
Host Discovery Solution: An Enhancement of Topology Discovery in
OpenFlow based SDN Networks

Pilar Manzanares-Lopez1, Juan Pedro Muñoz-Gea1, Francisco Manuel Delicado-Martinez2,
Josemaria Malgosa-Sanahuja1 and Adrian Flores de la Cruz1

1Department of Information Technologies and Communications, Universidad Politecnica de Cartagena,
Antiguo Cuartel de Antigones, Cartagena, Spain

2Department of Computing System, Universidad de Castilla-La Mancha, Albacete, Spain

Keywords: Host Discovery, Monitoring, Software Defined Networking.

Abstract: Software Defined Networking (SDN) is an emerging paradigm based on the separation between the control
plane and the data plane. The knowledge of the network topology by the controller is essential to allow the
implementation of efficient solutions of network management and network resource utilization. Most of the
OpenFlow SDN controllers include a mechanism to discover the network nodes (router and switches) and
the links between them. However, they do not consider other important elements of the networks: the hosts.
In this paper we propose a host discovery mechanism to improve the topology discovery solutions in SDN
networks. The proposed mechanism, that has been coded as a software module in Ryu SDN controller, allows
the detection and tracking of hosts even when they don’t generate traffic. The implemented software module
has been tested in emulated SDN networks and in real scenarios using ONetSwitch, a real programmable SDN
platform.

1 INTRODUCTION

Software Defined Networking (SDN) is a new net-
working paradigm which is based on the separation
between the control plane and the data plane. In tra-
ditional IP networking, the network elements (routers
and switches) implement routing protocols which are
used to determine network paths and consequently
make routing decisions. Accordingly to these deci-
sions, the data packets will be forwarded. In contrast,
in SDN paradigm, the network elements only perform
packet forwarding (it is called data plane). The other
tasks, all of them included in the called control plane,
are located in an entity called the SDN controller.
The control plane is responsible for making decisions
on how packets should be forwarded by one or more
network devices and pushing such decisions down to
the network devices for execution (Haleplidis et al.,
2016).

In order to be able to make these decisions, it is
essential that the control plane has updated informa-
tion about the network topology. That is the reason
why network discovery is a key aspect of SDN. The
knowledge of the network topology is necessary to be
able to control and modify the data paths. Network

monitoring and traffic engineering are also important
tasks in network management that require an accurate
knowledge of the network topology (Akyildiz et al.,
2014).

Most of the SDN controllers, e.g. POX (POX,
2016), Ryu (Ryu, 2016), OpenDayLight (ODL, 2016)
Floodlight (Floodlight, 2016), implement network
topology discovery mechanisms that are limited to the
discovery of network elements (switches and routers)
and links between them. However, in our opinion,
an important component of the network is not consid-
ered: the hosts. Identify the existence of hosts, even
before they generate traffic, can offer to the controller
a very useful information to be used in the network
management tasks.

In this paper we propose a host discovery mech-
anism designed for SDN networks. This functional-
ity complements the non-standardized topology dis-
covery mechanism, based on the use of LLDP (Link
Layer Discovery Protocol) packets (IEEE, 2009), in-
cluded in most of the OpenFlow-based SDN con-
trollers.

The proposed mechanism has been coded and in-
cluded in the Ryu SDN controller and it has been
tested in two scenarios. On the one hand, the so-

