
The Mathematical Foundations for Mapping Policies to Network Devices

Dinesha Ranathunga1, Matthew Roughan1, Phil Kernick2 and Nick Falkner3

1ARC Centre of Excellence for Mathematical and Statistical Frontiers,
School of Mathematical Sciences, University of Adelaide, Adelaide, Australia

2CQR Consulting, Unley, Australia
3School of Computer Science, University of Adelaide, Adelaide, Australia

Keywords: Network-security, Zone-Conduit Model, Security Policy, Policy Graph.

Abstract: A common requirement in policy specification languages is the ability to map policies to the underlying net-
work devices. Doing so, in a provably correct way, is important in a security policy context, so administrators
can be confident of the level of protection provided by the policies for their networks. Existing policy lan-
guages allow policy composition but lack formal semantics to allocate policy to network devices.
Our research tackles this from first principles: we ask how network policies can be described at a high-level,
independent of vendor and network minutiae. We identify the algebraic requirements of the policy-mapping
process and propose semantic foundations to formally verify if a policy is implemented by the correct set of
policy-arbiters. We show the value of our proposed algebras in maintaining concise network-device configu-
rations by applying them to real-world networks.

1 INTRODUCTION

Managing modern-day networks is complex, tedious
and error-prone. These networks are comprised of a
wide variety of devices, from switches and routers to
middle-boxes like firewalls, intrusion detection sys-
tems and load balancers. Configuring these heteroge-
neous devices with their potentially complex policies
manually, box-by-box is impractical.

A better approach is a top-down configuration
where device configurations are derived from a high-
level user specification. Such specifications raise the
level of abstraction of network policies above device
and vendor-oriented APIs (e.g., Cisco CLI, Open-
Flow). Doing so, provides a single source of truth,
so, security administrators for instance, can easily de-
termine who gets in and who doesn’t (Howe, 1996).

In recent years, several research groups have pro-
posed high-level policy specification languages for
both Software Defined Networking (SDN) (Soulé
et al., 2014; Reich et al., 2013; Foster et al., 2010;
Prakash et al., 2015) and traditional networks (Bartal
et al., 2004; Guttman and Herzog, 2005). A com-
mon requirement in these languages is the ability to
map the abstract policies to the underlying physical
network. Doing so accurately, is essential to

• enforce policy correctly; and

• track policy changes per network device, so, re-
dundant policy updates can be avoided.

But, mapping policies to the physical network devices
has challenges

• policy needs to be decoupled from the network. A
policy shouldn’t need to change with vendor, or
every time IP address changes occur;
• the mapping must be formally verifiable. Precise

and unambiguous mathematical semantics elimi-
nate wishful thinking pitfalls in deploying policies
to networks. So, security administrators have as-
surance, for instance, that their intended policies
are enforced by the correct firewalls; and
• policies can have complex semantics including

node and link properties.

We propose a generic framework to map policies
to network devices algebraically. We illustrate it’s
use by considering security policies, because incor-
rect deployment of these policies in domains such as
Supervisory Control and Data Acquisition (SCADA)
networks can result in catastrophic outcomes includ-
ing the loss of human lives! However, the principles
involved, can easily be extended to policies involving
traffic measurement, QoS, load balancing and so on.

In developing our algebras, we have derived
the properties and constraints of sequentially- and

Ranathunga, D., Roughan, M., Kernick, P. and Falkner, N.
The Mathematical Foundations for Mapping Policies to Network Devices.
DOI: 10.5220/0005946201970206
In Proceedings of the 13th International Joint Conference on e-Business and Telecommunications (ICETE 2016) - Volume 4: SECRYPT, pages 197-206
ISBN: 978-989-758-196-0
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

197

parallelly-composed policies for various policy con-
texts. These policy-composition semantics must be
preserved, when mapping policy to devices, to ensure
correct deployment. Using an algebraic framework
also makes the policy-mapping process efficient.

We will demonstrate the use of our proposed al-
gebras in deploying security policies on real SCADA
networks. Particularly, we will show it’s value in
maintaining a clear, concise set of firewall configura-
tions. Our approach allows administrators to conduct
“what if” analysis by changing policy and/or network
topology and observe their effect on the network de-
vices required to implement the changes.

2 BACKGROUND AND RELATED
WORK

“The advantages of implicit definition over construc-
tion are roughly those of theft over honest toil.”

Bertrand Russel
The quote is salient because network installa-

tions are commonly built from the bottom-up, i.e., a
network-device is purchased, and configurations writ-
ten. The policy is the result of the configuration,
which is the consequence of a purchasing decision.
So, the policy is implicitly defined as a result of many
small decisions that interact in complex ways. In-
stead, best-practice guides (e.g., Byres et al., 2005)
suggest designing the policy first, and only then de-
termining how to implement it.

Solutions that employ a top-down network config-
uration have been proposed (e.g., Soule et al., 2014;
Anderson et al., 2014; Bartal et al., 2004). They allow
management of a single network-wide policy (i.e.,
source of truth). These policies should be high-level:
i.e., decoupled from network and vendor intricacies,
to capture policy intent and not the implementation.

