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Abstract: Agent-based stochastic simulation is an established approach to study infectious diseases. Its advantage is the
flexibility to incorporate important concepts. The effect of various mitigation strategies has been demonstrated
using simulation models. Most of the previous studies compared a few options with a few selected scenarios.
We propose to use genetic algorithms to search for the best vaccination strategy for a given scenario with the
simulation program as fitness scorer. Vaccination efficacy varies significantly. Therefore, the real challenge is
to find a good strategy without the knowledge of it. The simulation software is efficient, yet still takes three
minutes to complete a simulation run with Taiwan population. We use surrogate to speed up the search about
1000 times. The surrogate has the average of the absolute value of error ar284hgh@rcent and the rank
correlation coefficient is greater thar®8 for all the scenarios except one. The optimal solution with surrogate
has fitness value very close to use simulations. The difference is generally less than one percent. We envision
that an autonomous software searches through the huge scenario space with the help of surrogate function and
adaptively executes simulation program to revise the surrogate function to produce higher fidelity surrogate
and better search results.

1 INTRODUCTION susceptibility{/ E), that is the relative risk a vacci-
nated individual being infected, and vaccine efficacy

Agent-based stochastic simulation is an establishedfor infectiousnes¥(E), that is the relative risk of an
approach for the study of infectious diseases. The individual being infected by a vaccinated one. Vac-
flexibility to incorporate important concepts into sim- ~ cine efficacy varies significantly, for example, Basta
ulation model is one of the advantage to such ap- €tal. categorized several reports of influenza vaccine
proach. However, it still needs a significant amount trail, and estimated that théks ranges from 0.08 to

of computing resources sometimes. Epidemiologists 0-79 (Basta etal., 2008).

usually have to carefully craft the scenarios to demon-  With limited amount of available vaccine, the in-
strate their points. Vaccination is one of the important fectious disease control agency has to determine the
means to mitigate pandemic flu, thus determining the amount of vaccine allocated to various groups. Usu-
vaccination priority with limited amount of vaccine ally the health care professionals has the highest pri-
is vital. Instead of evaluating a few options, we for- ority and then the agency can use policy tools to dis-
mulate it as an optimization problem and use genetic tribute vaccines to different age groups. We focus on
algorithm to search for the best vaccination priority. the distribution of vaccine among different age groups
The search space can contain many dimensions, forand search for the distribution which reduces the num-
example, house-hold structure is one of the important ber of infected cases the most. For a given scenario,
dimensions (Chang et al., 2015). Here we focus on that is the setting of our simulation module, the gene

the dimension of vaccine efficacy. encodes the vaccine distribution among age groups
The vaccine efficacy(E) is a measure of relative and the fitness function is the total number of infected

risk(RR that generally takes the formME = 1 - RR cases. The fitness evaluation is done by running the

The absolute efficacy of a vaccine compares rela- Simulation module.

tive risk in a vaccinated group with that in a con- Each simulation run takes about 3 minutes, thus

trol group (Basta et al., 2008). Two important mea- the fithess evaluation becomes the bottleneck of the
sures for vaccine efficacy are vaccine efficacy for optimization process. Using a faster approxima-
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Searching Vaccination Strategy with Surrogate-assisted Evolutionary Computing

