
OpenCL-accelerated Point Feature Histogram and Its Application

in Railway Track Point Cloud Data Processing

Dongxu Lv, Peijun Wang, Wentao Li and Peng Chen
School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, China

Keywords: OpenCL, PFH, Parallel Computing, Point Cloud Data.

Abstract: To meet the requirements of railway track point cloud processing, an OpenCL-accelerated Point Feature His-

togram method is proposed using heterogeneous computing to improve the low computation efficiency. Ac-

cording to the characteristics of parallel computing of OpenCL, the data structure for point cloud storage is

reconfigured. With the kernel performance analysis by CodeXL, the data reading is improved and the load of

ALU is promoted. In the test, it obtains 1.5 to 40 times speedup ratio compared with the original functions at

same precision of CPU algorithm, and achieves better real-time performance and good compatibility to PCL.

1 INTRODUCTION

Point cloud data processing is an importance issue in

computer vision, 3D reconstruction, reverse engi-

neering and other industrial fields. For the increasing

amount of point clouds, a services of function librar-

ies are developed for point cloud data processing.

Among them, PCL (Point Cloud Library) is a type of

C++ based solution with filtering, feature extraction,

model matching and surface reconstruction algo-

rithms for point cloud data processing, and has widely

applications in 3D sensing and inspection (Rusu and

Cousins, 2011). To accelerate the computing, PCL

(Point Clouds Library) has provided the support for

CUDA (Compute Unified Device Architecture). Re-

cently, the new developing project is released to in-

troduce OpenCL (Open Computing Language) mod-

ules by using heterogeneous computing acceleration

technology.

OpenCL is an open and free framework for gen-

eral-purpose parallel programming with heterogene-

ous systems, it supports a wide variety of platforms,

such as the CPU (central processing unit), AMD

GPU(graphics processing unit), NVIDIA GPU, mo-

bile platform (Gaster et al., 2012). It also has well-

portable ability that can be efficiently mapped to a ho-

mogeneous or a heterogeneous architecture. Gener-

ally. GPU contains multiple computing units

(CU),and each one CU includes various processing

elements(PE). Compared to CPU, GPU has much

more computing cores. As one of highly-well parallel

processors, GPU is particularly suitable for data par-

allel algorithms (Tompson and Schlachter, 2012).

These algorithms are implemented by OpenCL pro-

gramming and compiled into one or more kernels,

with GPU as OpenCL devices to execute these kernel.

Parallel computing technology provides more

possibility to process engineering point cloud data.

However, some PCL functions with low running effi-

ciency restrict the real-time performance of system.

The optimization of these kinds of functions is an ur-

gent task for large scale engineering cloud point data

processing. In this paper, a OpenCL-accelerated Point

Feature Histograms (PFH) method is proposed to

overcome the low computing performance of PCL

functions in railway track point cloud data pro-

cessing. According to the characteristics of hardware

model of OpenCL and PFH, the data structure of

point clouds is reconfigured and the global and local

memories of GPU are optimized by allocating

OpenCL groups properly to promote the computing

loads. With the performance test, the optimized algo-

rithm could obtain 1.5 to 40 times speedup ratio com-

pared with the original functions from PCL.

2 POINT FEATURE

HISTOGRAMS

2.1 Principle

Point feature representations is one of the most basic

Lv, D., Wang, P., Li, W. and Chen, P.
OpenCL-accelerated Point Feature Histogram and Its Application in Railway Track Point Cloud Data Processing.
DOI: 10.5220/0005960304330438
In Proceedings of the 13th International Conference on Informatics in Control, Automation and Robotics (ICINCO 2016) - Volume 1, pages 433-438
ISBN: 978-989-758-198-4
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

433

and crucial part in point cloud data processing (Rusu,

2010), which has great influence on the registration,

surface reconstruction and pattern recognition in fur-

ther steps. As one of the descriptions of point cloud

feature, PFH is a multi-dimensional histogram with

geometric features of query points and their nearest K

neighbors (Rusu et al., 2008).