Capturing intent has several benefits: policy can
be distinguished from network to assist with change
management; accurate comparison of organisational
policies to industry best-practices can be made to
evaluate compliance; and policy semantics can be ex-
pressed without network minutiae like IP addresses.
But, most research towards high-level policy lan-
guages (Bartal et al., 2004; Cisco Systems Inc., 2014;
Soulé et al., 2014), still requires these minutiae to be
specified in-policy, to implement policy on a network.

If the high-level policy definition is built on formal
mathematical constructions, then there are no implicit
properties and it provides a truly sound foundation
for everything that follows. The formalism would al-
low construction of complex and flexible policies and
support reasoning about the policies. For instance,

we could precisely compare a defined policy with in-
dustry best-practices in (Byres et al., 2005) for com-
pliance and reduce network vulnerability to cyber at-
tacks (Ranathunga et al., 2016a).

It is equally important to map policy to devices us-
ing a formal approach. For instance, we can be confi-
dent of the blanket of protection provided for our net-
work if and only if we could prove that an intended
security policy is implemented by the correct set of
network firewalls. Some top-down configuration lan-
guages (Bartal et al., 2004; Prakash et al., 2015; Cisco
Systems Inc., 2014) allow creation of network-wide
high-level policies, but lack means to allocate policy
to network devices in provably correct way.

NetKAT (Anderson et al., 2014) is a SDN pro-
gramming language for specifying and reasoning
about network behaviour. An implementation has
been developed for NetKAT to handle high-level poli-
cies based on virtual network topologies (Smolka
et al., 2015). The implementation uses an extension
of Binary Decision Diagrams to generate OpenFlow
table entries from high-level policy. In another ap-
proach, the SOL framework (Heorhiadi et al., 2016)
uses a path-based abstraction to capture optimisation
requirements of SDN applications. The abstraction
allows definition of valid paths via predicates (e.g.,
those that include a firewall). In contrast to these
works, our aim is to develop an algebraic framework
to map high-level policy to network-devices in both
SDN and traditional networks.

We have proposed (Ranathunga et al., 2016a) a
high-level security policy specification that is network
and vendor independent for top-down configuration
of firewalls. The language semantics allow these poli-
cies to be easily understood by humans. We investi-
gate here, the underlying requirements for mapping
these policies to network devices.

3 ABSTRACT POLICIES

Abstractions are key to constructing high-level poli-
cies. A good policy abstraction should capture the
underlying concepts naturally and concisely. For in-
stance, a policy may be arbitrated using one or more
network devices. A good abstraction should decouple
what is arbitrated from how it is arbitrated.

A simple abstraction that is commonly used to de-
couple policy from the network is (endpoint-group,
edge) (Bartal et al., 2004; Prakash et al., 2015). An
endpoint groups elements with common physical or
logical properties: e.g., a subnet, a user-group, a col-
lection of servers, etc. An edge specifies the rela-
tionship between the endpoints, i.e., it describes what

SECRYPT 2016 - International Conference on Security and Cryptography

198

communication is allowed between the endpoints.
Consider the example network in Figure 1(a), our

high-level policy might be “we want to measure all
HTTPS flows from S1 to S4”. This intent can be ex-
pressed using the (endpoint-group, edge) abstraction
as p:=S1 → S4 : collect https, where p ∈ P is
an element of the possible space P of policies.

We now want to map the policy to enforcing de-
vices (i.e., arbiters). It looks naively easy. Just imple-
ment the policy on arbiter F . However, the problem is
in general more complicated. For example, consider
policy from S1 to S2. If arbiter A captures flows de-
scribed by policy pA and likewise pB, then the combi-
nation is pA∩B because the policy expresses that flows
be collected but load balancing across the two paths
could result in either being used by a given packet.

For another example, consider policy from S2 to
S3. If arbiters C and D capture flows described by
policy pC and pD respectively, then the combination
would yield their union because both arbiters in the
path are used for flow collection. So, when mapping
policies to network devices, they must be composed in
a way that preserve the topology-specific semantics.

We will, in general, denote the policy composition
resulting from parallel routes as pA⊕ pB and that re-
sulting from serial routes as pA⊗ pB. In this example,
pA⊕ pB = pA∩B and pC⊗ pD = pC∪D. Note though,
the meaning of ⊕, ⊗ are policy-context dependent.

The problem of mapping our high-level policy p
(from S1 to S4) to network devices, may be even more
complicated than simply implementing the policy on
F . What happens if F fails? Surely we would still
want to collect HTTPS flows that traverse the redun-
dant paths from S1 and S4 (e.g., path via S2 and S3).
So, p must also be mapped to the policy arbiters along
the path S1− S2− S3− S4, to cater for this redun-
dancy. But then, should we map the policy to all of
these arbiters or a subset of them?

Given the parallel routes between S1 and S2 it is
easy to see that we need to map p to both A and B to
preserve the semantics of⊕. But, when arbiters are in
series (e.g., C,D) we have the choice of mapping pol-
icy to both or just one to preserve the semantics of ⊗.
Mapping to both may be unnecessary and inefficient
and arbiters may have limits on their capabilities.

