
TCP Wave Resilience to Link Changes
A New Transport Layer Approach Towards Dynamic Communication Environments

A. Abdelsalam, M. Luglio, C. Roseti and F. Zampognaro
University of Rome“Tor Vergata”, Via del Politecnico 1, 00133, Rome, Italy

Keywords: TCP Wave, Hybrid Networks, Error Recovery, Handover.

Abstract: In case of hybrid access networks, the selected link can suddenly change leading to a vertical handover. A
running TCP connection can experience a combination of three potential effects: a bandwidth change, a
latency change and an outage interval due to handover operations. In this context, we address a detailed
performance analysis of standard TCP, in comparison with a new TCP-based protocol, namely TCP Wave,
which mainly replaces traditional window-based transmission paradigm with a proactive burst transmission.
Previous studies demonstrate TCP Wave capability to quickly adapt its rate to dynamic link variations, so
that its application in the target scenario is considered worth. Performance assessment is carried out using
the Network Simulator (Ns-3) over a different set of possible configurations in terms of handover direction,
outage duration and selected transport protocol. The achieved results confirm the TCP Wave efficiency in
dealing with link changes and provide a high number of interesting hints for drawing requirements of the
TCP-based transport protocols operating on future dynamic networks.

1 INTRODUCTION

The next generation networks will simultaneously
leverage on connectivity offered by multiple access
technology, including satellite, wired networks and
mobile terrestrial networks. In this view, as fostered
in an ETSI specification (ETSI, 2015), an Intelligent
User Gateway (IUG) is installed at the user premises,
with the aim to route traffic among the available ac-
cess technologies according to performance-related
policies, or to increase resiliency against potential in-
terruption of service on one or more links. At the
other end of the hybrid access network, an Intelligent
Network Gateway (ING) is installed to complement
operations executed by the IUG and provide intercon-
nection to the public network. The logic adopted in
both IUG and ING for applying routing rules can be
tailored to the user needs, but in general the criteria
adopted is one or a combination of the following:

- QoS/QoE requirements of the processed traffic
and running applications;

- capabilities and availability of the access links;

- policies and contracts agreed between operator
and subscriber.
The latter two criteria are defined within a pro-

cess of optimization of the overall available resources,
which is managed by an “orchestrator” agent, hav-
ing visibility on the resource allocation status of the
available links. It is then possible that the endpoints
are unaware of vertical handovers within the access
networks, while applications are running and trans-
port protocol end-to-end connections are established.
Running TCP/IP flows are mainly affected by three
macro-effects:

- a possible change of the available bandwidth;

- a possible change on the end-to-end-latency;

- a possible disconnection time to execute the verti-
cal handover.

These effects, or a sub-set of them, are not lim-
ited to the target network architecture, but can be
easily faced also in other communication scenarios,
e.g.,: i) mobile ad-hoc networks (MANET), where
node mobility affects the actual end-to-end rate (de-
pending on the number of crossed hops) and leads
to varying network link characteristics together with
frequent connection losses (Yuwono, 2013); ii) hard
handovers supported in LTE networks, in which a
strong signal degradation is experienced upon the eN-
ode change, corresponding to a so-called Time To
Trigger (TTT) (Zhang et al., 2012). Therefore, it

72
Abdelsalam, A., Luglio, M., Roseti, C. and Zampognaro, F.
TCPWave Resilience to Link Changes - A New Transport Layer Approach Towards Dynamic Communication Environments.
DOI: 10.5220/0005966700720079
In Proceedings of the 13th International Joint Conference on e-Business and Telecommunications (ICETE 2016) - Volume 1: DCNET, pages 72-79
ISBN: 978-989-758-196-0
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

is evident that newer proposals for variants of tradi-
tional TCP/IP protocols must take into account the
handling of disconnection periods and/or sudden vari-
ations of the link physical characteristics. Ineffi-
ciencies are expected for the traditional TCP proto-
col (Allman et al., 2009), which has been designed
assuming communication conditions typical of con-
gested wired networks. In fact, the window-based
transmission paradigm has been designed consider-
ing losses and/or latency changes as a congestion sig-
nal. Clearly, such assumptions may result false in
all the aforementioned scenarios. Other TCP vari-
ants, such as MPTCP (Bhat and Talmale, 2014) and
SCTP (Lee et al., 2006), designed to efficiently tackle
multi-homed terminals do not fulfill target require-
ments for a threefold reason: they need modifications
on all the endpoints to manage control sessions, they
mainly aim to exploit all the available interfaces in
parallel without any centralized optimization scheme,
and they focus on endpoints handovers.