PFH descriptor relies on the coordinates and nor-

mals of points and their nearest K neighbors. Compu-

ting of relationship between the points and their near-

est K neighbors, the point clouds variation on geomet-

ric surface is presented, which reserves the geometric

features of the point clouds. Therefore, the quality of

PFH depends on the estimated normal of each point.

The relationship between query points and their near-

est K neighbors is shown as Figure 1.

Figure 1: Relationship between query points and their near-

est K neighbors.

Pt is a query point of PFH, and is regarded the cir-

cle center of neighborhood with radius R for querying

K neighbors. Each pair of points in the neighborhood

are connected in the algorithm, and the final presen-

tation is a histogram, which makes it have O(k2)com-

plexity.

For the points Pa and Pb, with normals na and nb,

the relative position and angular variation are com-

puted. One of these two points is defined as origin,

and its normal become the X axis. The local coordi-

nate frame generated is shown as Figure 2.

Figure 2: Local coordinate frame generated by the two

points.

[Pb-Pa]is the line between the two points, and Z s

vertical to X and this line. The angular variations be-

tween normal of Pa and na, and that of Pb and nb is can

be represented as below.

 arctan ,

Y n
b

P PabX
d

Z n X n
b b

 (1)

In this formula, d is the distance between Pa and

Pb, which presents like. By computing the group of

values (α, φ, θ, d), the parameters of coordinates and

normals for the two points could be reduced from 12

to 4. Among the 4 parameters, 3 angular variations

could be easily binned into the same intervals of the

histogram. For the forth distance parameter, the local

point density of it may influence the eigen values, so

omitting d would make PFH algorithm more robust

(Rusu, 2010). Dividing the 3 angular intervals into n

equal portions, it will obtain a histogram with n3inter-

vals and the times for each pair of points in histogram

intervals are counted. PCL provides a data type

pcl::PFHSignature125 to store the feature histogram

with 125 floats when n=5.

2.2 PFH Algorithm in PCL

PCL provides the functions for FPH computing, and

it is implemented serially as below.

Figure 3: Serial computing of PFH.

Step1. Input the point cloud data with 3D coordi-

nates, and compute the normal of each point;

Step2. Select the searching area, and find the near-

est K neighbors of the query point;

Step3. According to the dataset of nearest K neigh-

bors, compute the angular variations of all the

points and get the normalized histogram;

Pt

Pk1

Pk2

Pk3

Pk4

an X

[-]b aY P P X

Z X Y

b aP P
aP

bP

Y

Z

X

bn

Coordinates of

point cloud

Traverse all points and

compute the normals

Normals of

Point cloud

Set the searching

neighborhood, traverse all

points and compute PFH

PFH of point

cloud

C
P

U

ICINCO 2016 - 13th International Conference on Informatics in Control, Automation and Robotics

434

Step4. Repeat Step2 and Step3, and traverse all the

points to compute their feature histogram.

The flowchart of the serial computing is as Figure 3.

3 IMPLEMENTATION OF PFH

BY OPENCL AND

CORRESPONDING

OPTIMIZATION

3.1 Parallelism Analysis of OpenCL

The points cloud of railway track from non-contact

scanner includes the coordinates of x, y, z without

normals, but the histogram needs the normals of each

point. The computing of normals would traverse all

the points in the dataset, and these normals computing

are independent each other, thus it is beneficial for

parallelism. Some tests indicate that the running time

for normals computing only take 5% of the whole

time for the railway track point cloud with 100000 to

1000000 points. OpenCL does not make any acceler-

ation but even cause performance deterioration for

some additional cost. Thus, the point cloud normals

are computed with the function from PCL directly in

serial method.

