
Distributed PowerShell Load Generator (D-PLG): A New Tool for
Dynamically Generating Network Traffic∗

Paul Jordan1, Chip Van Patten1, Gilbert Peterson1 and Andrew Sellers2

1Air Force Institute of Technology, Dayton, Ohio, U.S.A.
2United States Air Force Academy, Colorado Springs, Colorado, U.S.A.

Keywords: Network Traffic Generator, Load Generator, Machine Learning, Online Failure Prediction.

Abstract: Recently, a framework has been developed to automate the training of prediction algorithms but has only
been tested on one system. In order to generalize the approach a few key functions must be performed. One of
these functions is load generation. Unfortunately, a valid load generator has not been developed for a Microsoft
Windows active directory environment. In this paper we introduce and detail a tool that we have developed to
make the implementation of this new framework possible in a Microsoft domain, we present data generated
by our tool to demonstrate its efficacy, and finish with several extensions and applications for our tool.

1 INTRODUCTION

There are many approaches to generating realistic
traffic or capturing live traffic for replay. Unfor-
tunately, none of these approaches are capable of
independently generating full-stack network traffic
without naively replaying previously recorded traf-
fic, which is of limited utility in simulating a produc-
tion environment where realistic data transmission is
not necessarily confined to what’s already been ob-
served. This research is the result of an ongoing at-
tempt to generalize the Adaptive Failure Prediction
(AFP) framework developed by Irrera et al. in (Irrera
et al., 2015).

AFP automates the process of retraining a fail-
ure prediction algorithm after an underlying system
change by placing a target system under load before
injecting software faults to accelerate failure. Our tar-
get system is a Microsoft Windows active directory
domain services server and, as a result, we need to
generate a full-stack authenticated session in order to
sufficiently load the service.

In support of that research, we have developed a
tool for generating several kinds for network traffic
and introduce it in this paper. Further, we demon-
strate the validity of our tool and that our technique
is generalizable and can leverage the AFP framework
∗The views expressed herein are solely those of the au-

thors and do not reflect the official policy or position of
the U.S. Air Force, the Department of Defense, or the U.S.
Government.

in order to capture network transactions of arbitrary
arity between unbounded network components with
dynamic volume, variety, veracity, and velocity.

The rest of this paper is organized as follows. In
Section 2, we discuss other traffic generation tools
and how ours is different. In Section 3, we outline
our tool and provide specific implementation details.
In Section 4, we describe the methodology used to
demonstrate the efficacy of our tool. In Section 5 we
present our results after running our tool in a virtual
environment, we then conclude by outlining future
work in Section 6.

2 RELATED WORK

This section is broken into two subsections. The first
briefly covers the advances made in the field of on-
line failure prediction and how they relate to our tool,
and the second details existing tools for network traf-
fic generation.

2.1 Online Failure Prediction

In 2010, Salfner et al. published a survey of on-
line failure prediction techniques that categorized the
many approaches that have been explored into a tax-
onomy (Salfner et al., 2010). Many of these failure
prediction techniques are based in machine learning
and require steady system states but sadly, as the soft-

Jordan, P., Patten, C., Peterson, G. and Sellers, A.
Distributed PowerShell Load Generator (D-PLG): A New Tool for Dynamically Generating Network Traffic.
DOI: 10.5220/0005961501950202
In Proceedings of the 6th International Conference on Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH 2016), pages 195-202
ISBN: 978-989-758-199-1
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

195



ware development life-cycle has grown shorter over
time, a steady system state is no longer a guarantee.

Since the publication of Salfner et al.’s survey, it
has been pointed out that while many effective tech-
niques for predicting failure exist, these techniques
are too difficult to maintain and consequently are not
being used. In 2015, Irrera et al. published a frame-
work called the Adaptive Failure Prediction (AFP)
framework for dealing with this problem that auto-
mated the process of retraining a failure prediction
algorithm after an underlying system change (Irrera
et al., 2015). After a system change, a virtual clone of
the production system is made and then load against
this clone is generated. After the cloned system is suf-
ficiently loaded, faults are injected which quickly lead
to failure. This failure is captured, labeled, and used
to train a new predictor. The new predictor is com-
pared against the old one and replaces it if the new
outperforms the old.