tion fitness evaluation in place of the true fithess 15 years old), about 0.97 millioigh school children
function, in our case the simulation program, is (16-18 years old), about 3.86 millioyoung adults
called surrogated-assisted evolutionary computation (19-29 years old), about 10.28 millicadults(30-64
(Jin, 2011). The idea was first suggested in the mid- years old), and about 1.94 milliog/ders(65+ years
1980s (J.J. Grefenstette, 1985). We construct a sur-old).
rogate function, which combines table lookups and  Each individual can belong to several contact
linear interpolation. groups simultaneously at any time. The duration of
We study 9 different vaccine efficacy settings, a simulation run is set at 365 days. Each day has
bothV Es andV E are enumerated fromDto 0.9 with two 12-hour periods, daytime and nighttime respec-
the increment equal to.B. For each setting, the ge- tively. During daytime, contact occurs in all contact
netic algorithm with simulation as well as surrogate as group. School aged children go to schools. There
fitness function are applied to search for the optimal are around 7.8% school aged children do not go to
solutions. The top solutions for both cases point to the school in Taiwan. They stay home in our simula-
arrangement to allocate more vaccine to school-agetion. Preschool children go to daycare center, kinder-
children, which confirms the results in the literature garten or playgroup. Young adults and adults go to
(Lee etal., 2010). work group. In the nighttime, contact occurs only in
The fidelity of the surrogate function is studied. communities, neighborhoods, household clusters, and
The difference between the output of surrogate func- household. School closure policy of CDC Taiwan is
tion and the simulation divided by the output of sim- also implemented. The so called 325 policy works
ulation is less than one percent in average, the worstas follow: when two symptomatic cases occurred in
case is less than four percent and the average of thehe same class with a 3 days interval then that class is
absolute value of error is also less than one percent.closed for 5 days. The model parameters are similar to
The search results with the surrogate in place of the ones in a study by (Germann et al., 2006), with modi-
simulation system have error margin less than one fications to fit Taiwan situation better with the help of
percent. study outcome in contact diary study. (Fu etal., 2012)

In this paper, the scenario of the simulation is the
following: the pyans is set at 01, the vaccine is avail-
2 MATERIAL AND METHOD able 30 days after the index case occurred, total 2.5
million of doses are applied to different age groups

In this paper, the simulation software that we used is pega/diog tp [e Pradly. @aly eyacene pority

developed by (Tsai et al., 2010). Below is a brief de- and-vactme efficacy can .be ehanget=Thtre=are two
scription of the simulation software. The Simulation parameters forvaccine efficacy, they‘&(rE'andV.Es.
software implements a stochastic discrete time agent- ~ 1here are seven age groups in our simulation, the
based model. The mock population of the model is Vaccine is allocated in the unit of 1_010005&23‘%5- The
constructed according to national demographics from total number of possible combination@Z5" " ~
Taiwan Census 2000 Data (http://eng_Stat_gov_tw/)_ 3.69x 10, An exhaustive search is not feasible.
The connection between any two individuals indicates We thus use genetic algorithm with simulated anneal-
the possibility of daily and relatively close contact ing to search for optimal solution. The hybrid sim-
that could result in the successful transmission of the ulated annealing genetic algorithf$AGA adds a

flu virus. An important Virus_dependent parameter simulated annealing component in each iteration in
is the transmission probability which is denoted by the genetic algorithm. The idea is to increase stochas-
Prans. It is the probability that an effective contact re- tic variability at the early stage of evolutionary step to
sults in an infection. A contact group is a daily close €scape local minima/maxima.

association of individuals, where every member is We define a candidate that represents a vaccine
connected to all other members in the same group. Wepriority. The population size is ten, and each iteration
designate eleven classes of such contact groups in thébegins with simulated annealing step to perturb each
model: community, neighborhood, household cluster, candidate, followed by selection, crossover and mu-
household, work group, high school, middle school, tation. For a given allocation, we carried out 5 sim-
elementary school, daycare center, kindergarten, andulation runs, and the fithess score is the average the
playgroup (Chang et al., 2015). The population size number of infected cases. the smaller the fitter. The
of Taiwan is about 22.12 million. There are about best solution of the previous generation and the first
1.72 million preschool childref0-5 years old), about  nine solutions for this generation become the candi-
2.36 million elementary school childref6-12 years  dates of next generation. When five consecutive it-
old), about 0.99 milliormiddle school childrer{13- erations consist of the same candidates, the process
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all p € Sthe value ofSim(p) is known. LetCpasis
denote the baseline case with no vaccination, that is
Chasis= Sim0). We usep; andp; x to denote vectors
with only nonzero dimensionhand nonzero dimen-
sions | andk respectively. We sometimes abuse the
notion to usep; and p;j x to denote the projection of
| point p to it dimension and tg!" andk" dimensions
- respectively.
‘ | We first construct the surrogate for points in which
only single age group is vaccinated. Thatps=
(0,0,...,%,...,0). We set our resolution at 100,000,
that is the vaccine allocated at 100,000 doses per unit.
We carry out simulation at the resolution 100,000,
_ ) ) and use linear interpolation to estimate the points
Figure 1: The quantile-quantile (g-q) plot. not sampled. Note that only a few points are sam-
pled, i.e., simulated, other points are estimated. Let
stops. (the convergence of the stopping criterion dis- Sim(p;) denote the outcome for all points with only
cussed in Section 3.) When a new candidate appearspne nonzero dimension. LA{p;) denote the number
the simulation program is invoked to get the fitness of cases reducedsdéved at pointp;, that isA(p;) =
score. The simulation is time consuming, we thus Sim(p;) — Sim0), note that it is always a negative
explore the possibility of using surrogate in place of value. Given a poinp = (xq,...,X7), the single vari-