To generate PFH, the relative positions and nor-

mals should be computed for all the points in the

neighborhood dataset of each point. Suppose that the

railway track has M points, and the neighborhood has

N points for each query point, then there will be

M×(N2-N)loops(with repeated matching) or

M×N2(without repeated matching). In each loop,

there are 6 parameters including the 3D coordinate

and normal, without dependence among different

point pairs in the histogram computing, thus it runs

with good parallel performance. In the test, it cost

85% running time to compute the PHF of point pairs.

Therefore, an OpenCL-accelerated PFH is proposed

in this paper by considering the characteristics of PFH

and structure of GPU.

3.2 Optimization of GPU Memory
Access

It is costly to access the global memory (AMD Inc,

2015a), for instance, the speed is 0.14 bit per clock

cycle while it is 8 bit per clock cycle for local memory

access. It is easily costs stalling when the thread ac-

cesses global memory directly because of insufficient

bandwidth, and it will be effective to introduce local

memory to solve the problem (Munshi et al., 2011).

However, the local memory only with few tens KB

space is very small, so when PFH algorithm runs, it

requires to search neighbor point in certain neighbor-

hood. Although the index of query points is sequen-

tial, the index of neighbor points is random and

threads search neighbor points from the whole point

cloud datasets. Thus, it is not able to load all the data

into local memory.

According to this problem, the optimization is

conducted to make the data structure of railway track

point cloud suitable for parallel processing here. The

among of points in point cloud is set as M. In the k

neighborhood search, the point cloud is traversed in

default sequence, and generate a index of neighbor

points for each query points by kd-tree. Each point

has k neighbor points, so the size of neighbor points

index is M×k for the whole point cloud. By defining

two float arrays, the 3D coordinates and normals are

stored separately. Thus, a thread merely accesses lo-

cal memory without frequent global memory access

if a certain query point’s neighbor points are loaded

completely in local memory of GPU. As a result, the

delay of access is reduced greatly. The computing

steps of OpenCL-accelerated PFH is shown as below.

Figure 4: OpenCL-accelerated PFH.

It seems that the normals computing of point

cloud and the kd tree search are achieved by CPU

while the FPH computing is finished by GPU after it

receives the packed 3D coordinates and normals data

with sorting, and the computing results are transferred

back to main memory.

Coordinates of point cloud

Traverse all points and

compute the normals

Point cloud data

with normals

Traverse all points and get

neighbors as set number

Index of

neighbors

Sorted data by index

of neighbors

Coordinates arrays Normal arrays

Coordinates arrays Normal arrays

Copy to Video memory Copy to Video memory

PFH computing

PFH arrays

PFH arrays

Copy to memory

C
P

U
G

P
U

C
P

U

OpenCL-accelerated Point Feature Histogram and Its Application in Railway Track Point Cloud Data Processing

435

3.3 Optimization of Kernel Resource

For the GPU with AMD Graphics Core Next(GCN)

architecture, the local memory of each computing

unit can be divided into 32 banks (AMD Inc, 2015a),

which are accessed by the half-wavefront (32 threads)

unit. If certain bank is accessed by multiple threads

on the same half wavefront boundary, the bank con-

flict will occur except that the 32 threads access the

same bank. In the bank conflict, the system has to wait

for running until all the threads obtain data. There-

fore, serious bank conflict will lead the idle of large

amount computing cycles with low running effi-

ciency.

To reduce the bank conflicts, the data copy for

each thread is generated in private memory as the so-

lution, with the coordinates and the normals of the

two points stored. Additionally, the vector format

data can also reduce the bank conflicts because of its

alignment to bank (Wilt, 2013). Considering the data

structure of railway track point clouds, the 3D coor-

dinates and normals are stored in float3 vectors. For

the limited number of registers, the use of private

memory may cause the leak of registers to DRAM,

with the side effect to performance (Gaster et al.,

2012), which should be avoid. The kernel file here is

built by CodeXL so as to count the used amount of

registers(private memory) and local memory re-

sources shown as Table 1.

