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Abstract: To meet the requirements of railway track point cloud processing, an OpenCL-accelerated Point Feature His-

togram method is proposed using heterogeneous computing to improve the low computation efficiency. Ac-

cording to the characteristics of parallel computing of OpenCL, the data structure for point cloud storage is 

reconfigured. With the kernel performance analysis by CodeXL, the data reading is improved and the load of 

ALU is promoted. In the test, it obtains 1.5 to 40 times speedup ratio compared with the original functions at 

same precision of CPU algorithm, and achieves better real-time performance and good compatibility to PCL. 

1 INTRODUCTION 

Point cloud data processing is an importance issue in 

computer vision, 3D reconstruction, reverse engi-

neering and other industrial fields. For the increasing 

amount of point clouds, a services of function librar-

ies are developed for point cloud data processing. 

Among them, PCL (Point Cloud Library) is a type of 

C++ based solution with filtering, feature extraction, 

model matching and surface reconstruction algo-

rithms for point cloud data processing, and has widely 

applications in 3D sensing and inspection (Rusu and 

Cousins, 2011). To accelerate the computing, PCL 

(Point Clouds Library) has provided the support for 

CUDA (Compute Unified Device Architecture). Re-

cently, the new developing project is released to in-

troduce OpenCL (Open Computing Language) mod-

ules by using heterogeneous computing acceleration 

technology. 

OpenCL is an open and free framework for gen-

eral-purpose parallel programming with heterogene-

ous systems, it supports a wide variety of platforms, 

such as the CPU (central processing unit), AMD 

GPU(graphics processing unit), NVIDIA GPU, mo-

bile platform (Gaster et al., 2012). It also has well-

portable ability that can be efficiently mapped to a ho-

mogeneous or a heterogeneous architecture. Gener-

ally. GPU contains multiple computing units 

(CU),and each one CU includes various processing 

elements(PE). Compared to CPU, GPU has much 

more computing cores. As one of highly-well parallel 

processors, GPU is particularly suitable for data par-

allel algorithms (Tompson and Schlachter, 2012). 

These algorithms are implemented by OpenCL pro-

gramming and compiled into one or more kernels, 

with GPU as OpenCL devices to execute these kernel. 

Parallel computing technology provides more 

possibility to process engineering point cloud data. 

However, some PCL functions with low running effi-

ciency restrict the real-time performance of system. 

The optimization of these kinds of functions is an ur-

gent task for large scale engineering cloud point data 

processing. In this paper, a OpenCL-accelerated Point 

Feature Histograms (PFH) method is proposed to 

overcome the low computing performance of PCL 

functions in railway track point cloud data pro-

cessing. According to the characteristics of hardware 

model of OpenCL and PFH, the data structure of 

point clouds is reconfigured and the global and local 

memories of GPU are optimized by allocating 

OpenCL groups properly to promote the computing 

loads. With the performance test, the optimized algo-

rithm could obtain 1.5 to 40 times speedup ratio com-

pared with the original functions from PCL. 

2 POINT FEATURE  

HISTOGRAMS 

2.1 Principle 

Point feature representations is one of the  most basic  
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and crucial part in point cloud data processing (Rusu, 

2010), which has great influence on the registration, 

surface reconstruction and pattern recognition in fur-

ther steps. As one of the descriptions of point cloud 

feature, PFH is a multi-dimensional histogram with 

geometric features of query points and their nearest K 

neighbors (Rusu et al., 2008). 

PFH descriptor relies on the coordinates and nor-

mals of points and their nearest K neighbors. Compu-

ting of relationship between the points and their near-

est K neighbors, the point clouds variation on geomet-

ric surface is presented, which reserves the geometric 

features of the point clouds. Therefore, the quality of 

PFH depends on the estimated normal of each point. 

The relationship between query points and their near-

est K neighbors is shown as Figure 1. 

 

Figure 1: Relationship between query points and their near-

est K neighbors. 

Pt is a query point of PFH, and is regarded the cir-

cle center of neighborhood with radius R for querying 

K neighbors. Each pair of points in the neighborhood 

are connected in the algorithm, and the final presen-

tation is a histogram, which makes it have O(k2)com-

plexity. 

For the points Pa and Pb, with normals na and nb, 

the relative position and angular variation are com-

puted. One of these two points is defined as origin, 

and its normal become the X axis. The local coordi-

nate frame generated is shown as Figure 2. 

 

Figure 2: Local coordinate frame generated by the two 

points. 

[Pb-Pa]is the line between the two points, and Z s 

vertical to X and this line. The angular variations be-

tween normal of Pa and na, and that of Pb and nb is can 

be represented as below. 
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In this formula, d is the distance between Pa and 

Pb, which presents like. By computing the group of 

values (α, φ, θ, d), the parameters of coordinates and 

normals for the two points could be reduced from 12 

to 4. Among the 4 parameters, 3 angular variations 

could be easily binned into the same intervals of the 

histogram. For the forth distance parameter, the local 

point density of it may influence the eigen values, so 

omitting d would make PFH algorithm more robust 

(Rusu, 2010). Dividing the 3 angular intervals into n 

equal portions, it will obtain a histogram with n3inter-

vals and the times for each pair of points in histogram 

intervals are counted. PCL provides a data type 

pcl::PFHSignature125 to store the feature histogram 

with 125 floats when n=5. 