With respect to other TCP variants, the recently
introduced TCP Wave (Abdelsalam et al., 2015)
replaces the traditional window-based transmission
with a burst-based transmission, where packet send-
ing process, is decoupled by the ACKnowledgement
(ACK) reception timing. In this way, both transmis-
sion rate and packet retransmission scheduling can be
managed irrespectively from the experienced latency.
An exhaustive performance analysis in the described
scenario is proposed, through an experimental simu-
lation campaign, with reference TCPs and TCP Wave.
The tests reported in this paper aim to reproduce gen-
eral conditions of a vertical handover between links
with quite different physical characteristics, to assess
TCPs behavior and to analyze resulting performance.

2 TCP WAVE DESCRIPTION

TCP Wave (Abdelsalam et al., 2015) is the latest
vesion of a protocol family started by TCP Noord-
wijk (Roseti et al., 2010)(Patriciello et al., 2015),
which was designed to exclusively operate between
I-PEP agents at the edge of satellite links. TCP Wave
kept the “burst transmission” concept of TCP Noord-
wijk, upgraded with adaptivity to different architec-
tures and to broader target application scenario. TCP
Wave reviewed all algorithms and methods with the
aim to become a valid alternative to standard TCP fla-
vors in every broadband communication environment
(including terrestrial-only links), taking into account
the requirements of nowadays traffic characteristics
and network evolution. The new design principles
include the guarantee of optimal performance under

varying network and physical conditions, with adap-
tation to wide bandwidth and/or delay changes, accel-
eration of small transfers, quick achievement of high
throughput and efficient handling of transmission er-
rors, also in presence of link disconnections, inter-
work with ACKs as generated by any standard TCP
receiver, to guarantee protocol interoperability in any
current and future communication scenario.

Loss recovery is compatible with the classic TCP
recovery mechanisms, referenced hereafter as “stan-
dard TCP” (Allman et al., 2009), so that the main in-
dication of lost packet is indeed the reception of dupli-
cate ACKs (DupAcks), which are generated by stan-
dard TCP receivers upon out-of-sequence received
packets. Similarly to standard TCP, TCP Wave per-
forms a packet retransmission when receiving three
DupAcks referred to the same packet but, in con-
trast, TCP-Wave sender triggers a new Fast Retrans-
mission (FR) algorithm, to retransmit the packet as-
sumed lost, without affecting the normal process of
burst transmission. To guarantee the stability of this
approach, TCP Wave also inherits and updates the
Retransmission Time Out (RTO) mechanism of stan-
dard TCP implementation. The RTO is updated tak-
ing as input RTT samples internally calculated by a
function working on a burst-basis (one sample per
burst) and, when RTO expires, the trigger is inter-
cepted by TCP Wave to perform specific timeout op-
erations. Both the new FR and RTO algorithms, fol-
lowing the principles of the TCP Wave burst-based
transmission, rely on an internal timer (Roseti et al.,
2010) instead of using ACK reception as clock, mak-
ing the actual response to losses substantially differ-
ent from standard TCP. Error recovery algorithms of
standard TCPs are widely covered in literature (All-
man et al., 2009)(Paxons et al., 2011), whereas the
description of TCP Wave error recovery methods was
not adequately addressed in previous works (Abdel-
salam et al., 2015). Therefore, the next sub-sections
provide details on the TCP Wave error recovery algo-
rithms.

2.1 Fast Retransmission (FR)
Algorithm

TCP Wave FR algorithm is designed to recover
single/multiple packet losses without incurring into
RTO expiration. Upon receiving three DupAcks, the
lost packet is immediately retransmitted, while burst
transmission scheduling is kept unaltered, except the
reduction by 1 packet to the next scheduled burst, to
keep consistent the actual overall transmission rate.
This FR algorithm does not limit in practice the max-
imum number of packet losses that can be recovered

TCPWave Resilience to Link Changes - A New Transport Layer Approach Towards Dynamic Communication Environments

73

without triggering RTO, because the uninterrupted
transmission of “fresh” packet bursts allows gener-
ation of all the DupAcks needed to report multiple
consecutive losses. To opposite, standard TCP dur-
ing fast retransmit is able to generate just a limited
number of “new” packets according to the Conges-
tion Window (cwnd) value, increasing the possibility
to experience an RTO before the recovery of all the
consecutive losses. The retransmitted packet success-
fully delivered will generate a cumulative ACK cover-
ing packets transmitted on multiple bursts. When this
happens, TCP Wave sender performs only a single
ACK-based statistic update, accounting the cumula-
tive ACK to complete computation related to the ACK
train partially received before the loss. As a result, ev-
ery cumulative ACK will produce at most 1 new RTT
sample.