Sample Data Quantile

e A DN A o e ow A

N

3 2 A1 0 1 2 3 4
Standard Normal Theoretical Quantile

simulation. able surrogate fop, denoted bysim (p), is:

The simulation is a stochastic process. To as- 7
sess the stochastic variability of simulation result, Sim(p) = Sin(0) + ZiA(pi) (1)
we carried out a thousand-run experiment for a typ- i=

ical baseline case, wheWeE; = VEs = 0.5 and each  The intuitive explanation is that we can add the con-
age group is allocated 500,000 doses. Similar to tribution of individual age group to be the effect of
the finding reported in (Tsai et al., 2010), the the vaccination priorityp.
number of infected cases follows normal distribu- The above approximation works better if the in-
tion. The guantile-quantile plot is shown in Figure dependent assumption is closer to the reality. How-
1. The mean of the number of infected cases is ever, it is apparent that the vaccination of one age
5,694,972 and standard deviation is around 10,850.group has some effect on other age groups too. Their
These numbers serve as a reference of the stochasinteraction can be intricate. To study the interac-
tic variability of the simulation system, especially we tion, we sample some two value points, thapjg =
take 10850/5,694,972~ 0.002 as the coefficientof (0,0, ...,%;,0,...,X,...,0), for each age group we use
variation of the simulation system. one fifth of the population as the incremental unit.
It is feasible to use simulation results as fitness Thatis for each age group we try five possible values,
score, however, the cost can easily become pro-called sampled value. There are twenty one combi-
hibitively high if we allow the search space to include hations of two age group, and for each combination
more dimensions, for example, the infectiousness of there are twenty five points to be simulated.
the virus which is the value Offizans. A more effi- We again used(pjk) to denote the extra cases
cient approximation function for the fitness score, the reduced due to interaction. ~ That is the cases
surrogate, can Speed up the search yet sacrifices aCCLﬁaVed after individual effects being accounted. |If

racy. Pjk is a sampled point thed(pjk) = SiMp;jk) —
A vaccination priority is defined bye X) where ~ Simi(pjk), otherwise pick sampled values which
e= (VE,V Es) represent the vaccine efficacy M- are closet lower bound and upper boundx@fxk

(X1,%2,...,X7) represent the allocation of vaccine to  &j.s &j.s+1, 8t &t+1, Such thad s < xj < a; 11 and
age groupsy; is the amount of vaccine for age group 8t < X < &t-+1. The combination of these four val-

i. We sometimes omi¢ when it is clear. Letp de- ues gives us_four sampled points, and using a bilin-
note a vaccine priority, and we u§en(p) to denote ~ €ar interpolation we derivi@p; ). Given an arbitrary
the number of infected cases reported by the simula- POINtP, we can define the surrogate to be:

tion program withp. We use point instead of vac- oI 6 7

cination priority when there is no confusion. L8t Simp(p) :S'”(O)+_ZA(pi)+ > 2> 8Pk (2
denotes the set of points already simulated, that is for = J=tk=)+1
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Figure 2: The gray level.
3 RESULTS

