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Abstract: We aim at developing statistical tools that improve the accuracy and precision of the measurements returned
by triangulation Light Detection and Rangings (Lidars). To this aim we: i) propose and validate a novel model
that describes the statistics of the measurements of these Lidars, and that is built starting from mechanical
considerations on the geometry and properties of their pinhole lens - CCD camera systems; ii) build, start-
ing from this novel statistical model, a Maximum Likelihood (ML) / Akaike Information Criterion (AIC) -
based sensor calibration algorithm that exploits training information collected in a controlled environment; iii)
develop ML and Least Squares (LS) strategies that use the calibration results to statistically process the raw
sensor measurements in non controlled environments. The overall technique allowed us to obtain empirical
improvements of the normalized Mean Squared Error (MSE) from 0.0789 to 0.0046.

1 INTRODUCTION

Lidars are ubiquitously used for mapping purposes.
Different types of Lidar technologies, such as Time
of Flight (ToF) and triangulation, have different sta-
tistical performance. For example, ToF Lidars have
generically lower bias and measurement noise vari-
ances than triangulation ones. At the same time, trian-
gulation Lidars are generally cheaper than ToF ones.
The market pull is then to increase the performance of
cheaper Lidars in a cost-effective way.

Improving the accuracy and precision of sensors
can then be done in different ways, e.g., by improv-
ing their mechanical properties. In this paper we have
a precise target: improve the performance indexes of
triangulation Lidars by removing their biases and ar-
tifacts through opportune statistical manipulations of
the raw information coming from the sensor.

The following literature review analyzes a set of
algorithms that are related to our aim.

Literature Review. It is convenient to categorize
the algorithms in the existing and relevant literature
as:

• procedures for the characterization or calibration
of the devices. Here characterization means a
thorough quantification of the measurement nois-
iness of the device, while calibration means an

algorithm that aims at diminishing this noisiness
level;

• when dealing with calibration issues, procedures
for the intrinsic or extrinsic calibration. Here
intrinsic means that the focus is on estimating
the parameters of the Lidar itself, while extrinsic
means that the focus is on estimating the parame-
ters resulted from sensor positioning and installa-
tion.

Characterization issues: several papers discuss
Lidar characterization issues for both ToF (Kneip
et al., 2009; Reina and Gonzales, 1997; Lee and
Ehsani, 2008; Sanz-Cortiella et al., 2011; Tang et al.,
2009; Tuley et al., 2005; Ye and Borenstein, 2002;
Anderson et al., 2005; Alhashimi et al., 2015) and tri-
angulation Lidars (Lima et al., 2015; Campos et al.,
2016). Notice that, at the best of our knowledge, for
triangulation Lidars there exist only two manuscripts:
(Lima et al., 2015), that discusses the nonlinearity of
Neato Lidars, and (Campos et al., 2016), that analyzes
the effect of the color of the target on the measured
distance. Importantly, (Lima et al., 2015) models non-
linear effects on the measurements and the variance
of additive measurement noises as two independent
effects that can be modeled with a second order poly-
nomials on the actual distance. From a statistical per-
spectives the authors, therefore, decouple the learning
process into two separate parts.
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Calibration issues: as for the calibration issues
there is a relatively large number of papers describing
how to calibrate extrinsic parameters either using ad-
ditional sensors (such as cameras) (Zhang and Pless,
2004b; Mei and Rives, 2006; Jokinen, 1999; Tidde-
man et al., 1998), or just requiring knowledge on the
motion of the Lidar itself (Andreasson et al., 2005;
Wei and Hirzinger, 1998; McIvor, 1999; Zhang and
Pless, 2004a).

Still considering calibration issues, there has been
also a big effort on how to perform intrinsic cali-
bration for multi-beam Lidar systems, where the re-
sults from one beam is used to calibrate the intrinsic
parameters of other beams (Chen and Chien, 2012;
Muhammad and Lacroix, 2010; Atanacio-Jiménez
et al., 2011; Glennie and Lichti, 2010; Glennie and
Lichti, 2011; Glennie, 2012; Gordon and Meidow,
2013; Mirzaei et al., 2012; Gong et al., 2013; Park
et al., 2014). As for single-beam Lidar systems, in-
stead, (Mirzaei et al., 2012) proposes a method for
the intrinsic calibration of a revolving-head 3D Lidar
and the extrinsic calibration of the parameters with re-
spect to a camera. The technique involves an analyti-
cal method for computing an initial estimate for both
the Lidar’s intrinsic parameters and the Lidar-camera
transformation, that is then used to initialize an iter-
ative nonlinear least-squares refinement of all of the
calibration parameters.