Finally, TCP Wave disables FR during the whole
RTO recovery phase, that is until the the transmission
reaches the last packet ACKed before the RTO expi-
ration. The rationale relies on the assumption that an
RTO occurs when there is a serious problem in the
network and than it is considered preferable to in-
cur in a further RTO rather than to recover individual
packets.

2.2 Retransmission Time Out (RTO)

Retransmission Timeout (RTO) indicates how long
the TCP connection must wait for an ACK re-
lated to a transmitted packet, before performing “re-
set/recovery” actions. This mechanism is tightly cou-
pled with the FR and DupAck mechanism to ensure
a robust continuation and management of the connec-
tion. Due to the dynamic changes in the network and
to the different ways in which receiver can manage
the generation of ACKs (cumulative, delayed, etc.), it
is difficult to determine the ideal value for RTO timer.
Too long RTO is bad for timely determining a ma-
jor network outage, while too short RTO can lead to
frequent unnecessary timeouts. (Paxons et al., 2011)
outlines the algorithm implemented by standard TCP
protocols to dynamically calculate RTO value. It de-
pends on the measured RTT samples, their variation
and it is lower bounded to at least 1 s. This algorithm
is implemented by all the current TCP variants and it
has been adapted within TCP Wave.

TCP Wave calculates the RTT samples once each
transmitted burst, as the time interval between the
start of the first packet of a burst and the time of the
reception of the first ACK of the corresponding ACK
train. When a lost packet is retransmitted through FR
algorithm, the resulting RTT value is inflated since
RTT is measured with respect to the first packet trans-

mission time. Obviously, in this case, the RTT in-
crease is not a symptom of congestion. Differently
from standard TCP, all the RTT measurements includ-
ing those calculated during retransmissions, are sent
to the underlying RTT estimator, which calculates the
round-trip time variation (RTTVAR) and sets the RTO
value accordingly. This expedient ensures that the es-
timated RTO value is always consistent with the RTT
value seen by TCP Wave, also during retransmission,
avoiding unnecessary RTO expirations. Furthermore,
since TCP Wave considers an RTO expiration as an
indication of a serious problem in the network, ei-
ther severe congestion or even temporary disconnec-
tion, the sender behavior during the RTO recovery is
quite conservative. Once RTO recovery is triggered,
the sender resets the BURST size and the T xTime to
the initial values BURST0 and T xTime0 respectively,
assuming that network conditions are not well known
yet. Then transmission restarts in bursts from the lat-
est ACKnowledged packet before the RTO expiration.
All ACK types (normal and duplicate) are monitored
during RTO recovery, in order to skip some bursts,
if possible, if the ACK is cumulative (i.e., jump in
the transmitted sequence number), while BURST size
and T xTime are dynamically updated upon the recep-
tion of regular ACK trains. Many interactions be-
tween FR and RTO algorithm occur. For instance,
during RTO recovery, data can be lost again, or , dur-
ing a drastically changed phase RTO could expire. A
remarkable case is when a retransmitted packet is lost
again: the sender will receive a quite large number of
DupAcks associated to it. However, this will not trig-
ger any further retransmission, because in this condi-
tion it is not possible to make assumptions on the suc-
cessful or failed reception of the retransmitted packet.
Without receiving a new ACK higher than the current
DupAck, RTO will expire and TCP Wave will trigger
the RTO recovery algorithm. This behavior is con-
sistent with the need of RTO expiration in a situation
where a packet is lost twice, which can occur in bad
or drastically changed network conditions.