The result oH SAGAwith simulation as fitness func-
tion is shown in Table 1. All the searches end in less
than one hundred iteration, and the number of points
examined is in the vicinity of one thousand. We note
that the best allocations always concentrate on vacci-
nating students regardless the efficacy of the vaccine.
To further explore and visualize the relationship
between the structure of the allocations and the fi-
nal outcomes, we use gray level to encode the allo-
cation policy: One encoding scheme, called volume
scheme, is to set the color white to denote zero dose

Table 1: The best allocation 6fSAGA( Sim(p) ).

p (x10* doses)

e | ¢ || N EsTwsTms
09,09 4.9]59] 806 | 104] 79 | 67
0.9,05 52|60 846 | 95 | 83 | 72
09,01 55| 71| 958 | 95 | 78 | 77
0509 50| 63| 887 | 97 | 80 | 73
0505 58| 79| 1,038 91 | 83 | 76
050.1"| 6.6 93| 1,207| 83 | 83 | 83
0.1,09 |51 70| 950 | 90 | 81 | 79
0.1,05| 6.6 64| 864 | 70 | 93 | 87
0.1,01 | 7.9 68| 911 | 120] 51 | 79

" e’: vaccine efficacW g,V Eg

' C: total cases ¢ 10°)

"1 " total iterations

" N ': total allocations

" ES’: elementary school children

" MS’: middle school children
"HS’: high school children

"* ' young adultshave 1,000 doses

Ta.ble 2. The gray level of total allocations 6fSAGA
(Sim(p)).

| VE | VEs || allocations |

0.9 0.9 ‘ ‘:I i “"““""‘"""”"” ""““'”””"”"""_I volume scheme
’IWMMM ratio scheme

09| 0.5 ‘ ‘ |
‘wmmwumuq

09| 0.1 = |

05| 0.9 } : 1|

05| 0.5 } : ity ' ||

05| 0.1 ; : : : : ‘ ||

0.1 0.9 } : ||
‘ T ||

011 05 -
\mﬁﬂM

01| 0.1 ‘ = |
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and black for 2.5 million doses. Let be the num-
ber of doses for age groupthe gray level is com-
puted by following equatiorg!®'UMe= 255 x; + (2.5
million) x 255. Another encoding scheme, called ra-
tio scheme, is to set the color white to denote zero
percent of the age group vaccinated and black hun-
dred percent. The gray level is computed by following
equationglal’® = 255— x; = (the number of individu-

als of age group) x 255. For example, the gray levels
are 235 and 225 for volume scheme and ratio scheme
respectively for the allocation of 200,000 doses to
preschool children. Each age group is then assigned a
gray level according to the encoding scheme. We use
a line segment with that gray level to represent vac-
cination level of that age group, as shown in the top
half of Figure 2. The allocation is then represented
by stacking the seven line segment vertically (in the
middle part of Figure 2, we put the line segment hor-
izontally). For a set of ordered allocations, the line
segment for each allocation is stitched together ac-
cording to the ordering. The sequence of allocations
is sorted from left to right where the better allocations
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Table 3: Basic datap{rans = 0.1).

