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Abstract: The introduction of pervasive and ubiquitous instrumentation within Internet of Things (IoT) leads to 
unprecedented real-time visibility of the power grid, traffic, transportation, water, oil & gas. Interconnecting 
those distinct physical, people, and business worlds through ubiquitous instrumentation, even though still in 
its embryonic stage, has the potential to create intelligent IoT solutions that are much greener, more 
efficient, comfortable, and safer. An essential new direction to materialize this potential is to develop 
comprehensive models of such systems dynamically interacting with the instrumentation in a feed-back 
control loop. We describe here opportunities in applying cognitive computing on interconnected and 
instrumented worlds (CIoT) and call out the system-of-systems trend on interconnecting these distinct but 
interdependent worlds, and methods for advanced understanding, analysis, and real-time decision support 
capabilities with the accuracy of full-scale models. 

1 INTRODUCTION 

The rapid adoption of Internet of Things (IoT), 
together with unprecedented bandwidths and 
computational power in high-end, mid-range and 
instrumentation platforms and devices have already 
produced ground-breaking real-time visibility (or 
near real-time) access and transfer of information 
about a system or device  in both natural and 
engineered systems, and in individual and industrial 
environemnts, such as in the following examples: 
• personal condition (wearable devices, and smart 

phones),  
• surrounding environment (bodycam),  
• home (home security devices, appliances)   
• power grid (eMeters, PMUs, other sensor and 

actuator in the power distribution systems)  
• traffic and transportation  ( traffic sensors on cars, 

busses, trains, roads, traffic lights, railroads, 
aerial/UAVs, and congestion control devices) 

• structural health monitoring (bridges, buildings, 
vehicles, aerial platforms) 

• water systems (distribution grids, asset mana-
gement and preventive maintenance; ambient 
environments)  

• oil & gas (intelligent oil field) 

Interconnecting those distinct physical, people, 
and business worlds (as shown in Fig. 1) through 
ubiquitous instrumentation, even though still in its 
embryonic stage, has the potential to unleash a 
planet that is much greener, more efficient, more 
comfortable, and safer.  However, just a compedium 
and deluge of instrumentation data is insufficient  in 
enabling these ultimate objectives. Cognitive 
representations (a.k.a. models) of these distinct 
physical, people, and business worlds are essential in 
understanding the complexity of these systems-of-
systems worlds and their dynamics,  and predicting 
and controlling their evolution, and creating accurate 
decision support capabilities when maneuvering 
through uncertain environments and not known a 
priori conditions. IoT combined with modeling is 
referred to as Cognitive IoT (CIoT). 

Rich multi-fidelity and multimodal modeling and 
instrumentation are becoming key for enabling the 
above referenced capabiltiues for physical world 
systems (natural, engineered, and human systems). 
Beyond  present notions of CIoT (Wu 2014, Zaidi 
2015), new capabilties derived through modeling 
dynamically and synergistically integrated with 
instrumentation in a feed-back control loop are 
emerging (Darema 2000, 2005; Willcox 2014, 
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Bazilevs 2012, 2013;  Celik 2011, Son 2010).  
Furthermore, the trend towards higher fidelity, and 
(semi-)autonomy through humans in the loop is 
accelerating.  Related methods and opportunities 
include fusing multiple world models to extract 
insights, capturing and using dynamic intelligent 
interactions, and orchestrating these interdependent 
models, information, processes, decisions, and 
actions.  In addition, robust IT systems are essential 
for supporting the CIoT capabilities discussed 
above.  

 
Figure 1: CIoT solutions will require interconnected and 
interdependent models representing the physical 
environment, business & IT, and individual & 
communities. 

A cognitive Internet of Things (IoT) solution 
really is a feedback control loop system (or system 
of systems, since each individual component within 
this system could be a system by itself).  Figure 2 
shows the system view of such a closed-loop CIoT 
solution: 
• Modeling & Orchestration Platform  
• Data & Measurement Platform 
• Control Platform  

A CIoT solution inlcudes the real world itself – 
whether it is for example a smart grid, a smart 
building, a smart supply chain, or a smart water 
system; and the instrumentation provides 
mechanisms to capture information (of varying 
levels of fidelity) from the observed world to 
describe the real-world through models of the real 
world.  As discuss more below, cognitive 
representations (or models) integrating data captured 
from the instrumented world  enable interpolation or 
extrapolation of those areas where data could be 
noisy, unavailable, or contaminated. And in other 
cases, these models allow generation of the most 

plausible hypotheses to explain the available 
information.    