80
Manzanares-Lopez, P., Muñoz-Gea, J., Delicado-Martinez, F., Malgosa-Sanahuja, J. and Cruz, A.
Host Discovery Solution: An Enhancement of Topology Discovery in OpenFlow based SDN Networks.
DOI: 10.5220/0005967000800088
In Proceedings of the 13th International Joint Conference on e-Business and Telecommunications (ICETE 2016) - Volume 1: DCNET, pages 80-88
ISBN: 978-989-758-196-0
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

lution has been tested in an emulated OpenFlow-
SDN network using Mininet (Mininet, 2016), the fa-
mous emulator in SDN. On the other hand, it has
been tested using ONetSwitches (Hu et al., 2014), an
all programmable SDN platform. The main chip of
ONetSwitch is the Xilinx Zynq-7045 SoC, which in-
tegrates ARM Cortex-A9 dual core processor-based
processing system (PS) and Kintex-7 FPGA-based
programmable logic (PL) into a single chip. The PS
part makes ONetSwitch software programmable and
the PL part enables the reconstruction of the hardware
logic. The use of the ONetSwitches allowed us to
evaluate the implemented host discovery module in
a wider set of experiments than using just the Mininet
emulator. Moreover, it led us to do a detailed analy-
sis of a part of the OpenFlow standard: the meaning
of the port status fields, which allow the controller to
track the status of each switch port.

The rest of the paper is structured as follows. Sec-
tion 2 describes the basic concepts of OpenFlow stan-
dard. Section 3 describes the non standardized topol-
ogy discovery solution implemented in most of the
OpenFlow-based controllers. Next, section 4 pro-
poses a mechanism to implement the host discovery
functionality, improving the basic topology discovery
of OpenFlow-based controllers. Section 5 describes
the usefulness of the host discovery utility. Finally,
section 6 concludes the paper.

2 SDN OPENFLOW
BACKGROUND

The separation between the infrastructure (forwarding
plane) and the SDN controller (control plane) is done
via standardized southbound interfaces. OpenFlow,
that is promoted by Open Network Foundations, is
the dominant standard providing the SDN southbound
interface between the SDN controller and the SDN
switches. In this paper we consider the OpenFlow
version 1.3 (ONF, 2012), the latest version of Open-
Flow that has support from switch vendors.

After the start-up, the switches and the controller
perform an initial handshake to establish the Open-
Flow connection. Each switch contacts its controller
on the corresponding IP address and TCP port num-
ber and establishes a TCP, which could be encripted
using TLS protocol. The switch and the controller
send a Hello message with the higher OpenFlow ver-
sion supported. Then, if the switch has support for
the OpenFlow version sent by the controller, the con-
troller sends a OFPT_FEATURES_REQUEST mes-
sage to the switch. The switch responds with an
OFPT_FEATURES_REPLY message that includes a

unique switch’s identifier called datapath_id, its ac-
tive ports and the corresponding MAC addresses. Af-
ter that, the OpenFlow connection is established.

This initial handshake informs the controller about
the existence of switches, but not about the inter-
connection of the network elements. To obtain a
picture of the network topology, a topology discov-
ery solution must be implemented. Most of the
well-known SDN controllers implement a similar,
but non-standardized, topology discovery mechanism
that allows the discovery of the links interconnecting
switches. This mechanism is described in the follow-
ing section.

As part of the control plane, the controller could
use the network topology information to solve differ-
ent network management and control tasks. Among
them, a fundamental task is to find out the most appro-
priate paths and configure the switches consequently
to do the forwarding tasks.

An OpenFlow switch consists of one or more flow
tables and a group table. Using OFPT_FLOW_MOD
messages, the controller can add, update and
delete flow entries in flow tables, reactively (in re-
sponse to packets) or proactively. Each flow en-
try consists of a match structure (many fields to
match flows such as input switch port, Ethernet
source/destination address, VLAN ID, VLAN prior-
ity, IP source/destination address,...), a set of counters
and a set of actions. On packet arrival, the packet
is matched with the match fields in a table and, if
any entry matches, the counters in that entry are up-
dated and the associated actions are performed. If
no entry matches, then a table-miss event has oc-
curred. In OpenFlow 1.2 and earlier, every flow ta-
ble has a default table-miss flow entry. However,
in OpenFlow 1.3, the default table-miss flow entry
must be inserted manually by the controller. The ac-
tions associated to a table-miss flow entry may in-
clude dropping the packet, sending the packet to an-
other table, or sending the packet to the controller. In
the last case, a OFPT_PACKET_IN message is sent
from switch to controller, which carries the packet.
When controller receives the OFPT_PACKET_IN
message, it evaluates its contents and decides what
actions will be done over the packet included in the
OFPT_PACKET_IN message. Then, the packet is
returned to the switch in a OFPT_PACKET_OUT,
which carries the packet and a list of actions to be
applied over the packet. Also, the controller could
send an OFPT_FLOW_MOD message to include a
flow entry in switch flow table, in order to process
similar packets in future.

