache Spark is fast and easy

– Performance is not far behind the MPJ Express
– Clean and short code
– Easy to configure

• Apache Hadoop

– Slow for little dataset
– Difficult to configure

5 CONCLUSION

We experimented on the task of extracting n-gram sta-
tistical model from corpora of two different types: A)
a large number of small files, and B) a small number
of large files. Experimental result shows that type and
size of the data has a big influence on the performance
of a specific platform. We have concluded that:

• for dataset type A for all data sizes MPJ Express
shows the best speedup and efficiency

• for dataset type B

– for dataset sizes of 64 Mb to 2048 Mb MPJ
Express shows 3 times better speedup and ef-
ficiency

– for dataset sizes of 2048 Mb and more Apache
Spark shows 2 times better speedup and effi-
ciency

6 COPYRIGHT FORM

The Author hereby grants to the publisher, i.e. Sci-
ence and Technology Publications, (SCITEPRESS)
Lda Consent to Publish and Transfer this Contribu-
tion.

REFERENCES

Andres, B. P. and A, B. (2013). Perusal on hadoop small file
problem. In Perusal on Hadoop small file problem.
IJCSEITR.

Andrews, B. P. and Binu, A. (2013). Perusal on hadoop
small file problem. In IJCSEITR. TJPRC.

Berberich, K. and Bedathur, S. (2013). Computing n-gram
statistics in mapreduce. In EDBT ’13 Proceedings
of the 16th International Conference on Extending
Database Technology. EDBT.

Brants, T., Popat, A. C., Xu, P., Och, F. J., and Dean, J.
(2007). Large language models in machine transla-
tion. In Proceedings of the 2007 Joint Conference
on Empirical Methods in Natural Language Process-
ing and Computational Natural Language Learning.
EMNLP-CoNLL.

Lin, J. and Dyer, C. (2010). An ontology-based approach to
text summarization. In Data-Intensive Text Processing
with MapReduce. Morgan and Claypool.

Riedl, M. and Biemann, C. (2012). Text segmentation with
topic models. In JLCL. JLCL.

Vorapongkitipun, C. and Nupairoj, N. (2014). Improving
performance of small-file accessing in hadoop. In JC-
SSE. JCSSE.

Zaharia, M., Das, T., Li, H., Shenker, S., and Stoica, I.
(2012). Discretized streams: An efficient and fault-
tolerant model for stream processing on large clusters.
In HotCloud’12 Proceedings of the 4th USENIX con-
ference on Hot Topics in Cloud Computing. HotCloud.

Zaharia, M., Das, T., Li, H., Shenker, S., and Stoica, I.
(2013). Discretized streams: Fault-tolerant streaming
computation at scale. In Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Prin-
ciples. SOSP.

DATA 2016 - 5th International Conference on Data Management Technologies and Applications

30