2.2 PFH Algorithm in PCL 

PCL provides the functions for FPH computing, and 

it is implemented serially as below. 

 

Figure 3: Serial computing of PFH. 

Step1.  Input the point cloud data with 3D coordi-

nates, and compute the normal of each point; 

Step2.  Select the searching area, and find the near-

est K neighbors of the query point; 

Step3.  According to the dataset of nearest K neigh-

bors, compute the angular variations of all the 

points and get the normalized histogram; 
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Step4.  Repeat Step2 and Step3, and traverse all the 

points to compute their feature histogram. 

The flowchart of the serial computing is as Figure 3. 

3 IMPLEMENTATION OF PFH 

BY OPENCL AND  

CORRESPONDING  

OPTIMIZATION 

3.1 Parallelism Analysis of OpenCL 

The points cloud of railway track from non-contact 

scanner includes the coordinates of x, y, z without 

normals, but the histogram needs the normals of each 

point. The computing of normals would traverse all 

the points in the dataset, and these normals computing 

are independent each other, thus it is beneficial for 

parallelism. Some tests indicate that the running  time 

for normals computing only take 5% of the whole 

time for the railway track point cloud with 100000 to 

1000000 points. OpenCL does not make any acceler-

ation but even cause performance deterioration for 

some additional cost. Thus, the point cloud normals 

are computed with the function from PCL directly in 

serial method. 

To generate PFH, the relative positions and nor-

mals should be computed for all the points in the 

neighborhood dataset of each point. Suppose that the 

railway track has M points, and the neighborhood has 

N points for each query point, then there will be 

M×(N2-N)loops(with repeated matching) or 

M×N2(without repeated matching). In each loop, 

there are 6 parameters including the 3D coordinate 

and normal, without dependence among different 

point pairs in the histogram computing, thus it runs 

with good parallel performance. In the test, it cost 

85% running time to compute the PHF of point pairs. 

Therefore, an OpenCL-accelerated PFH is proposed 

in this paper by considering the characteristics of PFH 

and structure of GPU. 

3.2 Optimization of GPU Memory  
Access 

It is costly to access the global memory (AMD Inc, 

2015a), for instance, the speed is 0.14 bit per clock 

cycle while it is 8 bit per clock cycle for local memory 

access. It is easily costs stalling when the thread ac-

cesses global memory directly because of insufficient 

bandwidth, and it will be effective to introduce local 

memory to solve the problem (Munshi et al., 2011). 

However, the local memory only with few tens KB 

space is very small, so when PFH algorithm runs, it 

requires to search neighbor point in certain neighbor-

hood. Although the index of query points is sequen-

tial, the index of neighbor points is random and 

threads search neighbor points from the whole point 

cloud datasets. Thus, it is not able to load all the data 

into local memory. 

According to this problem, the optimization is 

conducted to make the data structure of railway track 

point cloud suitable for parallel processing here. The 

among of points in point cloud is set as M. In the k 

neighborhood search, the point cloud is traversed in 

default sequence, and generate a index of neighbor 

points for each query points by kd-tree. Each point 

has k neighbor points, so the size of neighbor points 

index is M×k for the whole point cloud. By defining 

two float arrays, the 3D coordinates and normals are 

stored separately. Thus, a thread merely accesses lo-

cal memory without frequent global memory access 

if a certain query point’s neighbor points are loaded 

completely in local memory of GPU. As a result, the 

delay of access is reduced greatly. The computing 

steps of OpenCL-accelerated PFH is shown as below. 

 

Figure 4: OpenCL-accelerated PFH. 

It seems that the normals computing of point 

cloud and the kd tree search are achieved by CPU 

while the FPH computing is finished by GPU after it 

receives the packed 3D coordinates and normals data 

with sorting, and the computing results are transferred 

back to main memory. 
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3.3 Optimization of Kernel Resource 

For the GPU with AMD Graphics Core Next(GCN) 

architecture, the local memory of each computing 

unit can be divided into 32 banks (AMD Inc, 2015a), 

which are accessed by the half-wavefront (32 threads) 

unit. If certain bank is accessed by multiple threads 

on the same half wavefront boundary, the bank con-

flict will occur except that the 32 threads access the 

same bank. In the bank conflict, the system has to wait 

for running until all the threads obtain data. There-

fore, serious bank conflict will lead the idle of large 

amount computing cycles with low running effi-

ciency. 

To reduce the bank conflicts, the data copy for 

each thread is generated in private memory as the so-

lution, with the coordinates and the normals of the 

two points stored. Additionally, the vector format 

data can also reduce the bank conflicts because of its 

alignment to bank (Wilt, 2013). Considering the data 

structure of railway track point clouds, the 3D coor-

dinates and normals are stored in float3 vectors. For 

the limited number of registers, the use of private 

memory may cause the leak of registers to DRAM, 

with the side effect to performance (Gaster et al., 

2012), which should be avoid. The kernel file here is 

built by CodeXL so as to count the used amount of 

registers(private memory) and local memory re-

sources shown as Table 1. 