We also mention the topic of on-line calibration of
sensor parameters for mobile robots when doing Si-
multaneous localization and mapping (SLAM), very
useful in navigation tasks. In this category, (Küm-
merle et al., 2011) proposes an approach to simulta-
neously estimate a map of the environment, the po-
sition of the on-board sensors of the robot, and its
kinematic parameters. These parameters are subject
to variations due to wear of the devices or mechanical
effects like loading. An other similar methodology for
the intrinsic calibration of depth sensor during SLAM
is presented in (Teichman et al., 2013).

Statement of Contributions. We focus specifically
on triangulation Lidars for robotic applications, and
aim to increase their performance in a cost-effective
way through statistical processing techniques. Our
long term vision is to arrive at a on-line automatic
calibration procedure for triangulation Lidars like
in (Kümmerle et al., 2011; Teichman et al., 2013);
before reaching this above long-term goal, we must
nonetheless solve satisfactorily the problem of cali-
brating triangulation Lidars off-line.

In this paper we thus:

• propose and assess a model for the measurement
process of triangulation Lidars (see Section 3 and

model (1)). Our model not only generalizes the
model proposed in (Lima et al., 2015; Campos
et al., 2016), but also motivates it starting from
mechanical and physical interpretations;

• on top of this model, propose and assess a ML
calibration procedure that uses data from a Mo-
tion Capture (MoCap) system. Importantly, our
calibration procedure extends the one proposed
in (Lima et al., 2015): there authors decoupled
the learning process into two separate stages (cor-
responding to estimate two different sets of pa-
rameters), while here the calibration is performed
simultaneously on both sets of parameters;

• propose and assess novel ML and LS strategies for
correcting the measurements from the sensor with
the model inferred during the calibration stage.

As reported in (31) and (32), the overall strategy is
then shown to be capable to improve the normalized
MSE of the raw information from the sensor from
0.0789 to 0.0046.

1.1 Organization of the Manuscript

Section 2 describes the working principles of trian-
gulation Lidars. Based on these working principles,
Section 3 proposes a statistical model of the measure-
ment process of the device. Section 4 then validates
this statistical model using data acquired through a
MoCap system. Section 5 then presents a calibration
algorithm for sensors deployed in a test environment.
Section 7 eventually concludes the paper with the de-
scription of future research issues.

2 The Triangulation Lidar Range
Sensor

We now describe the functioning principle of the tri-
angulation scanners; this discussion will be useful
for explaining why the moments of the measurement
noise depend on the actual measured distance. More
details about the constructive details of triangulation
Lidars can be found in (Blais, 2004; Konolige et al.,
2008).

A prototypical triangulation Lidar is the one in
Figure 1. Its working principles are then explained
with the diagram in Figure 2 and its caption.

This simple working principle helps keeping the
cost of the sensor low1, and making it commercially

1Incidentally, the sensor was costing $135.00 as of February
2016 in Ebay. Nonetheless, the original industrial goal was
to reach an end user price of $30.00.
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Figure 1: Photo of a triangulation Lidar.

laser beam
b

dk

parallel of
the laser beam

d′b′k

laser

object

pinhole
camera

pinhole
lens

Figure 2: Diagram exemplifying the working principle of a
triangulation Lidar . The laser emits an infra-red laser signal
that is then reflected by the object to be detected. The beam
passes through a pinhole lens and hits a CCD camera sensor.
By construction, thus, the triangles defined by (b,dk) and by
(b′k,d

′) are similar: this means that the distance to the object
is nonlinearly proportional to the angle of the reflected light,
and as soon as the camera measures the distance b′k one can
estimate the actual distance dk using triangles similarities
concepts.

usable in low-cost devices like robotic vacuum clean-
ers. The low cost of the sensor comes nonetheless
with some well-defined mechanical problems (Kono-
lige et al., 2008):

• low-cost lens, that generate nonlinear distortion
effects;

• imprecise pointing accuracy, that is known of at
best 6 degrees;

• not rigid physical linkages among lens elements,
camera, laser, and laser optics, that may suffer
from distortion effects during the life of the de-
vice.