The policy arbiters may not always be in series
or parallel. As we have outlined in our earlier work
(Ranathunga et al., 2015), when a star-topology is in-
volved, the question of how to map policy to topol-
ogy gets interesting. Loosely mapping policy to ar-
biters using a hyper-edge adds to the complexity of
the policy-graph and decreases it’s precision. For in-
stance, it allows a 1 : n relationship between hyper-
edges and policies, so, we must track the policy be-

(a) Network topology. (b) Policy graph of (a).

Figure 1: Example network consisting of four endpoints
(S1− S4) and six policy arbiters A,B, ...,F (a). The corre-
sponding policy graph is shown in (b) with these endpoints
and policy edges (E1,E2, ...,E6) between them.

tween every endpoint-pair in a hyper-edge to correctly
map it’s policy to network devices.

We can overcome these issues using a simple-edge
mapping instead (Ranathunga et al., 2015). The pol-
icy graph is then simplified and it’s precision is in-
creased. The 1 : 1 relationship between edges and
policies now implies we need to only track a single
policy per edge, to map policy accurately to devices.

We may also need to consider paths that consist
of one or more intermediate endpoints, when im-
plementing policy between an endpoint pair. For
instance, consider implementing a security policy
f :=S1 → S3: http in the network in Figure 1(a).
Once implemented on the arbiters (i.e., firewalls), the
policy should allow HTTP traffic flow from S1 to S3.
But, the policy can only be deployed correctly if end-
points S2,S4 can route or forward HTTP traffic.

This ability of an endpoint to route or forward
traffic can be restrictive. For instance, in a security
policy context, an endpoint can group systems (e.g.,
hosts) with similar security requirements (ANSI/ISA-
62443-1-1, 2007). So, high-risk systems can be
grouped in to one endpoint and only safe traffic that
originate and/or terminate at the endpoint is permit-
ted by the security policy. Enabling this endpoint to
transit-traffic could potentially expose the high-risk
systems within to cyber attacks. So, an endpoint’s
traffic transitivity capability must be considered in
constructing valid device-paths and must be captured
explicitly in the mapping process.

The intent of our high-level policy p is to col-
lect HTTPS flow data from S1 to S4. Similarly, traf-
fic measurement policies can be defined between any
pair of endpoints in the network, so the correspond-
ing (endpoint-pair,edge) tuples collectively construct
a policy-graph (Figure 1(b)). Each (logical) edge in
this graph maps to a physical network path compris-
ing of policy arbiters and zero or more intermediate
endpoints. For instance, policy-edge E4 in Figure
1(b) implements our policy p.

The Mathematical Foundations for Mapping Policies to Network Devices

199

So far, we have described several key require-
ments of a policy-to-device mapping process. Next,
we illustrate these using more detailed examples in-
volving policies found in practice.

3.1 Quality of Service (QoS) Policies

QoS policies can provide bandwidth guarantees for
certain types of traffic. The policy arbiters here would
be QoS capable routers or switches. Imagine we need
to provision a minimum bandwidth of 100MB/s for
HTTP traffic flow from S1 to S4 in Figure 1(a). The
high-level policy intent can be expressed as min(S1
→ S4 : http, 100MB/s). Similarly, QoS policies
between any endpoint-pair can be expressed using the
policy-graph in Figure 1(b).

Parallel and serial (QoS-device) topologies also
have an impact on the end QoS policy. Consider the
parallel topology between S1 and S2 in Figure 1(a), if
we assume pA and pB provide bandwidth guarantees
of B1 and B2 respectively, then with load balancing,
the resultant QoS policy (pR) can provide a total band-
width guarantee pR = pA⊕ pB = sum(B1,B2).

When the devices are in series, the resultant policy
provides a bandwidth guarantee given by pC⊗ pD =
min(B3,B4) where B3,B4 are the bandwidth guaran-
tees provided by pC and pD.

3.2 Security Policies

We consider here access-control policies in a network.
The policy arbiters would be traffic filtering devices
(e.g., firewalls, SDN switches). The endpoints could
be zones or user groups. Imagine we want to enable
only SSH traffic from S1 to S4 (Figure 1(a)). The
high-level policy can be expressed as S1→ S4: ssh
with an implicit deny-all in place.

When the traffic filtering devices are in parallel
(e.g., topology between S1 and S2 in Figure 1(a)),
the resultant security policy (pR), has meaning — all
packets that can possibly be allowed through — and
is the union of the packet sets allowed by the indi-
vidual devices. We take union conservatively because
intrusions and attacks are usually carried out through
permitted traffic. So, if pA and pB allows packet sets
Q and T respectively, then pR = pA⊕ pB = pQ∪T .

When the devices are in series, the resultant pol-
icy permits the intersection of the packet sets V,W
allowed by the policies of C, D respectively, i.e.,
pR = pC⊗ pD = pV∩W .

With security policies, it is often useful to have
endpoints that group systems with similar security re-
quirements. Doing so, allows to define a single pol-
icy for all members of an endpoint: a clean and con-

cise abstraction of network security. But, a generic
(endpoint-pair, edge) abstraction cannot capture such
network-security specific concepts precisely.

So, we need concrete definitions for what an end-
point and an edge means for each policy context to
capture policy-specific intricacies. We will show later
how to define these concretely for security policies.