3 PROTOCOL VALIDATION AND
PERFORMANCE ASSESSMENT

A baseline version of TCP Noordwijk was imple-
mented in the Network Simulator Ns-3 (Ns-3, 2016)
as described in (Patriciello et al., 2015). This ver-
sion was then used as reference to implement the
newest TCP Wave version, including the error recov-
ery algorithms herein discussed. All the TCP Wave
algorithms were based on standard calls available
in Ns-3 (“TcpSocketBase”), closely resembling the

DCNET 2016 - International Conference on Data Communication Networking

74

Linux O.S. (Linux, 2015) TCP state-machine model.
Therefore, the burst transmission paradigm and all er-
ror recovery methods and related operations, do not
require any modification for receiver endpoints and
TCP sender state-machine, making TCP Wave inte-
gration easily applicable to the target real networks.

3.1 Simulation Setup

A setup file written in C++ was used to configure the
sender/receiver nodes and network topology for the
transfer of application traffic in Ns-3. The reference
simulation scenario is shown in fig. 1.

Figure 1: Ns-3 Simulation setup.

A sender/source node is connected to an interme-
diate Router 1 (R-1) through a point-to-point local
link. The source node is configured to generate in-
finite amount of raw data to the transport protocol
socket exploiting either TCP Wave or other versions
of TCP that are available in the current release of Ns-
3 (v3.23): TCP Tahoe, TCP Reno, TCP NewReno,
and TCP Westwood+. The data flow is terminated
at a Sink agent configured in the receiver node, di-
rectly connected through a point-to-point local link to
Router 2 (R-2). R-1 – R-2 represents the bottleneck
point-to-point link, that can be configured with either
a L1 configuration (2 Mbit/s, low latency of 30 ms) or
L2 configuration (8 Mbit/s, high latency of 240 ms),
as possible consequence of network topology change.
In both cases the bottleneck buffer size is assumed
equal to 100 TCP/IP packets, which is the default
value for the configuration of a queue in Ns-3. All the
configuration values have been selected with the aim
to reproduce a realistic scenario, while at the same
time offering challenging conditions for the transport
layer, by changing the bottleneck link configuration
(L1 or L2).

During the simulation run, handover events are
reproduced by triggering a 100% bidirectional loss
event for a so-called “handover time” (HT). This rep-
resents the lower layer switching experienced upon
a hard vertical handover that is defined in the refer-
ence scenario. Simultaneously, the R-1–R-2 link con-
figuration is switched from L1 to L2 configurations
or vice-versa. For a preliminary validation and per-
formance evaluation during this type of handover, the
case of an HT = 2.0 s is considered as baseline. Such
an HT value has been selected since it is compara-

ble and always larger than the RTO estimation in case
of the link with the highest latency (L2), and then
it allows the triggering of all the envisaged loss re-
covery mechanisms. TCP NewReno is considered as
reference standard TCP. In the last part of the pa-
per, a general overview comparing different values
for the HT (0.5 s, 2 s and 10 s) and using all avail-
able TCPs is provided for completeness. As a general
criterion to schedule the handover event in the simu-
lation, we consider a time where the target transport
protocol under evaluation shows the maximum eligi-
ble rate on the current link (which can be different
based on protocol and link characteristics). The ra-
tionale is to analyze the recovery dynamics from the
steady-state achieved on the “old” link until the re-
store of the steady-state on the “new” link.

The initial setup for standard TCP is a MTU of 1
kbyte, initial cwnd of 1 MSS; threshold for retrans-
mission = 3 DupAcks. In addition, the initial values
considered for TCP Wave, are a BURST0 of 10 TCP
packets, a T XTime0 of 0.5 s and a β of 0.35 s.

3.2 Analysis of TCP Loss Management

In the first test a handover from L1 to L2 at 30 s is
triggered, when both TCP NewReno and Wave are in
steady-state. Thus, the sender will not receive any
ACK from 30 s to 32 s, since HT is set to 2 s. In
case of TCP NewReno, the sender stops transmission
completely at the exact moment it experiences the link
outage. This is because, in standard TCP, transmis-
sion is ACK- clocked: cwnd shifts are performed upon
new ACK reception. The complete packet transmis-
sion and ACK reception timing, as experienced by the
TCP NewReno sender, are shown in fig. 2.

Figure 2: NewReno recovery after handover (L1 to L2).