|VE |VES || Sim(p) || Simy(p) |error1(%)|| Simp(p) |error2(%)|

0.9 | 0.9 || 4,455,427| 4,788,075 7.466 4,554,759| 2.229
0.9 | 0.7 || 4,698,266|| 5,147,952| 9.571 4,731,243| 0.702
0.9 | 0.5 || 4,927,159|| 5,456,860, 10.751 4,993,846| 1.354
0.9 | 0.3 || 5,136,272|| 5,704,787| 11.069 5,234,124| 1.905
0.9 | 0.1 || 5,325,681} 5,916,227| 11.089 5,438,429| 2.117
0.7 | 0.9 || 4,525,532| 4,860,707| 7.406 4,600,653| 1.660
0.7 | 0.7 || 4,923,963|| 5,344,757 8.546 4,974,683 1.030
0.7 | 0.5 | 5,305,347| 5,749,844| 8.378 5,348,224| 0.808
0.7 | 0.3 || 5,662,708|| 6,102,766| 7.771 5,719,132 0.996
0.7 | 0.1 || 5,989,095| 6,396,327| 6.800 6,017,286| 0.470
0.5 | 0.9 || 4,595,987| 4,926,931| 7.201 4,615,127 0.416
0.5 | 0.7 || 5,154,211} 5,519,088 7.079 5,217,634 1.231
0.5 | 0.5 | 5,696,168| 6,054,460 6.290 5,761,392 1.145
05| 0.3 || 6,197,872|| 6,496,988 4.826 6,269,209| 1.151
0.5 | 0.1 || 6,643,572| 6,871,103] 3.425 6,686,484| 0.646
0.3 | 0.9 || 4,667,510| 4,986,218 6.828 4,715,911 1.037
0.3 | 0.7 || 5,382,617|| 5,706,862 6.024 5,456,423 1.371
0.3 | 0.5 | 6,088,743| 6,352,334| 4.329 6,146,112 0.942
0.3 | 0.3 || 6,729,075|| 6,904,506| 2.607 6,747,887 0.280
0.3 | 0.1 | 7,263,008| 7,372,166] 1.503 7,314,731 0.712
0.1 | 0.9 || 4,736,192| 5,055,614| 6.744 4,821,752| 1.807
0.1 | 0.7 || 5,618,656|| 5,903,184 5.064 5,665,777 0.839
0.1 | 0.5 | 6,489,120| 6,668,593| 2.766 6,492,402 0.051
0.1| 0.3 | 7,237,598 7,320,671 1.148 7,259,207 0.299
0.1 | 0.1 || 7,818,985| 7,838,093] 0.244 7,838,812| 0.254

5,600,000
wevevsees the best candidate (HSAGA)

|
|

5,500,000 the worst candidate (HSAGA)

[ swueseees the best candidate  (HSAGAz00)
5,400,000 |

the worst candidate (HSAGA200)

5,300,000 z
|

th

Total cases

5,000,000

4,900,000

4,800,000
140

The best candidate
(HSAGA)

The worst candidate
(HSAGA)

The best candidate
(HSAGA0)

The worst candidate
(HSAGA200)

Figure 3: The best and worst candidates for each iteration.

are on the right side.
For a given vaccine efficacy setting, thkeSAGA

examined around one thousand vaccine allocations.

method above shown in Table 2. The sorted sequence
for each setting is visualized with volume scheme, the
top one, and with ratio scheme, the bottom one. We
can see that for those allocations on the right end, the
black segments are concentrating on school children.
And according to those bottom graphs junior high and
high school students get the highest priority. More
specifically, for 2.5 million doses, 70 to 90 percent of
junior high and high school students get vaccinated
and the rest goes to elementary school students.

The rationale of our choice of stopping criteria is
explained below. We carried out long testing run with
200 iterations I SAGAqo) for VEs =V E; = 0.9. For
each iteration we record the best and the worst can-
didateséllocationg in population. As shown in Fig-
ure 3, the best candidate stayed roughly the same af-
ter 50 iterations. Therefore, the algorithm stops when
all candidates for the last 5 iterations stays the same.
The difference between the solutionsth§AGAand
HSAGAq is comparable to the coefficient of vari-
ation of the simulation system. But the number of
allocation examined are 2,379 and 806 respectively.

To study the fidelity of surrogates. We first de-

These allocations are sorted according to their fitnessfine a specific point where every age group is allo-
score and the sequence is visualized according to thecated five hundred thousand doses and evaluate this
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Table 4: The best allocation 6fSAGA( Sinp(p) ).

p (x10* doses)
ES [ MS | AS
89 | 81 | 80
80 | 90 | 80
80 | 90 | 80
90 | 80 | 80
88 | 80 | 82
72 | 88 | 90
79 | 88 | 83
79 | 81 | 90
100 | 70 | 80

e C | N

4.9
5.2
5.5
5.0
5.8
6.7
51
6.6
7.9

72
68
69
82
81
79
67
71
80

989
910
911
1,086
1,060
1,047
901
964
1,025

0.9,0.9
0.9,0.5
0.9,0.1
0.5,0.9
0.5,0.5
0.5,0.1
0.1,0.9
0.1,0.5
0.1,0.1

point in twenty five vaccine efficacy scenarios, they
are the combination of = {0.1,0.3,0.5,0.7,0.9}
andVEs = {0.1,0.3,0.5,0.7,0.9}. The results are
summarized in Table 3. It is obvious that when vac-

cine efficacy increases the number of cases decreases.