3.3 Traffic Measurement Policies

Traffic measurement policies help implement, for in-
stance, NetFlow (v9) on the network in Figure 1(a).
The policy arbiters A,B, ...,F here, would be NetFlow
capable devices (usually routers or switches). The
endpoints could be subnets or zones in the network.

When we considered the parallel routes between
S1 and S2, the resultant policy (pR) has meaning —
the flows that are guaranteed to be captured by the
topology (without sampling) — and constitutes of the
intersection of the packet sets of A and B. So, if pA
and pB capture packet sets Q and T respectively, then
pR = pA⊕ pB = pQ∩T .

We also showed when the devices are in series, the
resultant policy captures the union of the packet sets,
i.e., pR = pC⊗ pD = pV∪W .

Thus, policies can be composed using the generic
semantics ⊕ and ⊗ in different policy contexts. The
actual meaning of these operators is policy-type de-
pendant. For instance, with QoS policies, ⊗ repre-
sented minimum while here it has meaning of union.

Policy Mapping Vs Routing: Our discussion above
on mapping policies to network devices, relates to
network paths or routes. This is no accident. Our
target problem has many parallels with routing.

But, the aim in routing is to determine the path
that optimises a given path-metric (e.g., shortest-path
routing finds a minimum-distance path between end-
points). Our target problem is different: we need to
determine the arbiters in a network a given policy
should be implemented on. So, constructing all fea-
sible paths is crucial because, for instance, a security
policy between two endpoints can only be correctly
implemented (e.g., to block all Telnet traffic) if all re-
dundant paths between them are taken into account.

In routing, the number of endpoints (e.g., individ-
ual gateways) can be high for a large network, so,
distributed means to computing a solution is essen-
tial (requiring de-centralised protocols like OSPF and
BGP). In contrast, we expect a relatively low num-
ber of endpoint groups when mapping policies to de-
vices. As we will show in 5, a low endpoint-count
makes our policy-mapping algorithm computation-
ally tractable. So, a logically-centralised implemen-
tation can be considered.

SECRYPT 2016 - International Conference on Security and Cryptography

200

Current meta-routing algebras (Dynerowicz and
Griffin, 2013), allow to provably choose paths that op-
timise various path-metrics. These algebras support
specification of link properties, but, not the specifica-
tion of node properties such as traffic transitivity.

We described earlier, the need to define endpoints and
edges concretely to incorporate the intricacies in each
policy context. We illustrate the idea next using se-
curity policies and their concretised (endpoint-pair,
edge) abstraction: the Zone-Conduit model.

The Zone-Conduit Model: Lack of internal-network
segmentation is a key contributor to the fast prop-
agation of threats and attacks in a network (Byres
et al., 2005). So, ANSI/ISA have proposed the Zone-
Conduit model as a way of segmenting and isolat-
ing the various sub-systems in a SCADA network
(ANSI/ISA-62443-1-1, 2007).

A zone is a logical or physical grouping of an
organisation’s systems with similar security require-
ments so that a single policy can be defined for all
zone members. A conduit provides the secure com-
munication path between two zones, enforcing the
policy between them (ANSI/ISA-62443-1-1, 2007).
A conduit could consist of multiple links and firewalls
but, logically, is a single connector.

The Zone-Conduit model is a concrete instance
of the (endpoint-pair, edge) abstraction for high-level
security policy specification. Zones and conduits de-
fine endpoints and edges concretely. These definitions
allow important network-security characteristics such
as a single zone-policy, to be captured concisely.

The ISA Zone-Conduit model in its original de-
scription lacks precision for policy specification. We
use the extensions proposed in (Ranathunga et al.,
2015) to increase its precision, e.g., we add Firewall-
Zones to specify firewall-management policies.

Zone-Conduit Policies: A conduit policy is an or-
dered set of rules [p1, p2, ..., pn] that act on packet
sequences to accept, deny, or in some cases, modify
them. In our related work (Ranathunga et al., 2016a),
we have identified properties and constraints required
in a Zone-Conduit based policy description to make
the rules implementation- and order-independent.

To summarise, we adopt a security whitelisting
model, i.e., we restrict policies to express positive
abilities1 and deny all inter-zone flows that are not ex-
plicitly allowed (Ranathunga et al., 2015). Doing so,
renders the rule order irrelevant and allows consistent
conversion of policy to heterogeneous firewalls. Thus
the underlying vendor can change without requiring
policy alterations. By being explicit, we also prevent
services being accidentally enabled implicitly.

1Refers to the ability to initiate or accept a traffic service.

Directed- vs Undirected-Conduit Policy: The policy
on an undirected-conduit can be expressed using two
directed-conduit policies. Directed-conduits are im-
portant in understanding how policy should be imple-
mented on device interfaces. For instance, an undi-
rected conduit can only map a security policy to a fire-
wall interface. But, to implement the policy correctly,
we additionally need to know if it should be imple-
mented inbound or outbound on these interfaces. A
directed-conduit provides this directionality.