After the link outage at 30 s, the sender waits
for the RTO expiration to perform a retransmission.
However, in this scenario, the RTO expires during
the outage interval, causing a further loss of the re-

TCPWave Resilience to Link Changes - A New Transport Layer Approach Towards Dynamic Communication Environments

75

transmitted packet. Thus, the sender doubles its RTO
time, as defined in the exponential back-off algorithm
(Paxons et al., 2011), and waits for the next RTO ex-
piration. Finally, once the second RTO expires af-
ter 3 s, the channel is available. The sender resets
cwnd to 1 packet and goes into Slow Start phase (with
cwnd doubled every RTT), until overcoming the Slow
Start Theshold (ssthresh), which has been set to 1/2
of the amount of bytes in flight at the RTO expira-
tion. Definitively, the overall RTO recovery strategy
of NewReno increases the outage interval unneces-
sarily, since the sender is always waiting for either an
ACK or the RTO expiration to trigger actions.

Fig. 3 shows TCP Wave behavior in the same
conditions. After disconnection at 30 s, TCP Wave

Figure 3: TCP Wave recovery after handover (L1 to L2).

continues burst transmissions, irrespective of recep-
tion of “new” ACK trains. This behavior occurs un-
til RTO expires after about 1 s from the disconnec-
tion time. Then, TCP Wave sender starts the retrans-
missions from the first unacknowledged packet, us-
ing the initial burst setting: BURST0 and T xTime0.
However, in the simulated scenario the first 2 bursts
are lost again since they are retransmitted during the
HT period. Despite further losses, burst-transmission
paradigm allows to continue the burst sending. Then,
the third burst is retransmitted on the new link al-
lowing the reception of the first cumulative ACK at
32.75 s. This cumulative ACK corresponds to a part
of the last burst transmitted before the handover event,
which was only partially acknowledged before due to
the link outage. This cumulative ACKs causes a reset
of RTO timer, avoiding further immediate RTO expi-
rations. As a cumulative ACK of a partial burst, its
reception is used as well to update TCP Wave sender
statistics. In practice, average RTT is not impacted
since it was already registered upon the first ACK of
the target ACK train, producing a value consistent
with the old link latency. Instead, ACK dispersion
sample results higher than currently computed aver-

age RTT (around 60 ms, since computed on the old
link), and under this condition the new sample is dis-
carded. As a consequence, T xTime is still similar to
that used on the old link. Therefore, at 33 s retrans-
mission of burst continues at an updated rate close to
the L1 bandwidth. In this phase, also “fresh” pack-
ets are transmitted just after the retransmission of all
those lost during outage (at 33.8 s and exceeding se-
quence number 7400). Again, at 34.25 s, RTO ex-
pires due to loss of the first two bursts sent during
HT period. The RTO recovery is then re-executed,
starting-off from packets acknowledged at 32.75 s by
the cumulative ACK. Differently from first RTO, re-
transmissions are all successfully received, generat-
ing ACK trains such as the one at 34.75, which al-
lows a first update of the ACK-based statistics for
the new link. However, the effect of such an up-
date is not applied on the next burst, since it was al-
ready scheduled. Afterwards, two main effects are ev-
ident: 1) a cumulative ACK referred to the large num-
ber of burst proactively transmitted with success be-
tween the two RTO expirations is received, leading a
huge “jump” in the transmission sequence number; 2)
T xTime is updated according to ACK-based statistics
previously computed. The latter effect allows to sud-
denly achieve the maximum rate allowed on the new
link, as confirmed in section 3.3. Comparing packet
sequence number of fig. 2 and fig. 3, it is possible
to notice that after the activation of the new link at
32 s, TCP NewReno transmits about 250 packets over
8 s, while TCP Wave transmits more than 500 pack-
ets in less than 4 s, obtaining an evident performance
improvement.

In the second simulation setup, the link handover
is from L2 to L1. In this event, the new link is char-
acterized by a bandwidth-delay product much smaller
than the old one, increasing the risk to overload the
new link during the recovery operations. For TCP
NewReno, the handover occurs at 300 s, instead than
30 s, since it requires longer time to achieve the max-
imum allowed rate (8 Mbit/s) due to the large latency
affecting the cwnd increases. On the other hand, for
TCP Wave the handover time is scheduled at 30 s as
before, since it is able to achieve the maximum rate
upon the reception of the first ACK trains (1-2 RTT),
which allow a proper update of the T xTime variable.