The target system for this research is a Microsoft
Windows active directory domain services server and,
as a result, full-stack authenticated session traffic is
required in order to sufficiently load the service. In
this work, we seek to enable the generalization of the
AFP framework and were unable to find a sufficient
load generation tool to carry out the automated re-
training of a predictor defined in AFP.

2.2 Network Load & Traffic Generation

Many tools exist for the purpose of generating net-
work traffic. Generally, these tools are classified
into three categories: application-level, flow-level,
and packet-level generators (Botta et al., 2012; Zach
et al., 2013). Application-level generators emulate
traffic produced by applications on a network, flow-
level generators replicate actual traffic using statisti-
cal modeling, and packet-level generators create and
inject packets into the network. Network traffic gen-
erators are further classified as open- or closed-loop.
Open-loop generators use a packet arrival model for
packet timing, whereas closed-loop generators wait
for a response to a sent request prior to sending the
next request (Weigle et al., 2006). Unfortunately, as
far as we can tell, none of the tools available generate
the necessary interaction with a deployed Microsoft
Windows active directory environment necessary to
facilitate the implementation of the AFP framework.
Active directory implements the Kerberos authentica-
tion protocol in Windows domains and due to its cryp-
tographic nature cannot be tested against replayed or
random traffic; rather, a sequence of valid and invalid
requests and responses are necessary to stress test this
framework. Indeed, multi-step “handshakes” are nec-

essary for rich service delivery and this capability is
not realized by the current tools with any degree of
modularity or extensibility.

A brief review of the traffic generators consid-
ered when researching this problem follows. The
Distributed Internet Traffic Generator (D-ITG) (Botta
et al., 2012) is, as its name implies, a distributed
traffic generator capable of performing application,
flow, and packet-level generation using both open-
and closed-loop operations – sessions are initiated at
specific time intervals and, within each session, new
requests are not sent prior to receiving a response to
the previous request. Sadly, D-ITG currently only
supports TCP, UDP, ICMP, DNS, Telnet and VoIP
which does not suit our needs.

NTG (Zach et al., 2013) is an application-level,
distributed network traffic generator which is both
open- and closed-loop. A key feature of NTG, as it
relates to our problem, is that it interacts with existing
network services. Unfortunately, it is only limited to
web, mail, and multimedia servers/services, which is
insufficient for our purposes.

Swing (Vishwanath and Vahdat, 2009) is a flow-
level, closed-loop traffic generator that observes live
network traffic, extracts distributions from the traf-
fic, and generates new traffic in a manner consistent
with the observed traffic distributions. While this tool
provides the ability to generate statistically-realistic
traffic from generators to listeners across a link, the
lack of both two-way traffic and interaction with ex-
isting services (specifically authentication services)
does not satisfy the requirements for our problem.

A final tool worth mentioning, while not a net-
work traffic generator, is Microsoft’s Active Direc-
tory Performance Testing Tool (ADTest)†. Offi-
cial Microsoft documentation is limited, however
in (Bijaoui, 2011; Morowczynski, 2014; Suyanto
and Tiwari, 2010a; Suyanto and Tiwari, 2010b) we
find that ADTest assesses the ability of Microsoft
2003/2008/2012 Active Directory Lightweight Direc-
tory Services (AD LDS) servers to add organization
units and users, and make various changes to Active
Directory to aid in developing requirements for an AD
LDS deployment. It is important to note that Mi-
crosoft no longer supports this tool (Morowczynski,
2014). Also of importance, ADTest is not capable
of testing other services that rely on active directory
domain services for authentication (e.g. RDP, SMB,
etc), nor can it be extended to do so, and is therefore
insufficient for our goals.

While all of these tools are, in general, sufficient
for generating traffic in a network, they do not gener-

†https://www.microsoft.com/en-us/download/
details.aspx?id=15275

SIMULTECH 2016 - 6th International Conference on Simulation and Modeling Methodologies, Technologies and Applications

196



ate full-stack, two-way authentication that is needed
in order to sufficiently load the active directory do-
main services service. Further, these tools work by
replaying traffic transactions that have already taken
place and as a result, this type of traffic cannot be used
to force any network services to do any meaningful or
realistic work. The AFP requires the target system be
placed under realistic load before injecting faults to
capture the most realistic failure data possible (Irrera
and Vieira, 2014; Irrera et al., 2015). Due to the na-
ture of the authentication protocols used in enterprise
domains, it is not possible to realistically generate this
traffic without valid user credentials and a dynamic
authentication session that cannot be replayed due to
its cryptographic nature. A tool to generate this type
of traffic did not previously exist.