However, analysis using directed-conduits can
also lead to problems. For instance, directed-conduit
paths that may seem feasible may require traffic to
traverse a firewall interfaces twice (illustrated in de-
tail in the longer version of the paper). We inval-
idate such directed-conduit paths via a mapping h :
F →W where F = {directed f irewalls} and W =
{ f irewalls}. A directed-firewall in the Zone-Conduit
graph G = (Z,C) is defined as

Definition 1 (Directed firewall). A directed firewall
ti j is a firewall t ∈W that filters traffic on directed-
conduit (i, j) ∈C.
Then we can check if the directed-firewalls in a path
map to the same physical firewall (i.e., h(A13) =
h(A31) = A) and deem that path invalid.

4 MAPPING ALGEBRA

We outline here, our proposed algebra to map policy
to network devices by first making the distinction be-
tween primary and secondary policy-edges.

4.1 Firewall-path Construction

A policy-edge can be classified as primary or sec-
ondary based on how it arbitrates policy. A primary-
edge enforces policy using arbiters (e.g., firewalls)
only. A secondary-edge enforces policy using arbiters
and one or more endpoints (e.g., a zone).

We demonstrate the idea using the simple Zone-
Conduit graph G = (Z,C) in Figure 2(a). The firewall
composition of each primary-conduit in the model is
shown (Figure 2(b)). The example secondary-conduit
C13 filters traffic flow from zone 1 to 3, using several
directed-firewalls and transit zones 2, 4. The set of all
directed-conduits are given by DC = {Ci j | (i, j)∈C}.

A policy-graph is essentially an automation that
moves traffic packets from one endpoint to another us-
ing policy-edges. So, regular expressions (the natural
language of finite automata), can capture the packet-
processing behaviour of this model; a path encoding
is a concatenation of directed-devices (i.e., policy-
arbitration steps pq) and a set of paths is encoded as

The Mathematical Foundations for Mapping Policies to Network Devices

201

a union of paths. Past work (Anderson et al., 2014)
has shown, all single-path encodings stem from the
Kleene star operator (*) on the set of directed-devices.

In a security policy context, the automation means
that a single firewall-path encoding is a concatenation
of directed-firewalls. Each path depicts a sequence of
traffic filtering steps and is an element of F∗.

But, the Zone-Conduit model is a logical repre-
sentation, so, every firewall-path encoding in F∗ may
not be valid. We define single firewall-path concate-
nation to filter-out invalid paths
Definition 2 (Single firewall-path concatenation).
Take a ∈ F∗ s.t. a = td1d2td2d3td3d4 ...tdndn+1 where
tdid j ∈ F. Also take b ∈ F∗ s.t. b =
sg1g2sg2g3sg3g4 ...sgmgm+1 where sgig j ∈ F. Then
firewall-path concatenation from F∗×F∗→ F∗ is

ab =

td1d2 ...tdndn+1sg1g2 ...sgmgm+1 if dn+1 = g1

and gi 6= d j; ∀i, j, i > 1
and h(tdid j) 6= h(sgkgl); ∀i, j,k, l

φ, otherwise.

and aφ = φa = φ; ∀a ∈ F∗.
Concatenation defined above is a binary operation

that constructs only elementary firewall-paths. These
paths do not allow traffic to traverse a particular fire-
wall interface more than once and also prohibit traffic
flow through a non-transit zone (e.g., Firewall-Zone).

Consider two directed-firewalls X ,Y with policies
pX and pY that accept packet sets R and T . The re-
sultant policy of the concatenated firewall-path XY
is that of sequential firewalls and can be denoted as
(pX⊗ pY)(s) = pR∩T (s) where s is a packet sequence.
This result is policy-context dependent, for instance,
with traffic measurement policies, the outcome is sim-
ilar to that of serial arbiters: i.e., pX ⊗ pY = pR∪T .

We define a set of directed-firewall paths as a
union of elements in F∗. Again, consider our
directed-firewalls X ,Y from before. If these described
two distinct paths, then the resultant policy of the
path union X ∪ Y is that of parallel firewalls, i.e.,
(pX⊕ pY)(s) = pR∪T (s) where s is a packet sequence.
This result is also context dependent, so, for traffic
measurement policies, the outcome is similar to that
of parallel arbiters, i.e., pX ⊕ pY = pR∩T .

We also extend concatenation in Definition 2 to
S = {Power-set of F∗}
Definition 3 (Multiple firewall-path concatena-
tion). Take a,b ∈ S s.t. a = {a0,a1...,ax},b =
{b0,b1, ...,by} where ai,b j ∈ F∗. Then firewall-path
concatenation from S×S→ S is given by

ab = {aib j}; ∀i j
Definition 3 allows to construct all possible firewall-
path sets from the union of elements in S. Then

(S,∪, ·, 0̂, 1̂) is an idempotent semiring with
0̂ = φ; empty set; and
1̂ = {ε}; empty-string set where ε is the identity

element of the concatenation operation.
The properties of the operators ∪ and · actually dic-
tate rules for firewall-path construction. So, these se-
mantics must be preserved when composing firewall-
paths. For instance, ∪ is commutative while · is not.
So, the order of the directed-firewalls matter, when
constructing a single firewall-path, but, are irrelevant
when constructing multiple paths.

Similarly, we can construct single and multiple
device-paths for other policy contexts and obtain the
semiring result for (S,∪, ·, 0̂, 1̂) per security policies.