As it can be seen in Figure 3, all these problems in-
duce measurement errors; more precisely, triangula-
tion Lidars suffer from strong nonlinearities in both

the bias and the standard deviation of the measure-
ment noise. This pushes towards finding some sig-
nal processing tools that can alleviate these problems,
and keep the sensor cheap while improving its perfor-
mance.
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Figure 3: Dataset.

3 A NOVEL STATISTICAL
MODEL FOR THE Lidar
MEASUREMENTS

Let yk be the k-th measurement returned by the Lidar
when the true distance is dk. Physically, yk is com-
puted by the logic of the sensor through a static trans-
formation of b′k in Figure 2; we assume here that this
static transformation is unknown, that b′k is not avail-
able, and that we want to improve the estimation for
dk from just yk.

Our ansatz for the whole transformation from dk
to yk is then

yk = f (dk)+ f (dk)
2ek (1)

where

• f (·) is an unknown non-linear function;

• ek ∼ N
(
0,σ2

e
)

is a Gaussian and white additive
measurement noise.

In the following Section 3.1 we motivate the presence
of f (·) from mechanical considerations, while in the
following Section 3.2 we motivate the presence of the
f (·)2 multiplying the noise ek starting from physical
considerations.

3.1 Explaining the Presence of the
Nonlinear Term f (·) in Model (1)

The nonlinear term f (·) in (1) is related to what is
called the radial distortion in camera calibration liter-
ature (Zhang, 2000; Weng et al., 1992; Brown, 1964;
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Duane, 1971). Indeed camera lenses are notoriously
nonlinear at their borders, with this nonlinearity in-
creasing as the light beam passes closer to the lens
edges. In our settings this thus happens when targets
are very close or very far.

Radial distortions are usually modeled in the cam-
era calibration literature as a series of odd powers, i.e.,
as

f (dk) =
n

∑
i=0

αid2i+1
k (2)

where the αi’s are the model parameters.
As numerically shown during the validation of (1)

in Section 4, model (2) does not describe well the ev-
idence collected in our experiments. Indeed the spe-
cific case of triangulation Lidars lacks of the symme-
tries encountered in computer vision settings (see (4)
and the discussion on that identity), and thus in our
settings there is no need for odd symmetries in the
model (in other words, doubling d does not lead to
doubling b′). We thus propose to remove this con-
straint and use a potentially non-symmetric polyno-
mial, i.e.,

f (dk) =
n

∑
i=0

αidi
k. (3)

The numerical validations of model (3) shown in Sec-
tion 4 confirm then our physical intuition.

3.2 Explaining the Presence of the
Multiplicative Term f (dk)

2 in
Model (1)

Assume for now that there are no lens-distortion ef-
fects. The similarity between the triangles in Figure 2
then implies

dk

b
=

d′

b′k
. (4)

In (4) dk and b′k are generally time-varying quanti-
ties, while b and d′ are constants from the geome-
try of the Lidar. Assume now that the quantity mea-
sured by the CCD at time k is corrupted by a Gaussian
noise, so that zk = b′k + wk with wk ∼ N

(
0,σ2

CCD
)

and σ2
CCD constant and independent of dk. Thus

zk ∼N
(
b′k,σ

2
CCD
)
; since

yk =
bd′

zk
, (5)

assuming a Gaussian measurement noise on the CCD
implies that yk is a reciprocal Gaussian r.v. This kind
of variable is notoriously difficult to treat (e.g., their
statistical moments cannot be derived from closed
form expressions starting from the original Gaussian
variables). For this reason we perform a first order