3 DISTRIBUTED POWERSHELL
LOAD GENERATOR (D-PLG)

We present D-PLG, a new tool for the generation of
realistic network traffic in a Microsoft Windows do-
main for the purposes of software testing or load gen-
eration. D-PLG can be classified as an application-
level closed loop traffic generator and is a basic Win-
dows PowerShell script that uses native PowerShell
cmdlets for all of its functionality ensuring that the
most realistic traffic possible is generated without
overburdening the client machines used for generat-
ing load. D-PLG offers what has not seen in other
traffic generation products or tools by making actual
service requests and producing actual challenges and
responses for Windows authentication protocols.

D-PLG is written in the Windows PowerShell en-
vironment because it provides a tremendous amount
of power and flexibility to generate traffic that would
actually be generated by a users interaction with net-
work services since the same software applications
and libraries are used. As a result, D-PLG does re-
quire the use of client machines. However, this work
does show that generating this type of realistic traffic
is possible by utilizing only a small number of ma-
chines, or without producing a noticeable burden on
in-use client machines.

In general, the intended architecture can be seen
in Figure 1. D-PLG is most effective if used by a few
client machines during idle downtimes but is devel-
oped in such a way that a user can still use a machine
that is generating load, but may notice degraded per-
formance depending upon how much traffic that par-
ticular client is being asked to generate. D-PLG is
currently designed to run from one central location,
asking a configurable list of clients to produce traffic

Figure 1: How each type of traffic that is generated is
routed. Log events are offloaded to logging service for fur-
ther analysis.

for a fixed period of time.
It should be noted that D-PLG implements a fea-

ture that has not been previously seen and thus, a com-
parison with the existing tools is difficult. Relevant
existing tools simply replay previously observed traf-
fic which may be more representative of realistic load,
but are incapable of creating any real work for crypto-
graphic system. Modern cryptography relies on ran-
dom and dynamic challenge-response protocols, as a
result any inbound requests that are not capable of
generating dynamic challenge responses are typically
dropped immediately.

In its present form, D-PLG is comprised of three
modules capable of generating full-stack web re-
quests, Microsoft remote desktop protocol, Microsoft
server message block (SMB) file sharing, and all as-
sociated authentication traffic. An intended byproduct
of all of this traffic is domain name system (DNS) re-
quests. An important part of any active directory do-
main is DNS and as a result, no load generator would
be complete without performing DNS lookups.

The rest of this section outlines each of the three
modules currently implemented as well as our plans
for future modules.

3.1 Web Browsing

D-PLG is capable of generating full-stack web re-
quests and presently simulates an actual user brows-
ing. This module is implemented using the ‘Invoke-
WebRequest’ PowerShell cmdlet which upon com-
pletion returns an object representing the full doc-
ument object model (DOM). The return of this ob-
ject allows us to programmatically simulate random
browsing within a returned page. As a result, our tool
is capable of generating realistic web traffic against
a web server. This functionality is different from
the functionality implemented in many of the exist-
ing tools that only generate one-way transmission of
the web request. As a result, this module allows
users of our tool to generate realistic load against web

Distributed PowerShell Load Generator (D-PLG): A New Tool for Dynamically Generating Network Traffic

197



servers and potentially automate realistic web appli-
cation testing.

The web browser was created with minimal effort
as our approach to D-PLG emphasizes rapid genera-
tion of modern internet-based interactions. In future
versions, we plan to implement more dynamic web
browsing to facilitate the use of D-PLG as an auto-
mated web application testing tool. Since the entire
DOM is returned, it is possible and relatively simple
to programmatically complete web forms, and sub-
mit REST API calls in only a few lines of PowerShell
code.

3.2 Remote Desktop Protocol

Remote Desktop Protocol (RDP) is a simple proto-
col that allows the sharing and remote control of a
Windows desktop environment. This module was in-
cluded to generate more authentication traffic with
our active directory domain services server as well as
place load on our remote desktop services server. Ap-
plications for this module could include network in-
frastructure capacity and server sizing planning. The
module takes advantage of a modified third party
cmdlet (Brasser, 2015) which invokes a call to the na-
tive windows remote desktop application (mstsc.exe).
Our modification only tells the cmdlet not to present
a window as to avoid interrupting an individual who
may be using the computer at the time of load gener-
ation.