4.2 Mapping Policy to Arbiters

We described how the semiring (S,∪, ·, 0̂, 1̂) con-
structs sets of device-paths between policy-graph end-
points. The sequential (i.e., ⊗) and parallel (i.e., ⊕)
policy-composition operators in 3 can now construct
the policies of these paths. Assume we have to im-
plement a high-level policy pi j on arbiters qkl that lie
in the paths from i to j. All applicable device-paths
from i to j can be constructed as per 4.1 and given by
Si j = {qa1a2qa2a3 ...qan−1an ,,qb1b2qb2b3 ...qbm−1am}.
Then, the high-level policy p′i j derived from the in-
dividual arbiter policies p′kl is

p′i j = (p′a1a2
⊗ p′a2a3

...⊗ p′an−1an)

⊕ (....................................)

⊕ (p′b1b2
⊗ p′b2b3

...⊗ p′bm−1bm
). (1)

Mapping the intended high-level policy pi j to the
arbiters is now a matter of finding p′i j for all arbiters
such that p′i j = pi j. But deriving such a mapping is
non trivial because ⊕ and ⊗ have policy-context de-
pendent meanings. For instance, with security poli-
cies ⊕ means union and ⊗ means intersection. So, a
simple solution that supports defence in depth would
be to implement the access-control policy pi j on ev-
ery sequential firewall across all paths.

For another instance, ⊕ means summation and
⊗ means minimum in QoS policies. So, a required
bandwidth guarantee pi j can be split across multiple
paths with sequential arbiters in each path guarantee-
ing only a portion of the total bandwidth.

Irrespective of the policy context, the underlying
requirement when mapping policy to network devices
is to adhere to the semantics of 1.

4.3 Computation of All Firewall-paths

We reduced the policy-to-device mapping problem to
the semantics of 1 in the previous section. We now

SECRYPT 2016 - International Conference on Security and Cryptography

202

(a) Zone-Conduit model with pri-
mary and secondary conduits.

(b) Firewall-paths of the primary-conduits
in (a).

Figure 2: Zone-Conduit model depicting primary-conduits Ci j and a secondary-conduit C13 enabled by the transit zones 2 and
4 are shown in (a). The firewall-paths of the primary-conduits are shown in (b).

develop an algorithm to compute the device-paths of
1 efficiently. Again, we demonstrate the idea using
security policies and the Zone-Conduit model.

We can represent the primary-conduit firewall-
paths using a generalised Adjacency matrix A. Here,
A(i, j) is the firewall-path of primary conduit Ci j ∈
DC. For our example in Figure 2(b), A =

Z1︷︸︸︷
{ε}

Z2︷ ︸︸ ︷
{A12,B12}

Z3︷︸︸︷
φ

Z4︷ ︸︸ ︷
{E14}

{A21,B21} {ε} {C23,D23} φ
φ {C32,D32} {ε} {F34,G34}
{E41} φ {F43,G43} {ε}

(2)
Given such a matrix A, the solution to the problem

of finding the set of all valid firewall-paths between
zones is a matrix A∗ such that

A∗(i, j) = {valid primary- and secondary-conduit
firewall-paths from zone i to j} (3)

We developed the following theorem to compute
A∗, inspired by algorithms in meta-routing (Dynerow-
icz and Griffin, 2013).

Theorem 4 (A∗ calculation). A∗ can be calculated us-
ing the right iteration algorithm

A<k+1> = (A<k>T ∪ I)A where A<0> = I.

T and I are the zone-transitivity matrix and
the multiplicative-identity matrix (of semiring
(S,∪, ·, 0̂, 1̂)) respectively.

Proof. See the longer version (Ranathunga et al.,
2016b) of this paper.

The zone-transitivity matrix T is defined as

T (i, j) =

{
{ε} if i = j and transitivity(i) = 1
φ, otherwise.

(4)

and I is the multiplicative-identity matrix

I(i, j) =

{
1̂ if i = j
0̂, otherwise.

(5)

For bounded semirings we only iterate n−1 times
to converge to A∗, where n is the number of nodes in
the Zone-Conduit model, i.e., A∗ = A<n−1>.

We have defined T , A∗ and the right-iteration al-
gorithm for a security-policy context, but these can
equally be defined for other policy contexts.

If we apply our algorithm in 4 to the example in
Figure 2(b), n = 4, so, A∗ = A<3> and for simplicity
assume that all zones are transitive, then

T =

{ε} φ φ φ
φ {ε} φ φ
φ φ {ε} φ
φ φ φ {ε}

 (6)

and we see that I = T in this instance.
We calculate A∗ = A<3> =

{ε} η κ θ
µ {ε} ν β
γ λ {ε} ρ
ξ δ ζ {ε}

 (7)

where for instance

κ = {A12C23,A12D23,B12C23,B12D23,E14F43

E14G43} (8)

All valid firewall-paths from zone 1 to 3 are in κ.
Let’s now assume that zone 4 is non-transitive,

then transitivity(4) = 0, we re-calculate A∗ =

{ε} {A12,B12} η θ
{A21,B21} {ε} {C23,D23} µ

γ {C32,D32} {ε} ρ
ξ δ ζ {ε}

 (9)

where for instance

η = {A12C23,A12D23,B12C23,B12D23} (10)

The Mathematical Foundations for Mapping Policies to Network Devices

203

Figure 3: Policy to network-device mapping process.