Taylor approximation of the nonlinear map (5) above.
In general, if

{
zk ∼N

(
b,σ2

)

yk = φ(zk)
(6)

then the first order Taylor approximation of the distri-
bution of yk is (Gustafsson, 2010, (A.16))

yk ∼N
(
φ(b),φ′(b)2σ2) (7)

where φ′(·) is the first derivative of φ(·) w.r.t. zk. Sub-
stituting the values of our specific problem into for-
mula (7) leads then to the novel approximated model

yk ∼N

(
bd′

b′k
,

(−bd′

b′2k

)2

σ2
CCD

)
, (8)

or, equivalently,

yk = dk +d2
k ek ek ∼N

(
0,σ2

e
)

(9)

where σ2
e =

σ2
CCD

b2d′2
is a scaled version of σ2

CCD inde-
pendent of dk and to be estimated from the data.

Consider now that actually there are some lens
distortion effects that imply the presence of the non-
linear term f (dk). We can then repeat the very same
discussion above, and obtain model (1) by substitut-
ing dk with f (dk) in (9).

4 VALIDATION OF THE
APPROXIMATION (8)

The approximation introduced by the first order Tay-
lor expansion in (8) can be seen as arbitrary. Nonethe-
less we show in this section that on the collected
datasets it actually corresponds to the most powerful
approximation in a statistical sense.

To this aim we perform this two-step validation:
1. (check if the noises are independent and identi-

cally distributed (iid) and normal) perform a nor-
mality test on the yk’s assuming that measure-
ments are collected at a fixed distance (i.e., dk is
constant): indeed ek is approximately Gaussian as
much as yk is;

2. (check the order of the term multiplying ek) com-
pare the following alternative statistical models
for the measurements yk:

H0 : yk = f (dk)+ ek

H1 : yk = f (dk)+ f (dk)ek

H2 : yk = f (dk)+ f (dk)
2ek

H3 : yk = f (dk)+ f (dk)
3ek

(10)

and check which one describes better the collected
information.
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As for point 1 we can use standard iid tests
(like the Wald-Wolfowitz runs (Croarkin and Tobias,
2006)) and standard normality tests (like the Shapiro-
Wilk normality test). These tests performed on our
registered data showed p-values of 0.56 and 0.42, so
we can safely consider the measurement noises to be
iid and Gaussian.

As for point 2, we instead consider the following
strategy: for every model above, assuming that mea-
surements are collected at a fixed distance (i.e., dk is
constant), we can perform a simple algebraic manip-
ulation of (1) to obtain

yk− yk−1

f (dk)?
= ek− ek−1 (11)

where ? indicates the order of the model (that means
? ∈ {0, . . . ,3}). (11) in its turn indicates that, since ek
and ek−1 are assumed iid,

yk− yk−1

f (dk)?
∼N

(
0,2σ2

e
)
, ? ∈ {0, . . . ,3} . (12)

Assume now that the dataset is composed by dif-
ferent batches each corresponding to dk’s that are con-
stant in the batch, but different among batches. More-
over assume that each batch is sufficiently rich to
make it is possible to estimate with good confidence
the unknown f (dk) through the empirical mean of the
yk relative to that batch. By combining the informa-
tion from different batches it is then possible to check
which model ? describes better the measured infor-
mation.

Indicate then with B the number of batches in the
dataset, with b = 1, . . . ,B the index of each batch, and
with Bb the set of k’s that are relative to that specific
batch b. In formulas, we thus:
1. estimate, for each model batch b = 1, . . . ,B, the

distance
f̂b =

1
|Bb| ∑

k∈Bb

yk; (13)

2. estimate, for each model ?= 0, . . . ,3, the variance
of ek as

σ̂2
e :=

1
B

B

∑
b=1


 1

2|Bb| ∑
k,k−1∈Bb

(
yk− yk−1

f̂ ?b

)2

 .

(14)
3. compute, for each model ? = 0, . . . ,3, the log-

likelihood of the data as

− logP
[
yyy ; ddd, σ̂2

e

]
=

B

∑
b=1


|Bb| log

(
f̂ 2?
b σ̂2

e

)
+

Bb

∑
k=1

(
yk− f̂b

)2

f̂ 2?
b σ̂2

e




(15)

where yyy := [y1, . . . ,yN ]
T and ddd := [d1, . . . ,dN ]

T .