Currently, the RDP module makes a full-stack re-
mote desktop connection with an RDP server with-
out producing a window which can allow us to take
advantage of clients in active states. The script then
sleeps for a few seconds and then closes the connec-
tion. In future versions, we would like to implement
some sort of actual interaction with the RDP server
like file upload or application use. This functional-
ity was based on a tool previously developed by Mi-
crosoft‡ which is no longer maintained as evidenced
here (Szeto, 2012).

3.3 Server Message Block (SMB) File
Sharing

D-PLG implements an SMB file sharing module that
connects to a local or remote share, creates a file in the
share, fills that file with random ASCII data, saves the
file, deletes the file, and finally deletes the share. This
sequence of operations ensures that full-stack SMB
file sharing requests are utilized and thus, causing the

‡https://www.microsoft.com/en-us/download/
details.aspx?id=2218

domain services server to authenticate the transaction
and the file sharing services server to process the data
being uploaded. This simple module could addition-
ally be used to ensure a file server is live before be-
ginning more complex operations.

Like the previous module, the SMB module was
rapidly built due to the flexibility of our framework
and implemented in only fourteen lines of code. In fu-
ture versions, we plan to implement a variable amount
of upload data or allow the user to select his or her
own file. By allowing the user to upload a custom file,
this module could be used to test application aware
firewall rules to ensure certain types of files are or are
not allowed to traverse a network.

3.4 Future Modules

We have already implemented many core active direc-
tory domain services as a proof of concept, but would
like to point out how easy additional services would
be to implement in our script. For example, sim-
ple message transfer protocol (SMTP) traffic could
be implemented in a single line of PowerShell code
using the ‘Send-MailMessage’ cmdlet. Additionally,
the ‘Out-Printer’ cmdlet would allow for the sending
of realistic full-stack network printer traffic. To facil-
itate future development, we have published D-PLG
in its current form under the MIT license on GitHub§.

These modules demonstrate our platforms exten-
sibility and are representative of sophisticated net-
work interactions that are necessary to create a per-
formant load generator for the tableau of modern net-
working services.

4 METHODOLOGY

This section is split into two subsections. In the first,
we describe in detail our virtual environment. In the
following section, we detail the design of our experi-
ments which utilized our virtual environment.

4.1 Virtual Environment

The virtual environment was hosted on two VMWare
ESXi 5.5 hypervisors each with two 2.6 GHz AMD
Opteron 4180 (6 cores each) CPUs and 64 GB mem-
ory. The individual virtual machines are detailed in
Tables 1, and 2. D-PLG uses cmdlets that did not
exist until PowerShell version 3.0 so each of the Mi-
crosoft (MS) Windows computers had the MS Win-
dows Management Framework version 4.5 installed.

§https://github.com/paullj1/afp-dc/tree/master/D-PLG

SIMULTECH 2016 - 6th International Conference on Simulation and Modeling Methodologies, Technologies and Applications

198



The installation of this framework also necessitated
the installation of the MS .NET Framework version
4.5. In an enterprise environment these software
frameworks would more than likely already be in-
stalled as they are part of the service pack updates
that have since been released by Microsoft.

Table 1: Hypervisor 1.

Qty. Role Operating System CPU / Mem.
1 DC Win. Server 2008 2 / 2 GB
5 Client Win. 7 1 / 512 MB

Table 2: Hypervisor 2.

Qty. Role Operating System CPU / Mem.
1 RDP Win. Server 2008 1 / 4 GB
1 Log Ubuntu 14.04 LTS 1 / 1 GB

After installing the requisite software, each client
was added to the domain and required a few minor
modifications. First, D-PLG creates remote ‘PSSes-
sions’ on each client machine and then invokes the
cmdlets that have been assembled to generate the de-
sired load. In order for this to happen, the credentials
of the controller must be delegated so that they may
be used to make the connections through the PSSes-
sion. This delegation is done very simply through the
PowerShell cmdlet ‘Enable-WSManCredSSP’. The
final modification was for convenience; a copy of the
scripts to be executed remotely was placed on the
desktop of the Administrator user.