The updated firewall-paths from 1 to 3 are in η. In
comparison to 8, we see that the paths via zone 4 (i.e.,
E14F43,E14G43) have now been removed as the zone
is no longer transitive. A∗ can similarly be calculated
for other policy contexts to determine all valid device-
paths between endpoint pairs.

We describe next our implementation of the algorithm
in 4. The implementation allows the use of these al-
gebras to map policy to real network devices.

5 IMPLEMENTATION

Our policy mapping system is depicted in 3, and we
outline it’s details below. The system is currently im-
plemented in Python, and allows mapping of high-
level policies written in our own policy specification
language, to network devices. We will make the sys-
tem open source in the near future.
High-level Security Policy: The topology-
independent policy input file created using our
high-level policy specification language.
Network Topology: The input network topology
described in the XML-based graph file format
GraphML. The file holds information of all devices
in the network and their interconnections. The crucial
aspects are the details of the topology near the policy
arbiters (e.g., firewalls).
Map Policy to Network: Compiles high-level policy
to an Intermediate-Level (IL), generates the policy
graph (e.g., Zone-Conduit model) of the input net-
work and computes A∗ as per 4.3 to map high-level
policy to the devices (e.g., firewalls) in the network.
Policy-to-device Map: The primary output depicting
policy breakdown by device, interface and direction.
Verification Output: Secondary output specifically
suited for verification (e.g., policy errors).

Our system implements a high-level policy on a net-
work instance by coupling the two. We outline here,

the computation of A∗ to map policy to network de-
vices (see the longer paper version for a detailed im-
plementation). We illustrate our system using security
policies and the Zone-Conduit model, but it can like-
wise be used in other policy contexts.

5.1 A∗ Calculation

We compute A∗ using the algorithm in 4. A cen-
tralised implementation is used (given typically low
n), but, it could be distributed across multiple nodes
performing parallel computations.

Our implementation algorithm has time complex-
ity O(n4) (Ranathunga et al., 2016b). So, specify-
ing policy per individual host (i.e., large n) in top-
down configuration makes policy mapping extremely
inefficient. More efficient is to create network groups
(e.g., by subnet) and specify policy between them, so,
a reasonably low value can be maintained for n. For
instance, we will see in 6 that in a SCADA network
typically n < 25.

We considered all valid paths between zone-pairs
in calculating A∗. The decision allows us to per-
mit or block traffic along all possible communication
paths between a zone pair, providing redundancy and
defence-in-depth in the network. We also map pol-
icy uniformly to every firewall in a single-path, fur-
ther boosting defence-in-depth. These decisions col-
lectively create a robust defence against cyber attacks.

But, in other policy contexts, it may be useful to
select a subset of all valid paths or just a single path
(e.g., shortest path) instead. Doing so, could improve
the time complexity of the algorithm in 4 (e.g., short-
est paths yield O(n3)). This path pruning can be done,
for instance, by incorporating a sparse matrix in the
algorithm. In some contexts, it can be efficient to ap-
ply policy only on edge arbiters of a path (e.g., when
enabling traffic measurements).

6 A SERIES OF CASE STUDIES

We now show the use of our developed algebras,
through real SCADA-firewall configuration case stud-
ies summarised in 1. The data was provided by the
authors of (Ranathunga et al., 2015).

The seven Systems Under Consideration (SUCs),
involve various firewall architectures and models. We
use them to demonstrate several properties, most no-
tably that the computational complexity of our policy-
to-device mapping algorithm is tractable.

An important feature depicted in 1 is the number
of security zones in each network. This number is

SECRYPT 2016 - International Conference on Security and Cryptography

204

Table 1: SCADA case study summary adapted from (Ranathunga et al., 2015) (# ACL rule allocation error).

SUC Fire-
walls

Zones Cond-
uits

Max.
hosts

ACLs Average
rules

per ACL

Incorrect
firewall#

Incorrect
interface#

Incorrect
direction#

Run-
time
(s)

1 3 7 11 67580 8 237 15 13 19 40
2 6 21 81 2794 12 16 3 2 5 70
3 4 10 17 886 8 6 2 1 4 43
4 3 9 16 2038 3 80 5 12 13 61
5 3 12 19 2664 12 677 15 8 26 47
6 3 13 21 3562 8 1034 21 15 19 63
7 6 15 22 3810 17 724 9 5 17 49

small (i.e., ≤ 21) relative to the maximum (potential)
number of hosts per network (i.e., ≤ 67580).

This is to be expected, a zone groups a set of hosts
or subnets with identical policies. If every host had a
distinct policy then a large number of firewalls would
be needed to enforce a real separation between the
hosts, making it impractical. By grouping hosts into
zones, we reduce policy complexity, so their specifi-
cation becomes easier and less error-prone.