In Figure 4 we then show the log-likelihoods for
the different models. As it can be seen, hypothesis H2

is the one that best describes the collected evidence.

H0 H1 H2 H3

6

7

8
·104

P
[ yy y

;
dd d,

σ̂2 ?

]

Figure 4: Evaluation of (15) on the collected datasets.

A non rigorous (but graphical and intuitive) argu-
ment supporting H2 as the hypothesis best describing
the evidence is then the one offered in Figure 5. The
argument goes as follows: for the exact ? ∈ {0, . . . ,3}
the quantities

yk− yk−1

f (dk)?
? ∈ {0, . . . ,3} . (16)

should be iid independently of dk. This iid-ness is
indeed a necessary condition for iid-ness of the mea-
surement noises (one of our assumptions).

Since f (·) is actually unknown, this iid-ness test
must be performed by means of some estimate of
f (·). In the following we use the estimator defined
in Section 5 over an experiment where we manually
increase the true distance dk. As it can be seen, the
hypothesis H2 is the unique one for which the quan-

tities
yk− yk−1

f̂ (dk)?
are homoscedastic. Thus the normal-

izing factor ? = 2 is the unique one guaranteeing iid-
ness for the measurement noises. Notice that this ar-
gument is a non rigorous wishful thinking, since we
use some estimates as the ground truth; nonetheless
the heteroscedasticity of the noises for ? = 0,1,3 in-
dicates that these hypotheses are non-descriptive.

5 CALIBRATING THE Lidar

Our overall goal is not just to propose the statistical
model (1) describing the measurement process of the
Lidar but also to find a calibration procedure for es-
timating the unknowns f (·) and σ2

e from some col-
lected information.

Once again the long term goal is to calibrate (1)
on-line and continuously using information from
other sensors like odometry, ultrasonic sensors, etc.
Instrumental to this future direction we now solve the
first step, that is to estimate f (·) and σ2

e from a dataset
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Figure 5: Plots of the quantities
yk− yk−1

f̂ (dk)?
for ? = 0, . . . ,3

and for increasing dk and for f̂ (·) computed as in Section 5.
The results graphically suggest that f̂ (dk)

2 is the unique
normalizing factor for which we obtain homoscedastic sam-
ples.

D = {yk,dk} in which we know dk (e.g., thanks to a
MoCap system).

Given our Fisherian setting, we seek for the ML
estimate for both f (·) and σ2

e , where we recall that
(due to the radial distortion hypothesis as the source
of f (·), see Section 3.1) f (·) is modeled as a non-
symmetric polynomial, i.e., as f (dk) = ∑n

i=0 αidi
k as

in (3). Since now model (1) implies

yk− f (dk)∼N
(
0, f (dk)

4σ2
e
)
, (17)

it follows immediately that the corresponding nega-
tive log-likelihood is proportional to

L := log(detΣ)+
(
yyy− fff (ddd)

)T Σ−1(yyy− fff (ddd)
)

(18)

where

• yyy := [y1, . . . ,yN ]
T ;

• ddd := [d1, . . . ,dN ]
T ;

• fff (ddd) := [ f (d1), . . . , f (dN)];

• Σ := diag
(

f (d1)
4σ2

e , . . . , f (dN)
4σ2

e
)
.

Finding the ML estimates in our settings thus
means:

1. solving
argmin

θ∈Θ
L (θ) (19)

for several different n, with

θ :=
[
α0, . . . ,αn,σ2

e
]

(20)

and Θ the set of θ ∈ Rn+1 for which σ2
e > 0;

2. deciding which n is the best one using some model
order selection criterion, e.g., AIC.
Unfortunately problem (19) is not convex, so it

neither admits a closed form solution nor it can be
easily computed using numerical procedures. Solving
problem (19) is thus numerically difficult. Keeping
in mind that our long-term goal is the development of
on-line calibration procedures, where numerical prob-
lems will be even more complex, we strive for some
alternative calibration procedure.