Fig. 5 shows the TCP NewReno behavior when
recovering from the outage event at 300 s. As in
the previous handover case, the stop of ACK recep-
tion implies the corresponding interruption on send-
ing new packets, waiting for the RTO expiration. RTO
expires at 301 s when outage is still in place, so that
retransmission of the first unacknowledged packet
fails. Therefore, RTO value is doubled and it ex-

DCNET 2016 - International Conference on Data Communication Networking

76

pires again as in the previous test, at 303 s. As usual,
TCP NewReno reacts to RTO resetting cwnd to 1 and
ssthresh to half of the bytes in flight when first RTO
was triggered. In this second attempt, the retrans-
mission of the first unacknowledged packet is suc-
cessfully performed, leading to a twofold effect: 1) it
triggers a cumulative ACK accounting all packets re-
ceived before handover (which in turn causes a jump
in the transmission sequence number); 2) it causes a
doubling of cwnd, since Slow Start algorithm is run-
ning. The latter effect recursively occurs until cur-
rent cwnd overcomes the ssthresh value. In the target
scenario, ssthresh is set to a value proportional to the
bandwidth delay product of the old link (L2), which
is much higher than the one of the new link (L1). As
a consequence, TCP NewReno performs an exponen-
tial increase of cwnd on RTT basis, which leads at ex-
ceeding the bandwidth-delay product of the new link,
causing a significant bottleneck buffer overflow and
consequently the loss of multiple TCP packets.

Figure 4: NewReno recovery after handover (L2 to L1).

Then, TCP NewReno enters in Fast Retransmit
and Fast Recovery phase (Allman et al., 2009), where
lost packets are recovered one by one as soon as the
corresponding DupAcks are received. As a result,
TCP NewReno is able to recover 1 lost packet per
RTT. This phase covers the time interval from about
305 s to 315 s in fig. 4. Fast Retransmit and Fast
Recovery envisages the halving of the current cwnd,
although it can be temporary inflated upon the recep-
tion of DupAcks. This process allows the transmis-
sion of new packets in parallel to the retransmissions
according to cwnd inflation/deflation. At 315 s, when
all the losses due to the buffer overflow are recovered,
TCP NewReno resets cwnd to the value computed at
the beginning of the Fast Retransmit and Fast Recov-
ery. Again, such a value is still too big with respect to
the new bandwidth delay product, then causing a fur-
ther buffer overflow, with a lower number of losses.
In definitive, the new steady-state is recovered after

Figure 5: TCP Wave recovery after handover (L2 to L1).

about 17 s from the activation of the new link.
TCP Wave behavior during the same handover

scenario is reported in fig. 5. As observed in the pre-
vious handover scenario (fig. 3), TCP Wave transmis-
sions continues also after the old link outage, because
it is not dependent on the ACK reception. However,
the absence of ACKs leads to a unavoidable RTO ex-
piration at 31 s. TCP Wave then behaves as well as
during handover from L1 to L2: initial settings are
restored and used to retransmit bursts, starting from
the first unacknowledged packet, and the first two re-
transmitted bursts are lost again since they are sent
during outage. Again, as in the previous case, the
third retransmitted burst arrives to the destination trig-
gering a cumulative ACK. Such a cumulative ACK
completes the reception of an ACK train partially re-
ceived before handover, covering also several sub-
sequent ACK trains related to bursts successfully re-
ceived. Therefore, it leads to a significant jump in the
transmission sequence number, updating ACK train
dispersion and RTT with values compliant with the
characteristics of the old link. As a consequence,
at 32.5 s, the burst retransmissions are performed at
a rate similar to that experienced over the old link,
which is too high for the new link bandwidth-delay
product. Differently from TCP NewReno, TCP Wave
is able to promptly adjust the rate monitoring RTT
increases (details are provided in (Abdelsalam et al.,
2015)). Therefore, after just 1.5 s from the activation
of the new link, TCP Wave achieves the steady-state
and in less than 6 s recovers from all the losses.

3.3 Analysis of the TCP rate

This sub-section complements the analysis provided
in the previous one, showing trends of the rate as mea-
sured at the sender side transport layer in the same
simulation setup. To support the result comparison,
time scale has been normalized at the handover time

TCPWave Resilience to Link Changes - A New Transport Layer Approach Towards Dynamic Communication Environments

77

Figure 6: TCP transmission rate: handover from L1 to L2.

(t = 0) in a significant time range. Fig. 6 compares
TCP NewReno and TCP Wave during handover from
L1 to L2.