Table 1: Used amount of kernel resource.

Resources Recommended amount Factual amount

SGPRs 0-102 Registers 30 Registers

VGPRs 0-256 Registers 41 Registers

LDS size 0-32768 bytes 1280 bytes

It is shown that the resources of kernel utility dis-

tribute in the recommended range, and can be built

successfully. Thus, the performance will not be dete-

riorated for the registers leak. For different numbers

of neighbor points, the memory unit load rates are an-

alyzed by CodeXL. The comparison before and after

memory optimization is shown as Figure 5.

As is shown, the load rates after optimization is

obviously higher than that of before, but it declines

with the increasing number of neighbor points, be-

cause with the increment of neighbor points, the data

amount in local memory is increasing linearly while

the computing complexity rises exponentially. If

there is enough neighbor points, the bottleneck will

be on computing unit rather than the load of memory

unit.

Figure 5: Comparison of memory unit load rates.

3.4 The Division of Work-group

In the abstract OpenCL model, the work-group is

composed by the work-items (Scarpino, 2011) ac-

cessing the same resource, in other words, all the

work-items in the work-group share the same local

memory. In the computing of PFH, the neighbor

points for single query point is independent to these

of other query points. Therefore, it is reasonable to

map the neighbor points for single query point to a

work-group of OpenCL.

The efficiency of GPU computing relates to the

size of work-group. For the GPU with AMD GCN ar-

chitecture, a wavefront has 64 work-items, which is

the lowest level that flow control can affect (AMD

Inc, 2015b).It is better when size of work-group is in-

tegral multiple of wavefront (Scarpino, 2011). If the

number of neighbor points is k, and the size of work-

group is N, the number of loops isk2. All the compu-

ting goes on if each work-item loop runs for M times

with M×N≥k2. The value of k is set by users. With

the small k, it will get a low number of loops k2, and

cause excessive idle of work-items if N is set too

large. Using the analysis function of CodeXL, it can

obtain the load percentage of vector arithmetic and

logic unit(VALU) in different work-group sizes.

It demonstrates that the VALU with 64 work-

groups has comparable initialization proportion with

256 ones, but the load proportion is much higher than

the later. Thus, the VALU with 64 work-groups is

more effective corresponding to theoretical analysis.

When the number of neighbor points is large, there is

very little influence of work-group size on VALU in-

itialization proportion for the sufficient utilization of

GPU computing resources. In summary, the size of

work-group is set as a wavefront (that is 64).

0

10

20

30

40

50

60

5 10 20 50

M
em

U
n

it
B

u
sy

 (
%

)

Number of Neighbors

Before Optimization After Optimization

ICINCO 2016 - 13th International Conference on Informatics in Control, Automation and Robotics

436

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

5 10 20 50

P
e
rc

e
n

t(
%

)

Number of Neighbors

WorkGroupSize=256 VALUUtilization(%) WorkGroupSize=256 VALUBusy(%)

WorkGroupSize=64 VALUUtilization(%) WorkGroupSize=64 VALUBusy(%)

Figure 6: Load percentage of VALU in different work-

group sizes.

4 TEST

4.1 Test Platform

The hardware and software of test platform is shown

as table 2.

Table 2: Hardware and software of test platform.

CPU AMD A8-7600B

GPU Radeon™ R7

Main memory 8G*2 ddr3 1600

Operating System Windows 10 64bit

Development Environment Visual Studio 2015

PCL Version 1.7.2 64bit

On the current test platform with the measuring

range 300×400mm, the measured data with 400117

points is obtained from TB/T2314 railway track by

structured light scanner on site.

4.2 Comparison among Tests

The PFH is computed with different numbers of

neighbor points k, and the CPU and GPU times are

recorded. The average value of 3 running times is

taken, with the CPU computing results from the orig-

inal PCL functions and GPU computing results from

the optimized PFH functions by OpenCL. The test re-

sults is shown as Figure 7.