From these models, the possible outcomes are 
generated through simulation and/or predictive 
analysis.  Based on the what-if analysis conducted 
by the models, a course of actions is then taken to 
actuate the real world. This closed-loop system in 
reality is an instance of the closed-loop control 
system and is similar the MAPE loop of an 
autonomic system, with the exception that we will 
need to include the impacts from human 
(individually or as a community) to the system. 

2 MODELS 

A CIoT solution requires optimal or near optimal 
orchestration of the control flow and information 
flow. (The music notes of the orchestration really 
came from behavior models which dynamically 
integrate real-world information).  Consequently, 
developing models at the behavior levels is 
necessary in order to enable optimal orchestration of 
both information and control flows.  The behavioral 
models are continuously updated by the input data 
either to speed-up the execution by replacing parts 
of the computation in the model with the actual data 
or to impart additional information into the model as 
it is quite often that the model does not accurately or 
fully capture the system. The output of the behavior 
model controls the instrumentation in order to either 
refine data acquisition to improve the model 
accuracy or actuates the controllers to effect  
an action on the system or by the system 
(DDDAS/Infosymbiotics paradigm – Darema 2000, 
2005, 2006, 2010). The kinds of models of interest  
 

 
Figure 2: Interconnected platforms provide data dynamic 
capture & integration into models, orchestration of 
behavioral models, and control for closed-loop prediction 
& response. 
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span numeric and non-numeric, agent-based and 
graph models, as well as statistical models.   
Examples are given in Section 3.  

There are multiple abstraction levels of models 
of the world. The most abstract level is at the 
conceptual (theory or functional) level.   Additional 
details are available at the structural level.  
Behavioral level models often capture the most 
comprehensive aspects of the real world.  Both at the 
structural and the behavioral level, there may be 
multiple levels of fidelity in describing the system at 
hand.  The evolution of the abstraction levels of the 
model typically starts at the conceptual and/or 
functional levels.   There are quite a few examples 
from various industries that demonstrate the gradual 
evolution of model sophistication, and examples are 
shown in Fig. 3.   

During the development of Boeing 777, 
substantial portion of its dynamic behavior was 
entirely evaluated within a simulation environment 
rather than going through numerous wind-tunnel 
testing (Abarbanel 1996). In a later section, we 
discuss new and more powerful methods (DDDAS-
based) that not only allow optimal design of aircraft, 
but also use new modeling methods (discussed in 
Section 2) to enable optimized operational 
capabilities under dynamic conditions.  

 
Figure 3: Examples of multiple abstraction levels of 
models of the world. 

Additional examples include the ability to 
simulate the IBM z10 chip entirely within the 
simulation environment in conjunction with virtual 
bring up and processor-only exercise. The ability of 
fully capturing the system at the behavior model 
level enables the first tape out and bring up of the 
IBM system z10 to be entirely successful (Lets 

2009).    Similarly, optimization in enterprise 
processes at the behavior levels saves multi-billion 
dollars annually through supply chain optimization 
(Min 2002; Son 2010). 

The evolution from conceptual/functional models 
to behavior models in almost every domain in the 
past has improved business outcome with 
manageable complexity and uncertainty. 

In general, the entire CIoT spectrum really 
includes physical worlds, business and IT worlds, 
and the human worlds, and can be further divided 
into at least six domains: physical, embedded 
(SCADA related), cyber, enterprise, community, and 
individuals. 

During the past few decades, cognitive models in 
each of these silos are evolving from functional to 
structural and now to behavioral.   In the foreseeable 
future, capturing and modeling the CIoT will happen 
at multiple abstraction, multiple resolutions and 
from multiple vantage points.   

For example, in the enterprise domain, CBM 
(component business model) (Chesbrough 2010) and 
industry framework belong to the functional aspect.  
Industry models (including data models, process 
models, and service models) belong to the structural 
levels. Customer and workforce logistics and the 
enterprise risk models belong to the behavioral 
levels. 

 
Figure 4: Future CIoT solutions will require 
interconnected and orchestrated measurements and models 
across multiple domains. 

In the cyber area, ITIL (Canon 2011) can be 
viewed as belonging to the functional level while IT 
configuration model belong to the structural level 
and workload and network traffic belong to the 
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behavior level. 
For the community side of the human world, 

social networks (including LinkedIn and Facebook) 
capture the structural level of human relationship.  
Many of them evolve into capturing social or 
community behavior in real time. From the 
individual (personal) side, individual profile belongs 
to the functional level while the purchase history 
belongs to the behavior level.  

The embedded system domain is related to 
electric grid, transportation, dam, traffic lights, and 
manufacturing where SCADA systems (Boyer, 
2009) are often deployed.   This area is transforming 
itself at an extremely fast pace as increasingly more 
of such systems are connected to each other as well 
as to the internet, and through DDDAS-based 
models.  