The domain controller had two MS Windows
Server roles enabled: active directory domain ser-
vices, and domain name service (DNS). One do-
main administrator account was used for command
and control traffic, and individual user accounts were
created and used for RDP and simple authentication
traffic. The RDP server only had one MS Windows
Server role enabled: remote desktop services.

The Ubuntu server was deployed and used as a
central log repository for analyzing load on the do-
main controller and RDP server. The default rsyslog
application was simply configured to accept incoming
connections and then the rsyslog Windows agent was
installed on the domain controller and RDP server.

D-PLG is divided into two scripts. The first is the
‘LocalLoadGen’ script and is placed on each client
computer. We note here that placing the script on the
each client computer may not be ideal in a production
environment and this step could easily be automated
when the controller runs. Further, upon completion,
the script could be removed in a single PowerShell
command. The second script ‘RunLoadSim’ is de-
signed to act as a command and control element that

connects to each client and executes the ‘LocalLoad-
Gen’ script as an asynchronous job. In our experi-
ments, the command and control script was executed
from our RDP server.

4.2 Experiment Design

Two experiments were designed to test and demon-
strate the efficacy of our tool and are detailed here.
In both of the following tests, D-PLG was run five
times, where each execution consisted of five minutes
of traffic generation within our virtual environment.
The domain controller was sized based on Microsoft’s
community recommendation for up to fifteen thou-
sand users in (Makbulolu and Geelen, 2012). Our
goal was to produce a sufficient enough amount of
traffic to achieve the level of load that was suggested
our server be able to sustain based on how it was
sized. To determine if that goal was achieved, ESXi’s
reporting tools were used to collect the relevant data
in the form of packet captures at the virtual switch-
ports of one client machine, the terminal server, and
the domain controller. Further data collected came
from the ESXi performance data. After each round
of our tests, the performance data were exported from
each of the hypervisors on the terminal server, one
client, and the domain controller. In these data, CPU
utilization, memory utilization, disk operations, and
network traffic are reported on twenty second inter-
vals. Finally, as previously stated, the rsyslog Win-
dows Agent was used to forward the logs from the do-
main controller and RDP server to an Ubuntu server.
These log entries were then split into pieces that cor-
responded with each round of the tests.

The first question we wanted to answer was, how
much traffic can a PowerShell script really generate,
and is it enough to sufficiently load an enterprise do-
main controller? The first experiment was designed
to answer that question. To maximize the amount of
traffic and subsequent load generated, the client ma-
chines were only configured to make a single request.
To do this, the ‘RunLoadSim’ was only tasked to per-
form a basic authentication request to the domain con-
troller. The goal was to maximize the number of au-
thentication requests the server could handle based on
the way it was sized. In our case, that number was
fifteen thousand users and a goal CPU utilization of
40%. To prevent overburdening the client machines,
we found that the highest frequency at which these
events could be created and handled was 10 per sec-
ond. Fortunately, five clients running for five minutes
making ten requests per second equated to exactly fif-
teen thousand requests.

It should be noted here that the client machines

Distributed PowerShell Load Generator (D-PLG): A New Tool for Dynamically Generating Network Traffic

199



used were significantly less powerful than average
desktop computers typically found in an enterprise
environment. Each authentication event took 20 mil-
liseconds so the maximum number of requests per
second that was observed was fifty. As a result, this
same experimental setup can sufficiently load a do-
main controller sized for seventy-five thousand users.

In the second experiment we wanted to determine
how much load could be produced without having a
significant effect on the resources available to each
client machine. We configured the clients to utilize
each of the modules that are currently implemented
in D-PLG. In each round of the test the client ma-
chines looped continuously making an authentication
request to the domain controller, a full RDP connec-
tion, an SMB share connection, a web request to a
randomly selected URL, and finally a web request to a
URL randomly selected from the page returned by the
first request. The loop was configured to run twice per
second, however due to the high latency of the web re-
quests, the client was not expected to make that many
requests every second of the test. This configuration
choice was made to ensure maximum utilization when
possible.