5.1 An Approximate Calibration
Procedure

We here propose an alternative estimator that trades
off statistical performance for solvability in a closed
form. We indeed propose to seek an estimate for θ
in (20) by using the alternative model

yk = f (dk)+d2
k ek, (21)

that differs from (1) only for the fact that the noise is
multiplied by d2

k instead of f (dk)
2. This approxima-

tion is intuitively meaningful, since f (dk) represents
a distortion term induced by the pinhole lens: ideally,
indeed, f (dk) should be equal to dk.

Assuming model (21) it is now possible do de-
rive a ML estimator of θ. Indeed dividing both sides
of (21) by d2

k we get
yk

d2
k
= g(dk)+ ek (22)

where (cf. (3))

g(dk) =
n

∑
i=0

αidi−2
k . (23)

This means that the estimation problem can be cast
as the problem of estimating the parameters ααα :=
[α0, . . . ,αn]

T and the noise variance σ2
e describing the

linear system

yk

d2
k
=
[
d−2

k . . . dn−2
k

]



α0
...

αn


+ ek, (24)

for which the ML solution is directly

α̂αα =
(
HT H

)−1 HT ỹyy

σ̂2
e =

1
N

(
ỹyy−Hα̂αα

)T (ỹyy−Hα̂αα
) (25)
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with

H :=




d−2
1 · · · dn−2

1
...

...
d−2

N · · · dn−2
N


 ỹyy :=




y1

d2
1
...

yN

d2
N



. (26)

Notice that the procedure above does not deter-
mine the model complexity n. For inferring this pa-
rameter we then propose to rely on classical model
order selection criteria such as AIC.

5.2 Using the Calibration Results to
Estimate dk

Once the sensor has been calibrated, i.e., a α̂αα and σ̂2
e

have been computed, it is possible to invert the pro-
cess and use the learned information for testing pur-
poses. This means that given some measurements yk
collected in an unknown environment we can, through
α̂αα and σ̂2

e , estimate dk.

5.2.1 Computing the ML Estimate of dk

Rewriting model (3) as

f (dk) = dddT
k ααα dddk :=




d0
k

d1
k
...

dn
k


 (27)

and equating the score of yk parametrized by ααα and
σ2

e to zero leads to the equation
(
yk−dddkααα

)(
yk−dddk (I−K)ααα

)
= σ2

ed4
k (28)

with

K := diag
(

0,
1
2
, . . . ,

n
2

)
. (29)

This means that estimating dk from yk, α̂αα and σ̂2
e can

be performed by solving (28) in dk after substituting
the real values ααα and σ2

e with their estimates.
Since polynomial (28) is quartic for n = 0,1,2,

and of order at least 6 for any other n, the ML estimate
for dk must then either rely on complex algebraic for-
mulas or numerical roots finding methods.

5.2.2 Computing the LS Estimate of dk

Given our assumption (3) on the structure of f (·), and
given an estimate f̂ for f , the problem of estimating
dk from yk is the one of minimizing the squared loss(
yk− f̂ (dk)

)2. Once again, the problem is of finding

the roots of a polynomial, since the solutions of the
LS problem above are directly

d̂k ∈
{

d̃ s.t. yk− f̂
(

d̃
)
= 0
}
. (30)

Thus if the Lidar has heavy nonlinear radial distor-
tions (that means that it requires high order polynomi-
als f (·)) then one is again required to compute poly-
nomial roots.

Notice also that some of the roots above may not
belong to the measurement range of the sensor (e.g.,
some roots may be negative); these ones can safely
be discarded from the set of plausible solutions. The
other ones, instead, are equally plausible.

This raises a question on how to decide which root
should be selected among the equally plausible ones.
This question is actually non-trivial, and cannot be
solved by means of the frequentist approach used in
this manuscript. We thus leave this question unan-
swered for now, and leave it as a future research ques-
tion. Bayesian formulations will be explored to see if
they solve the multiple plausible roots problem.