By transforming from single domain into 
ecosystem, as in Fig. 4, we could gain new insight 
when analyzing the existing and future CIoT 
solutions.  Many of the existing CIoT solutions fall 
into the category of single domain, and leveraging 
only structural models for static analysis.  There are 
emerging opportunities – whether it is in the smart 
grid (power grid) or smarter city areas – often 
requires integrating more than one interdependent 
domain at the behavioral levels as well as 
DDDAS/Infosymbiotics based methods, of models 
dynamically integrated with instrumentation.   There 
are advances and new capabilities that have been 
demonstrated along these directions (per examples 
in Section 3), and are likely ready to transition and 
be exploited by industry over the next 2-5 years. 

 
Figure 5: Smart Grid solutions continuously optimize the 
expected outcome dynamic data driven behavior models. 

3 CASE STUDIES 

In this section, we will use the smart grid and  smart 

aerial platforms as examples to illustrate the 
behavior-model based orchestration in DDDAS-
based CIoT solutions.   

(A) Energy Related Applications  
In a smart grid solution, intelligent utility networks 
(IUN) provide capabilities for real-time prediction of 
the onset of brown-outs or black-outs, and also 
provide optimized dynamic load management.   The 
real-time instrumentation capability, often referred 
to as automatic meter reading (AMR) or automatic 
meter infrastructure (AMI), is based on 
measurements made by voltage amplitude phasor 
measurement unit (PMU) and other IoT sensors 
dynamically integrated with statistical and agent-
based models.   Dynamic load management within a 
Smart Grid solution includes activating mitigating 
actions prior to the onset of a brown-out or black-out 
to ensure differentiated support for critical and high-
priority services vs. medium- and low-priority 
services for multiple customers and multiple (and 
possibly geographically dispersed) energy-sources 
(including renewables - such as wind, solar, and 
hydro, and energy storage which acts as a generation 
source) (Celik 2013, 2015).  

Other scenarios include incorporating weather 
data and weather prediction models in dynamic data 
driven behavior models of the power-grid to provide 
continual optimization of load shedding during peak 
demand period (such as during summer) or 
restoration of the grid infrastructure after a weather 
induced failure (integrated outage management). 
Emerging scenario based on electric vehicles already 
led to a new demand class and potentially a 
generation source through the use of batteries.  
Furthermore, demand response management reduces 
demand during peak hours through incentives such 
as dynamic pricing plan.   

With such capabilities, the utility companies will 
be able to provide much better assurance of the 
business outcome for their customers.   The bottom 
line is to leverage the real-time visibility 
(instrumentation) in order to build real-time 
behavioral models so that the business can optimize 
the expected outcome continuously. 

Other Smart Grid related areas such as wind 
farms pose new challenges and require new CIoT 
capabilities. These CIoT capabilities include 
optimized operation to mitigate effects of the wake 
across stacked turbines (Perez 2015) and reducing 
wear and tear or turbine rotors and prediction of an 
adaptive repair schedule rather than a static one (all 
turbines repaired periodically) (Ding 2006).  

Accurate high resolution weather forecasts are 
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central to predict potential storm severity and its 
path. IBM Research’s Deep Thunder (Gallagher 
2012) can provide high resolution forecasts for a 48 
hour horizon for areas (in a given county) that are 
most likely to have outage events (with some 
uncertainty). This prediction can provide a basis for 
planning the deployment of repair crews and trucks 
in an anticipatory mode. An additional piece of 
analysis would be to schedule work orders and 
repair crews that would maximize the number of 
customers that are brought back online with each 
order. The ability to estimate the likelihood of 
damage in different regions allows for predictive 
planning in stationing crews for early repairs.    