After the handover and the triggering of the sec-
ond RTO, TCP NewReno rate is reset to a minimum
value corresponding to a cwnd = 1 and its growth
is first exponential (Slow Start) and then linear once
cwnd > ssthresh (Congestion Avoidance). The effect
on the rate is a very slow growth towards the max-
imum available bandwidth of 8 Mbit/s (more than 4
minutes from L2 activation are needed to achieve the
new steady-state). To opposite, TCP Wave exhibits
the capability to quickly recover from RTO thanks to
the proactive generation of bursts also during the out-
age period. The first cumulative ACK received (see
fig. 3) allows to restore the transmission over the new
link allowing at glance 2 Mbit/s rate, while the sec-
ond cumulative ACK allows to properly estimate the
new available bandwidth with a rapid ramp-up to 8
Mbit/s. Definitively, the maximum rate over the new
link is achieved within 3.2 s from its activation, which
is a great improvement if compared with the 4 min-
utes needed by NewReno.

Fig. 7 shows the rate comparison in case of han-
dover from L2 to L1, when a shrinkage of the avail-
able bandwidth is experienced by the transport pro-
tocol after the outage period. After L1 activation,
TCP NewReno restarts running Slow Start algorithm
with a ssthresh set to half of the amount of bytes in
flight before handover, which is too big if compared
to L1 bandwidth-delay product. The consequence
is a quick growth of the rate much above the avail-
able bandwidth with inevitable multiple losses due
to buffer overflow. TCP NewReno starts recovery
of such losses one by one through the Fast Retrans-
mit Fast Recovery (FR-FR) algorithm. This implies a
halving of the cwnd that limits the actual rate. Simul-
taneously, the reception of DupACKs within the re-
covery phase allows a temporary inflation of the cwnd
allowing the transmission of new packets accordingly

at a very low rate. Therefore, At 45 s the recovery
phase ends with the successful retransmission of the
lost packets and TCP NewReno performs a shift of
cwnd together with its resetting at the values set at
the beginning of FR-FR (still oversized for L1). This
causes further losses and a new FR-FR phase. As a
result, the final steady-state is achieved around 48 s
(16 s after the L1 activation).

Figure 7: TCP transmission rate: handover from L2 to L1.

During the outage period, TCP Wave instead con-
tinues its proactive burst transmission although the
lack of ACKs, until the RTO expires and then burst
transmission is resumed using initial setting. Initially,
TCP Wave restore transmission at the rate computed
for the old link (8 Mbit/s) on the reception of the first
cumulative ACK (at about 2.5 s). Then, the next ACK
train report information on the new link characteris-
tics and allows to properly set transmission parame-
ters to achieve the new optimal rate (2 Mbit/s). Even-
tually, the new steady-state is achieved within only
1.5 s since the L1 activation.

3.4 Performance Summary

To complete performance analysis carried out in the
previous sub-sections, test configurations have been
extended with more TCP variants and different out-
age values for handover. In particular, the tests have
been repeated with TCP Reno, TCP Tahoe and TCP
Westwood+ (all implemented in the Ns-3 core) and
configuring HT with two additional values: 0.5 s and
10 s. The latter values have been selected with the
aim to assess the efficiency of the transport protocol
recovery procedures in case of short network discon-
nections with short-term loss events (HT = 0.5 s), and
with severe channel outages (HT = 10 s). As a syn-
thetic performance indicator, the recovery time is con-
sidered, intended as the time between the reactivation
of the new link after handover and the achievement of
the steady-state. Result summary is presented in the

DCNET 2016 - International Conference on Data Communication Networking

78

Table 1: Recovery time of different TCP Versions vs. dis-
connection period.