We define the error to be the difference between the
output of the surrogate and the fithess score produced
by running simulations divided by the output of sim-
ulation. The error of the two variable surrogate is
less than B percentage which is a significant im-
provement of single variable surrogate which has er-
ror rate up to 11 percent. The improvement testi-
fies thad(p; j) captures some interaction between age
group. We only compare the two variable surrogate
with real simulation below.

The sameéd SAGAprocess is carried out with sur-
rogate in place of the simulation and and the re-
sults are summarized in Table 4. The visualization
is shown in Table 5. Itis clear that the general recom-
mendation is also to vaccinate school children. Next
we feed the points selected B\ S AGAwith surrogate

to the simulation program and the results are summa-

rized in Table 6. The errors are all below one percent-

age and the average of absolute value is 0.253% which

is not too far from the stochastic variation, estimated
to be Q2 percent.

For all points simulated, total 8,492 of them. We
compute the error for each point, the average of the
absolute value of the error is 0.284% which is very
close to the coefficient of variation of the simulation
system.

For genetic algorithms, the rank preserving sur-

rogates are preferred. One metric to measure the fi-

delity of surrogates is rank correlation coefficieny)
(Loshchilov et al., 2010):

1 8% 3 (Rali] — Refi))?
N(N2—1)

®3)

rS:

All the allocations of Table 1 evaluated by the simula-
tion program are collected. For each allocation there

TaAl)le 5. The gray level of total allocations 6fSAGA
(Siny(p)).
LVE

| VEs || allocations |
‘w.mmwmwu—-—q
\mwmuw—q
‘MWMMWM
) m— = : |
’mwm_

‘ RTINS lm_|

\ T "-—-"--I

liwmwwwmmwmq
Table 6: Best points by surrogate evaluated with simulation
| VE | VEs | Sim(p) | Simp) | error(%)]

09| 09

09| 05

09| 01

05| 0.9

05| 05

05| 0.1

0.1 09

0.1 0.5

0.1 01

0.9 | 0.9 | 4,901,232| 4,920,204 -0.386
0.9 | 0.5 | 5,208,127| 5,242,480 -0.655
09| 0.1 | 5,507,174 5,514,175 -0.127
0.5 | 0.9 | 5,006,845| 5,011,839 -0.100
0.5 | 0.5 | 5,844,636| 5,831,230/ 0.230
05| 0.1 | 6,661,038| 6,663,824 -0.042
0.1 | 0.9 | 5,102,442| 5,125,954| -0.459
0.1 | 0.5 6,616,598| 6,604,124| 0.189
0.1 0.1 | 7,851,587| 7,858,971| -0.094