5 EXPERIMENTAL RESULTS

In this section the results and data collected after con-
ducting the tests described in Section 4.2 are detailed.
To answer the quantity question, the number of pack-
ets produced per second was explored as well as CPU
utilization, memory utilization, log events, and net-
work operations on the domain controller. In this first
round of tests, the domain controller reported an aver-
age of 56,291 log events over each five minute test or
approximately 187 log events per second. In addition,
an average of 6,267 packets per second were captured
over each of the five tests. Figure 2 shows the dis-
tribution on the number of packets sent and received
by the domain controller for each test and tells us that
the load was consistently high throughout each test.
On the client side, as we predicted, the load was also
relatively high as seen in Figure 4.

These results validate our hypothesis. The load
generated against the domain controller was consis-
tently at 40% which is exactly in-line with the amount
of load it should be expected to endure during peak
business hours per the Microsoft community recom-
mendations for sizing (Makbulolu and Geelen, 2012).
Unfortunately in this case, the client machines would
likely not have been usable during the test. For-
tunately, because only five low-end are needed ma-
chines to produce this load over a relatively short pe-

Figure 2: How many packets per second were sent or re-
ceived by the domain controller across all five rounds of the
first test. In each test, approximately 1.8 million packets
were captured.

Figure 3: How many packets per second were sent or re-
ceived by one of the clients across all five rounds of the first
test.

Figure 4: Client CPU and memory utilization during the
first test.

riod of time, a simple solution to this problem would
be to purchase five inexpensive desktop computers for
this purpose, or conduct testing during an idle down-
time.

In the second test, we were trying to find out if the
client machines could produce a sufficient amount of
realistic traffic without being over burdened so that

SIMULTECH 2016 - 6th International Conference on Simulation and Modeling Methodologies, Technologies and Applications

200



Figure 5: Domain controller CPU and memory utilization
during the first test.

they could be used to generate load even as individ-
uals use them. To answer this question we examined
CPU and memory utilization, and packets transmit-
ted per second with respect to the client. The average
number of packets generated over the five minute tests
was 5,499 and the remainder of the data can be seen
in Figure 6. We also examined these same data with
respect to the domain controller and RDP server seen
in Figures 7, and 8 respectively.

Figure 6: Client CPU and memory utilization during the
second test.

Figure 7: Domain controller CPU and memory utilization
during the second test.

While the number of packets was relatively high,
these results do not demonstrate a sufficient amount
of load on either the domain controller or RDP server.

Figure 8: RDP server CPU and memory utilization during
the second test.

We suspect that this is due to the majority of the time
spent during the test retrieving web-pages. As a re-
sult, if a proxy server or application aware firewall is
the target of this load generation, this level of traf-
fic is sufficient for that purpose. These results also
show that a client computer asked to generate traffic
could still be used during a test. In future work, we
plan to test this infrastructure with non-blocking web-
requests so that more load can be placed against the
local services while web requests are being processed
externally. Alternatively, more client machines could
be used during the test.

In general, the results observed lead us to believe
that our tool can be extended and used under any cir-
cumstance where dynamic network transactions are
required between unbounded network components.
Further, these results show that our tool will allow us
to leverage the AFP framework in our future work.

6 FUTURE WORK

There are many opportunities for improvement in D-
PLG. If D-PLG is to be used to simulate realistic net-
work traffic patterns that would normally be gener-
ated by humans, much work would have to be done to
balance the kinds of requests that get made. For ex-
ample, a typical user might log in, browse the web for
a few minutes, check his or her e-mail, then maybe
send an e-mail. Currently, D-PLG is extremely pre-
dictable with respect to what kind of request it will
make next. The framework can be made a lot more
relevant with programmatic generation schemes such
as REGEX-based pattern generation or training of in-
put validity via machine learning. For the purposes of
implementing the AFP however, the level and quality
of load observed is sufficient.

More configuration options could be added like
the depth of a browser simulation or having the
browser simulate filling out web forms using config-

Distributed PowerShell Load Generator (D-PLG): A New Tool for Dynamically Generating Network Traffic

201



urable data. D-PLG could also allow for finer grain
control over the SMB module allowing users to select
a file or specify the size of the randomly generated
file. Most of these configuration options would be
implemented in a straightforward way.

Finally, as previously discussed, other modules
which take advantage of more of the native Win-
dows PowerShell cmdlets like ‘Send-MailMessage’
and ‘Output-Printer’ could be implemented with rela-
tive ease.