0

100000

200000

300000

400000

500000

600000

5 10 20 50 100

E
x
ec

u
ti

o
n

 T
im

e
(m

s)

Number of Neighbors

CPU GPU

Figure 7: Comparison between CPU and GPU PFH compu-

ting.

It indicates that the performance of CPU and GPU

platforms are similar when the number of neighbor

points is small, but the running time increases with

the neighbor points number in CPU platform. For the

GPU platform, the time has very slight increment

with speedup ratio 45 when the number of neighbor

points is 100.

4.3 Analysis of Results

There is some extra cost for using GPU platform,

such as point clouds resorting, kernel building data

copy and transferring back. Thus, the speedup effect

is not obvious because these extra cost take compara-

tively large proportion of running time, but the multi-

thread computing ability works after the number of

neighbor points increases so largely that the extra cost

of GPU become a small ratio in running time while

CPU platform running time is much more than that of

GPU.

5 CONCLUSIONS

Compared with the original algorithm in PCL, the

OpenCL-accelerated PFH proposed is more suitable

for the computing resources utilization, and it takes

advantage of GPU in data processing speed up. In the

non-contact measurement data processing of railway

track, the computing time of PFH is reduced and the

real-time performance of the program is improved. In

addition, the optimized function has excellent com-

patibility for the code reuse only by replacing the dy-

namic link library conveniently.

ACKNOWLEDGEMENTS

Supported by National Natural Science Foundation of

China (Grant No: 51305368), Science and Technol-

ogy Program of Sichuan Province(Grant No:

2013GZX0154) and Fundamental Research Funds

for the Central Universities(Grant No:

2682014BR015).

REFERENCES

Rusu, R. B., Blodow, N., Marton, Z. C. and Beetz, M.,

2008, September. Aligning point cloud views using per-

sistent feature histograms. In Intelligent Robots and

Systems, 2008. IROS 2008. IEEE/RSJ International

Conference on (pp. 3384-3391). IEEE.

OpenCL-accelerated Point Feature Histogram and Its Application in Railway Track Point Cloud Data Processing

437

Rusu, R. B., 2010. Semantic 3D object maps for everyday

manipulation in human living environments. KI-Kün-

stlicheIntelligenz, 24(4), pp.345-348.

Rusu, R. B. and Cousins, S., 2011, May. 3d is here: Point

cloud library (pcl). In Robotics and Automation (ICRA),

2011 IEEE International Conference on (pp. 1-4).

IEEE.

Munshi, A., Gaster, B., Mattson, T. G. and Ginsburg, D.,

2011. OpenCL programming guide. Pearson Education.

Scarpino, M., 2011. OpenCL in action. Westampton: Man-

ning Publications.

Tompson, J. and Schlachter, K., 2012. An introduction to

the opencl programming model. Person Education.

Gaster, B., Howes, L., Kaeli, D. R., Mistry, P. and Schaa,

D., 2012. Heterogeneous Computing with OpenCL: Re-

vised OpenCL 1. Newnes.

Wilt, N., 2013. The cuda handbook: A comprehensive guide

to gpu programming. Pearson Education.

Advanced Micro Devices Inc, 2015. OpenCL Programming

Optimization Guide. http://amd-dev.wpengine.netdna-

cdn.com/wordpress/media/2013/12/AMD_OpenCL_

Programming_Optimization_Guide2.pdf,[2016-01-22].

Advanced Micro Devices Inc, 2015 AMD OpenCL Pro-

gramming User Guide [DB/OL]. http://amd-dev.wpen-

gine.netdna-cdn.com/wordpress/me-

dia/2013/12/AMD_OpenCL_Program-

ming_User_Guide2.pdf, [2016-01-22].

ICINCO 2016 - 13th International Conference on Informatics in Control, Automation and Robotics

438