6 NUMERICAL EXPERIMENTS

Our experiments consist of a robot with the Lidar
mounted on top moving with piecewise constant
speeds towards a target. We recorded several datasets
for training and testing purposes, consisting of the
Lidar measurements and a ground truth information
collected by a MoCap system (see Figure 6). Training

Figure 6: Experimental setup used for recording the dataset.
The Lidar was mounted over a Pioneer 3AT robot facing an
obstacle; the photo moreover shows some of the cameras of
the MoCap system.

datasets were thus initially used to estimate ααα and σ2
e

as described in Equation (25). As for the model order
selection, we empirically detected that n = 2 was al-
ways the best choice when using AIC measures. E.g.,
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Figure 7: A typical training set collected in our experiments.
The plotted quantities correspond to the measurement errors
and to the polynomial models fitting these errors.

Table 1: AIC scores for the different models complexities
involved in the training set of Figure 7.

polynomial order AIC score
1 -5.774
2 -7.380
3 -5.824
4 -3.890

for the dataset shown in Figure 7 we obtained the AIC
scores reported in Table 1.

The estimated ααα and σ2
e were also used for testing

purposes to refine the estimate of the distances dk in
non-controlled environments. Notice that the selected
model order was always 2, so it was always possible
to solve the LS problem in a closed form and also
discard one of the roots in (30), so that the set of roots
was always a singleton. As shown in Figure 8, d̂k is
much closer to dk than yk. For example, the empirical
normalized MSEs for the test set in Figure 8 were

1
N

N

∑
k=1

∥∥∥d̂k−dk

∥∥∥
2

‖dk‖2 = 0.0046, (31)

1
N

N

∑
k=1

‖yk−dk‖2

‖dk‖2 = 0.0789. (32)

7 CONCLUSIONS

We derived, starting from a combination of physical
and statistical considerations, a model that describes
the statistical behavior of the measurements returned
by triangulation Lidars. This statistical model, given
in (1), is based on two assumptions:
1. the effects of radial distortions in the pinhole lens

can be captured by means of a polynomial func-
tion;
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Figure 8: Effects of the estimation procedure on the origi-
nal Lidar measurement. It can be noticed how the overall
strategy removes the nonlinearities induced by the pinhole
lens - CCD camera system.

2. the nonlinearities induced by the geometry of the
laser-CCD system can be captured by means of
a heteroscedastic noise which standard deviation
depends in first approximation quadratically with
the measured distance.

This model, validated through some experiments
on real devices, allows to build tailored triangulation
Lidars calibration strategies that follow the classical
training-testing paradigm:

• in the training phase, collect information in a con-
trolled environment and use it to estimate through
ML paradigms the parameters defining the statis-
tical behavior of the sensor;

• in the test phase, use this information and some
statistical inference techniques such as ML or LS
to correct the measurements from the sensor when
this is in a non-controlled environment.

It turns then out that both the ML and LS estima-
tion strategies may be numerically demanding, spe-
cially for sensors suffering from strong radial distor-
tions in the pinhole camera. In this case, indeed, the
estimators may require to use numerical root finding
procedures and lead to some computational disadvan-
tages.

Irrespectively of these issues, that can in any case
be mitigated by limiting the complexity of the polyno-
mials describing the radial distortions, the estimation
strategies above have been proved to be effective in
our tests. Real-life experiments indeed showed that
the techniques allow to reduce the empirical MSE of
the sensor of a factor 17.15.

Despite this promising result, the research asso-
ciated to triangulation Lidars is not finished. First
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of all, the techniques should be modified so to be
implementable using recursive estimation schemes.
Moreover, by following a classical training-testing
approach, the techniques above present some limi-
tations. Different sensors may in fact differ even if
nominally being constructed in the same way. More-
over sensors may change their statistical behavior in
time, due to aging or mechanical shocks. This means
that techniques based on results from a controlled en-
vironment on just one sensor and just once are even-
tually not entirely meaningful.

A robust approach must indeed perform contin-
uous learning for each sensor independently in a
non-controlled environment by performing informa-
tion fusion steps, e.g., combining also information
from other sensors like odometry, ultrasonic and ac-
celerometers.

This information-fusion continuous-learning al-
gorithm nonetheless must be based on some prelim-
inary results on what are the statistical models of tri-
angulation Lidars and on how inference can be per-
formed on them. This paper can thus be seen as the
first step towards more evolved strategies.
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