7 CONCLUSION

Based on the results of our tests, we believe that D-
PLG is capable of providing sufficient load of net-
work services in a Microsoft Windows enterprise do-
main. Our five clients were able to generate fifteen
thousand authentication requests over a five minute
time period which was very near the limit that our do-
main controller should be expected to handle based on
the Microsoft community recommendations. Further,
since our configuration was based on these recom-
mendations, we also believe that our experiment will
scale for larger networks. We believe that the use of
client machines to produce this load is negligible and
have proven that it can be done centrally, with only a
few machines, without placing a significant burden on
those client machines, and without installing any ad-
ditional software by use of the native Windows Pow-
erShell cmdlets. Finally, we believe that if necessary
and client machines are used during idle down times,
significant load can be generated by D-PLG. We be-
lieve that this level of load is sufficient for our pur-
poses of conducting further research in the area of
online failure prediction and could be used without
significant modification for other applications.

There are many established needs for having net-
work traffic and load generators. We have demon-
strated one important role our tool can play, but be-
lieve that the results presented in this paper sug-
gest that D-PLG can fill many other needs for dy-
namic traffic generation. For example, in cybersecu-
rity training events, traffic generators are used to sim-
ulate real traffic to mask malicious traffic. Other uses
include equipment sizing, stress testing, and software
testing. We believe that D-PLG can fill these needs
as well and in general can be naturally extended and
used under any circumstance where dynamic network
transactions are required between unbounded network
components.

ACKNOWLEDGMENTS

This research was sponsored by the U.S. National Se-
curity Agency, National Information Assurance Edu-
cation and Training Program (Alice Shafer and Glenn
Ellisonn, Program Managers).

REFERENCES

Bijaoui, P. (2011). Microsoft Exchange Server 2003 Scal-
ability with SP1 and SP2. HP Technologies. Elsevier
Science.

Botta, A., Dainotti, A., and Pescapé, A. (2012). A tool
for the generation of realistic network workload for
emerging networking scenarios. Computer Networks,
56(15):3531–3547.

Brasser, J. (2015). Script connect-mstsc - open rdp session
with credentials.

Irrera, I. and Vieira, M. (2014). A Practical Approach for
Generating Failure Data for Assessing and Compar-
ing Failure Prediction Algorithms. 2014 IEEE 20th
Pacific Rim International Symposium on Dependable
Computing, pages 86–95.

Irrera, I., Vieira, M., and Duraes, J. (2015). Adaptive Fail-
ure Prediction for Computer Systems: A Framework
and a Case Study. 2015 IEEE 16th International
Symposium on High Assurance Systems Engineering,
pages 142–149.

Makbulolu, S. and Geelen, G. (2012). Capacity planning
for active directory domain services.

Morowczynski, M. (2014). How To Use the Active Di-
rectory Performance Testing Tool on Windows Server
2012 — Ask Premier Field Engineering (PFE) Plat-
forms.

Salfner, F., Lenk, M., and Malek, M. (2010). A survey
of online failure prediction methods. ACM Comput.
Surv., 42(3):10:1–10:42.

Suyanto, H. and Tiwari, M. (2010a). Windows 2008 AD
LDS Load Testing using ADTEST - Part 1 - TechNet
Articles.

Suyanto, H. and Tiwari, M. (2010b). Windows 2008 AD
LDS Load Testing using ADTEST - Part 2 - TechNet
Articles.

Szeto, A. (2012). Debug Assertion Failed: sockcore.cpp,
line 623.

Vishwanath, K. and Vahdat, A. (2009). Swing: Realistic
and responsive network traffic generation. IEEE/ACM
Transactions on Networking, 17(3):712–725.

Weigle, M., Adurthi, P., Hernandez-Campos, F., Jeffay,
K., and Smith, F. (2006). Tmix: A Tool for Gener-
ating Realistic TCP Application Workloads in ns-2.
ACM SIGCOMM Computer Communication Review,
36(3):67–76.

Zach, P., Pokorny, M., and Motycka, A. (2013). Design
of Software Network Traffic Generator. Recent Ad-
vances in Circuits, Systems, Telecommunications and
Control, pages 244–251.

SIMULTECH 2016 - 6th International Conference on Simulation and Modeling Methodologies, Technologies and Applications

202