We identified incorrectly assigned ACL rules in
each case study by parsing the firewall configurations
as per (Ranathunga et al., 2015). We then classed the
errors into three groups: incorrect-firewall, incorrect-
interface and incorrect-direction errors (1). Incorrect-
firewall errors are ACL rules that are assigned to the
wrong firewall to begin with, i.e., the desired traffic
filtering could not be achieved by placing the ACL
rule in any of that firewall’s interfaces. Incorrect-
interface errors are ACL rules that are assigned to
the correct firewall but to the wrong firewall-interface,
i.e., the desired traffic filtering could not be achieved
by assigning the rule inbound or outbound of that
firewall-interface. Incorrect-direction errors comprise
of ACL rules that are assigned to the correct firewall
and firewall-interface, but in the wrong direction (e.g.,
outbound instead of inbound).

As (1) suggests, on average there were 10 ACL
rules allocated to the wrong firewall, 8 rules allocated
to the wrong firewall-interface and 15 rules allocated
in the wrong interface-direction, per case study. We
automatically mapped the high-level policy in each
case to it’s network using our system. There were
zero incorrectly allocated policy rules, when the pol-
icy was mapped to the firewalls using our algebras!
Through correct policy deployment, we reduce vul-
nerability of these SCADA networks to cyber attack,
preventing potentially-catastrophic outcomes.

7 CONCLUSIONS

There are various obstacles that hinder the precise
mapping of policies to network devices. Most promi-
nent is the lack of decoupling between policy and
network which makes policy sensitive to network-
intricacies and vendor changes. To compound the
problem, policies can also have complex semantics
including node and link properties.

Our research addresses these challenges and pro-
poses a mathematical foundation for mapping policies
to network-devices. We use it to deploy real-world se-
curity policies to network firewalls provably correctly,
so, that administrators can be confident of the protec-
tion provided by their policies for their networks.

ACKNOWLEDGEMENTS

This project was supported by an Australian Post-
graduate Award, Australian Research Council Link-
age Grant LP100200493 and CQR Consulting.

REFERENCES

Anderson, C. J., Foster, N., Guha, A., Jeannin, J.-B., Kozen,
D., Schlesinger, C., and Walker, D. (2014). NetKAT:
Semantic foundations for networks. ACM SIGPLAN
Notices, 49(1):113–126.

ANSI/ISA-62443-1-1 (2007). Security for industrial au-
tomation and control systems part 1-1: Terminology,
concepts, and models.

Bartal, Y., Mayer, A., Nissim, K., and Wool, A. (2004).
Firmato: A novel firewall management toolkit. ACM
TOCS, 22(4):381–420.

Byres, E., Karsch, J., and Carter, J. (2005). Good practice
guide on firewall deployment for SCADA and process
control networks. NISCC.

The Mathematical Foundations for Mapping Policies to Network Devices

205

Cisco Systems Inc. (2014). Cisco Virtual Security Gateway
for Nexus 1000V Series Switch Configuration Guide.
San Jose, CA 95134-1706, USA.

Dynerowicz, S. and Griffin, T. G. (2013). On the forward-
ing paths produced by Internet routing algorithms. In
ICNP, pages 1–10.

Foster, N., Freedman, M. J., Harrison, R., Rexford, J.,
Meola, M. L., and Walker, D. (2010). Frenetic: a
high-level language for OpenFlow networks. In ACM
PRESTO, pages 21–27.

Guttman, J. D. and Herzog, A. L. (2005). Rigorous auto-
mated network security management. IJIS, 4:29–48.

Heorhiadi, V., Reiter, M. K., and Sekar, V. (2016). Sim-
plifying software-defined network optimization using
SOL. In USENIX NSDI, pages 223–237.

Howe, C. D. (1996). What’s Beyond Firewalls? Forrester
Research, Incorporated.

Prakash, C., Lee, J., Turner, Y., Kang, J.-M., Akella, A.,
Banerjee, S., Clark, C., Ma, Y., Sharma, P., and Zhang,
Y. (2015). PGA: Using graphs to express and automat-
ically reconcile network policies. In ACM SIGCOMM,
pages 29–42.

Ranathunga, D., Roughan, M., Kernick, P., and Falkner, N.
(2016a). Malachite: Firewall policy comparison. In
IEEE ISCC.

Ranathunga, D., Roughan, M., Kernick, P., and
Falkner, N. (2016b). The mathematical foun-
dations for mapping policies to network devices,
http://arxiv.org/abs/1605.09115. Technical Report.

Ranathunga, D., Roughan, M., Kernick, P., Falkner, N., and
Nguyen, H. (2015). Identifying the missing aspects
of the ANSI/ISA best practices for security policy. In
ACM CPSS, pages 37–48.

Reich, J., Monsanto, C., Foster, N., Rexford, J., and Walker,
D. (2013). Modular SDN programming with Pyretic.
USENIX login, 38(5).

Smolka, S., Eliopoulos, S., Foster, N., and Guha, A. (2015).
A fast compiler for NetKAT. In ACM SIGPLAN,
pages 328–341.

Soulé, R., Basu, S., Marandi, P. J., Pedone, F., Kleinberg,
R., Sirer, E. G., and Foster, N. (2014). Merlin: A
language for provisioning network resources. In ACM
CoNEXT, pages 213–226.

SECRYPT 2016 - International Conference on Security and Cryptography

206