(B) Structural Health Monitoring, Energy 
Efficiencies, and Decision Support 
Aerial platforms (both civilian and military, human-
operated and UAVs, aerial and space-based) during 
flight are subject to dynamic stresses accentuated by 
turbulence-induced forces. Such stresses as well as 
aging of materials can result in structural damage, 
manifested as cracks, disbonding, delamination, or 
waviness. All these conditions can cause disastrous 
results with airplane crashing (as indeed have 
happened, such as aileron detachment). Additional 
sensor malfunction situations (such as pitot tubes 
freezing) also result in catastrophic failures.  
DDDAS-based modeling have shown advanced 
capabilities: (1) detection of the onset of damage 
(crack creation), (2) predict the propagation of the 
damage and potential impact (Willcox 2014), (3) 
application of time dependent control through 
coordination of multiple actuators to mitigate the 
propagation of the damage (Bazilevs 2012), and (4) 
wing-level and aerial structure-wide assessment of 
structure (5) through multi-fidelity models 
dynamically driven by multiple levels of sensors to 
assess platform health conditions in real-time, (6) 
cognizant of environment (such as winds and wind-
induced turbulence) to plan and re-plan in real time 
to optimize flight path and necessary maneuver to 
fulfill mission (Willcox 2014, 2015). It was 
demonstrated in (Varela 2013, 2014) by using 
DDDAS-based methods to compensate for sensor 
failures.  In this case, the output from a continually 
executing model of flight conditions is compared 
against the actual measurements from pitot sensor. 
The model can take over in case of abrupt 
discrepancy with the measurement to allow time to 
readjust and switch over to other sensor modalities .  

4 SYSTEM IMPLICATIONS 

CIoT solutions often have specialized requirements 
on processing through models the data derived from 
sensors and produce decisions and apply control 
through actuators. In some applications the value of 
data is highest when real-time or near real-time 
response was possible.  In most applications both 
real-time and archival data are used as dynamic 
inputs into the models (e.g. weather, flight-path, 
etc). When multiple data sources are used as 
dynamic inputs into the behavior models, the value 
could be even higher as additional data can help to 
make the model more accurate, speed-up the model, 
reduce the uncertainty and contribute to the 
improved accuracy for predicting future condition 
and evolution of the system.  In other applications, 
after the initial interval when the data contributes 
directly to the decision and proactive actions, the 
value of the data monotonically declines as the data 
can be potentially used for metering and billing, 
auditing, and long term trend analysis.  As a result, 
system architectures optimized for CIoT solutions 
need to accommodate latency requirements and 
prioritize computation and communication resources 
in order to maximize the value that can be derived 
from the sensor data as well as the long term archive 
requirements to facilitate long term trend analysis. 

Video surveillance is at the forefront of these 
requirements in terms of throughput (3.2-
26GB/day/stream). SCADA systems and health 
monitoring systems have very stringent latency 
requirements (on the order of microseconds to 
milliseconds). High throughput and/or low latency 
requirements often mandate moving some cognitive 
capabilities to the edge of the CIoT solution even 
though the primary analytic functions are still 
carried out in the computing and data center(s). 

5 ORCHESTRATION 

Orchestrating a CIoT solution shown in Fig. 2 
requires orchestrating interconnected platforms.  
These platforms include those capturing the 
information from the real world, dynamically 
integrating the information (measurement data) from 
the actual systems (the observed world) into the 
world model (including behavior models), for 
simulation and predictive analysis for what-if 
scenarios, and using the decision model (subject to 
the context and constraints) to render a set of 
command and control instructions that will yield 
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optimal expected outcomes.   These command and 
control instructions will then be executed by the 
command and control mechanisms and applied to 
the real world.  

The modeling and analytic orchestration 
platform (the brain of a CIoT solution), coupling 
with the instrumentation (measurement and control).  
The lifecycle of analytics can start with the raw data 
coming from the real world, going through analytic 
environments that may include analysis engines for 
structured, unstructured, streaming, general 
analytics, application/algorithmic specific analytics, 
and dashboard/reporting tools, and in return 
additional raw data are collected, fed into the model 
to improve its accuracy or speed of the modeling. 
It’s worth noting that when behavior models are 
tightly coupled with the data specific analytic 
environment, data modalities and very difficult to be 
generalized, and more general levels of abstraction 
of data and models are needed. Nevertheless, the 
DDDAS/Infosymbiotics paradigm provides a clear 
methodology of   the value of dynamic integration of 
models and data in a feedback control loop.  

6 CONCLUSIONS 

The introduction of pervasive and ubiquitous 
instrumentation within a CIoT leads to 
unprecedented real-time visibility of the power grid, 
traffic, transportation, water, and oil & gas areas. 
Interconnecting those distinct physical, people, and 
business worlds through ubiquitous instrumentation, 
even though still in its embryonic stage, has the 
potential to unleash a planet that is much greener, 
more efficient, more comfortable, and safer. 

In this paper, we described some of the 
opportunities after applying cognitive computing on 
interconnected and instrumented worlds and call out 
the system of systems trend on interconnecting these 
distinct but interdependent worlds.   It has become 
increasingly crucial that cognitive representations of 
these distinct worlds (a.k.a. models, dynamically 
integrated with instrumentation) need to be created 
as a pre-requisite so in order to assess the 
complexity, maneuver through uncertain 
environments and eventually achieve the predicted 
outcome. 
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