are two fitness scores associated with it, one by sim-
ulation program and one by surrogate function. Let
Ra be the rank by simulation angs rank by surro-
gate. The rank correlation coefficient of these two se-
guences for each setting is shown in Table 7. The co-
efficients are all greater than 98% except one at 93%.
Itis reasonable to conclude that the surrogate function
preserves the ordering well.
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Table 7: Rank correlation coefficient. Table 9: Impact of vaccine efficacy.
[VE[VE][ s | | e | Sim(p® || difference] error(%) |
0.9 | 0.9 | 0.9920 0.9,0.9] 4,900,564 -668 -0.014
0.9 | 0.5 | 0.9906 0.9,0.5| 5,222,468| 14,341 0.275
0.9 | 0.1 | 0.9904 0.9,0.1| 5,509,732 2,558 0.046
0.5 | 0.9 | 0.9858 0.5,0.9| 5,006,845 0 0.000
0.5 | 0.5 | 0.9907 0.5,0.5| 5,844,413 -223 -0.004
0.5 | 0.1 | 0.9907 0.5,0.1| 6,674,396|| 13,358 0.201
0.1 | 0.9 | 0.9852 0.1,0.9| 5,097,761| -4,681 -0.092
0.1 | 0.5 | 0.9927 0.1,0.5| 6,618,829 2,231 0.034
0.1 | 0.1 | 0.9394 0.1,0.1| 7,862,525|| 10,938 0.139
Table 8: Runtime with surrogate and simulation. priority. We further demonstrated that a good allo-
| VE | VEs | T(Simp)) | T(Simp(p)) | cation for one specific vaccine efficacy setting works

well for other settings. Although the preliminary re-
sults are promising, a thorough study with parameters
such as transmission probability as well as household
structures is necessary before a definite conclusion
can be drawn.

We propose to use surrogate-based evolution com-
putation to search the vast scenarios of agent based
stochastic disease spreading simulation. The average
0.1 05| 85584.94 50.45 of error of two variable surrogate is less then 0.3%
01] 01 | 121,445.46 04.24 and the optimal solution produced by genetic algo-

" T() " runtime (sec) rithm with surrogate has fitness value very close to
the solution produced by using real fithess score. The
difference is generally less than one percent.

09| 0.9 | 82,653.61 53.16
09 | 0.5 | 89,637.37 49.65
0.9 | 0.1 | 104,406.32 49.20
0.5 | 0.9 | 91,068.05 57.12
0.5 | 0.5 | 116,980.7 55.30
0.5 | 0.1 | 145,683.09 55.28
0.1 | 0.9 | 99,839.43 47.76

In Table 8, we summarize the statistics of compu-

tational complexity of the two approaches. It clearly We note that gertain age group combination has

demonstrated that time complexity wise, the surrogate ; . : i ) .
plexity g stronger interaction, that is their collective protection

approachis 1000 times faster than using simulation as: R
fitFr)1pess function 9 is much stronger than the sum of individual protec-

The efficacy of the vaccine is difficult to deter- tions. And we suspect the connection patterns of the

mined beforehand. Although, we searched for best u.nderly.ing contact_network implicitly defined in the
allocation for each vaccine efficacy setting. It is de- simulation gy an important role.

sirable to know if vaccine efficacy has a big impact One obviousfutur_e dire_ction i; to expl_ore.the vast
on the choice of vaccine allocation. It is clear that landscape of scenarios with various objective func-

the qualitative statement, "vaccinate school children”, tions and constraints. For example, the vaccine avail-

applied to all scenarios. We compute one specific able date may vary, the infectiousness of the virus
allocation,pP = (0,90000080000080000Q0, 0, 0) strand might vary, and other mitigation strategies such
for all scenarios, and compare with the solutions pro- &S antl\(lral_ treatme_nt and school closure might vary.
duced byH SAGAwith surrogate(Table 6, column 3). Th_e_objt_actlve function can vary too. Instead pf_ min-
The result is show in Table 9. Since the standard de-Mizing infected cases, one might want to minimize
viation of the simulation system is 1860 and the co- ~ €conomical cost (Meltzer et al., 1999). _
efficient of variation is about 0.2 percentage, itis not  Currently, we construct our surrogate using only
too stretchy to say that allocatigiP works well even  the output of the simulation results. However, the in-

if we do not know the efficacy of the vaccine. trinsic structure used by the simulation program might
be useful information to construct more efficient and

higher fidelity surrogate. Moreover, mathematical
diseases modes might provide important insight for
4 CONCLUSION AND this direction.
DISCUSSION Finally, we envision that an autonomous software
searches through the huge scenario space with the
Our results confirm the finding of previous studies help of surrogate function and adaptively executes
that school children should be vaccinated with high simulation program to revise the surrogate function
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to produce higher fidelity surrogate and better search
results.
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