Table 1: Used amount of kernel resource. 

Resources Recommended amount Factual amount 

SGPRs 0-102 Registers 30 Registers 

VGPRs 0-256 Registers 41 Registers 

LDS size 0-32768 bytes 1280 bytes 
 

It is shown that the resources of kernel utility dis-

tribute in the recommended range, and can be built 

successfully. Thus, the performance will not be dete-

riorated for the registers leak. For different numbers 

of neighbor points, the memory unit load rates are an-

alyzed by CodeXL. The comparison before and after 

memory optimization is shown as Figure 5. 

As is shown, the load rates after optimization is 

obviously higher than that of before, but it declines 

with the increasing number of neighbor points, be-

cause with the increment of neighbor points, the data 

amount in local memory is increasing linearly while 

the computing complexity rises exponentially. If 

there is enough neighbor points, the bottleneck will 

be on computing unit rather than the load of memory 

unit. 

 

Figure 5: Comparison of memory unit load rates. 

3.4 The Division of Work-group 

In the abstract OpenCL model, the work-group is 

composed by the work-items (Scarpino, 2011) ac-

cessing the same resource, in other words, all the 

work-items in the work-group share the same local 

memory. In the computing of PFH, the neighbor 

points for single query point is independent to these 

of other query points. Therefore, it is reasonable to 

map the neighbor points for single query point to a 

work-group of OpenCL. 

The efficiency of GPU computing relates to the 

size of work-group. For the GPU with AMD GCN ar-

chitecture, a wavefront has 64 work-items, which is 

the lowest level that flow control can affect (AMD 

Inc, 2015b).It is better when size of work-group is in-

tegral multiple of wavefront (Scarpino, 2011). If the 

number of neighbor points is k, and the size of work-

group is N, the number of loops isk2. All the compu-

ting  goes on if each work-item loop runs for M times 

with M×N≥k2. The value of k is set by users. With 

the small k, it will get a low number of loops k2, and 

cause excessive idle of work-items if N is set too 

large. Using the analysis function of CodeXL, it can 

obtain the load percentage of vector arithmetic and 

logic unit(VALU) in different work-group sizes. 

It demonstrates that the VALU with 64 work-

groups has comparable initialization proportion with 

256 ones, but the load proportion is much higher than 

the later. Thus, the VALU with 64 work-groups is 

more effective corresponding to theoretical analysis. 

When the number of neighbor points is large, there is 

very little influence of work-group size on VALU in-

itialization proportion for the sufficient utilization of 

GPU computing resources. In summary, the size of 

work-group is set as a wavefront (that is 64). 
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Figure 6: Load percentage of VALU in different work-

group sizes. 

4 TEST 

4.1 Test Platform 

The hardware and software of test platform is shown 

as table 2. 

Table 2: Hardware and software of test platform. 

CPU AMD A8-7600B 

GPU Radeon™ R7 

Main memory 8G*2 ddr3 1600 

Operating System Windows 10 64bit 

Development Environment Visual Studio 2015 

PCL Version 1.7.2 64bit 
 

On the current test platform with the measuring 

range 300×400mm, the measured data with 400117 

points is obtained from TB/T2314 railway track by 

structured light scanner on site. 

4.2 Comparison among Tests 

The PFH is computed with different numbers of 

neighbor points k, and the CPU and GPU times are 

recorded. The average value of 3 running times is 

taken, with the CPU computing results from the orig-

inal PCL functions and GPU computing results from 

the optimized PFH functions by OpenCL. The test re-

sults is shown as Figure 7. 
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Figure 7: Comparison between CPU and GPU PFH compu-

ting. 

It indicates that the performance of CPU and GPU 

platforms are similar when the number of neighbor 

points is small, but the running time increases with 

the neighbor points number in CPU platform. For the 

GPU platform, the time has very slight increment 

with speedup ratio 45 when the number of neighbor 

points is 100. 

4.3 Analysis of Results 

There is some extra cost for using GPU platform, 

such as point clouds resorting, kernel building data 

copy and transferring back. Thus, the speedup effect 

is not obvious because these extra cost take compara-

tively large proportion of running time, but the multi-

thread computing ability works after the number of 

neighbor points increases so largely that the extra cost 

of GPU become a small ratio in running time while 

CPU platform running time is much more than that of 

GPU. 

5 CONCLUSIONS 

Compared with the original algorithm in PCL, the 

OpenCL-accelerated PFH proposed is more suitable 

for the computing resources utilization, and it takes 

advantage of GPU in data processing speed up. In the 

non-contact measurement data processing of railway 

track, the computing time of PFH is reduced and the 

real-time performance of the program is improved. In 

addition, the optimized function has excellent com-

patibility for the code reuse only by replacing the dy-

namic link library conveniently. 
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