HT=0.5 s HT=2 s HT=10 s
TCP variants L1→L2 L2→L1 L1→L2 L2→L1 L1→L2 L2→L1

Wave 81* 327** 3.2 1.6 5.6 1.6
Reno 271 6.7 270 7.6 270 10.7

NewReno 272 16 267 17 275 21
Tahoe 274 5.5 291 3.6 295 7.3

Westwood+ 282 5 282 5.6 287 32

Table 1.
In case of medium and long HT, TCP Wave sig-

nificantly outperforms all the other TCP variants. To
opposite, in case of short HT, TCP Wave recovery
time drastically increases, although in case of L1→L2
handover (*) it still outperforms all the other TCP ver-
sions. In the L2→L1 handover case, TCP Wave per-
formance (**) is affected by a relevant impairment,
showing a recovery time much higher than in the other
cases, including also configurations with longer out-
ages. The rationale relies on the fact that HT=0.5 s
still leads to multiple losses (all the burst in flight),
while TCP Wave does not fall into timeout since its
proactive burst transmission, irrespective of the out-
age duration, allows the generation of DupACKs over
the new link before the RTO expiration. In other
words, differently from the ACK-clocked protocols,
TCP Wave triggers a timeout only when HT is higher
than RTO. Therefore, in this condition, TCP Wave
triggers Fast Retransmit algorithm to recover one by
one all the packets lost at once during HT. This im-
plies the recovery of one lost packet per RTT and ex-
plains why the worst performance is experienced with
L2→L1 handover: the number of burst transmitted
during outage and then lost is higher over L2. As a
conclusion, we can state that in this particular case, an
RTO expiration brings performance advantages. Fur-
thermore, the sooner RTO expires the higher is perfor-
mance benefit, as demonstrated by the fact that TCP
Tahoe or TCP Reno, which have limited (or no) capa-
bility to recover from multiple losses without trigger-
ing RTO, outperforms TCP NewReno in these condi-
tions.

4 CONCLUSION

The work presented in this paper provides a detailed
analysis of TCP performance during a vertical han-
dover where bottleneck physical characteristics can
suddenly change. As a general conclusion, traditional
window-based TCP is not suited to efficiently face
such communication scenarios showing impaired per-
formance overall the simulated configurations. The
new TCP Wave, exploiting a novel communication
paradigm based on a proactive burst transmission,

demonstrated its ability to quickly adapt its rate to net-
work changes, greatly outperforming the other TCP
implementations in most of simulated configurations.
The only issue for TCP Wave is in the case of outage
intervals shorter than RTO value. The proactive TCP
Wave transmission also during outage avoids timeout
expiration and leads to recover from a high number
of losses exploiting Fast Retransmission algorithm,
which has been tailored for efficiently managing net-
work congestion events, and then results inefficient to
manage the considered loss scenario.

REFERENCES

Abdelsalam, A., Luglio, M., Roseti, C., and Zampognaro,
F. (2015). A burst-approach for transmission of TCP
traffic over dvb-rcs2 links. In 2015 IEEE 20th Inter-
national Workshop on Computer Aided Modelling and
Design of Communication Links and Networks.

Allman, M., Paxson, V., and Blanton, E. (2009). TCP con-
gestion control. In Network Working Group, RFC
5681.

Bhat, P. and Talmale, G. (2014). MPTCP combining con-
gestion window adaptation and packet scheduling for
multi-homed device. In 2014 International Confer-
ence for Convergence of Technology (I2CT).

ETSI, ciao, c. (2015). Satellite Earth Stations and Systems
(SES); Hybrid FSS satellite/terrestrial network archi-
tecture for high speed broadband access. TR 103 272.

Lee, K., Nam, S., and In-Mun, B. (2006). SCTP efficient
flow control during handover. In IEEE Wireless Com-
munications and Networking Conference.

Linux (2015). Programmer’s manual, http://man7.org.
Ns-3 (2016). Ns-3 web page, https://www.nsnam.org/.
Patriciello, N., Casoni, M., Grazia, C. A., and Klapez, M.

(2015). Implementation and validation of TCP op-
tions and congestion control algorithms for ns-3. In
Workshop on Ns-3 (WNS3) 2015.

Paxons, V., Allman, M., Chu, J., and Sargent, M. (2011).
Rfc 6298, computing tcp’s retransmission timer.

Roseti, C., Luglio, M., and Zampognaro, F. (2010). Analy-
sis and performance evaluation of a burst-based TCP
for satellite DVB RCS links. In IEEE/ACM Transac-
tions on Networking, Vol. 18, Issue 3.

Yuwono, A. (2013). Performance analysis of cubic and
yeah TCP implementation using BATMAND over
MANET. In 2013 IEEE International Conference on
Robotics, Biomimetics, and Intelligent Computational
Systems (ROBIONETICS).

Zhang, L., Okamawari, T., and Fujii, T. (2012). Experimen-
tal analysis of TCP and UDP during LTE handover. In
IEEE 75th Vehicular Technology Conference (VTC).

TCPWave Resilience to Link Changes - A New Transport Layer Approach Towards Dynamic Communication Environments

79