Host Discovery Solution: An Enhancement of Topology Discovery in OpenFlow based SDN Networks

81

3 TOPOLOGY DISCOVERY IN
OPENFLOW-BASED
NETWORKS

As described before, a SDN controller knows the ex-
istence of network elements thanks to the initial hand-
shake process. In figure 1, the initial handshake be-
tween switch s2 and the controller in represented by
steps 1 and 2. For simplicity, the handshake corre-
sponding to the rest of switches is not shown.

However, the mechanism to discover how the
switches are interconnected is not standarized in
OpenFlow-based networks. Nevertheless, most of
the OpenFlow-based controllers implement a topol-
ogy discovery based on LLDP (Link Layer Discovery
Protocol).

LLDP (IEEE, 2009) is vendor-neutral link layer
protocol in the Internet Protocol Suite used by net-
work devices for advertising their identity, capabili-
ties, and neighbors on IEEE 802 local area networks,
principally wired Ethernet. LLDP packets are sent by
devices from each of their ports at a fixed interval, en-
capsulated in Ethernet frames withethertypefield set
to 0x88cc. The LLDP frames are sent to the bridge-
filtered multicast MAC address 01 : 80 :C2 : 00 : 00 :
0E. Therefore, the LLDP protocol is a one-hop pro-
tocol where the LLDP packets are only received by
directly connected network devices.

OpenFlow switches do not initiate the sending of
LLDP packets by themselves. To initiate the topol-
ogy discovery mechanism, the controller sends an
OFPT_PACKET_OUT message for each port of each
switch. Each OFPT_PACKET_OUT contains as pay-
load a LLDP frame and contains an instruction to send
this frame for the corresponding port (step 4 in fig-
ure 1). The forwarding of the LLDP frame allows the
neighbors to know about themselves, but doesn’t al-
low the controller to obtain this information.

In order to let the controller know the relation
between switches, they must have a table flow en-
try which orders to send to the controller, by an
OFPT_PACKET_IN message, any LLDP frame re-
ceived from any port except the Controller port. This
rule is sent by a OFPT_FLOW_MOD message after
the connection phase (step 3 in the figure), before the
sending of the first LLDP packet.

Finally, after the reception of the
OFPT_PACKET_OUT messages, switches for-
ward the encapsulated LLDP frames for each port
except the incoming (step 5 in the figure). When
switches receive the LLDP packets, they send them
to the controller using OPFT_PACKET_IN messages
(step 6 in the figure).

The topology discovery mechanism includes the

Figure 1: Topology discovery process in OpenFlow-based
SDN networks.

discovery of switches and links between them but it
does not include the discovery of hosts. Some SDN
controllers such as Ryu and OpenDayLight imple-
ment a basic host discovery solution. This basic solu-
tion is based on the fact that the table-miss flow en-
try of switches forces the sending of the packet to
the controller. Thus, when a switch receives ARP
or IP traffic from a host, since there are no installed
flow rules for the incoming flow, the switch forwards
the first received packet of the flow to the controller.
Based on this packet, the controller discovers the host
identity.

Ryu (Ryu, 2016) is a component-based software
defined networking framework that provides software
components to create network management and con-
trol applications. It supports OpenFlow and is pro-
grammed in Python. In particular, the topology
discovery functionality is implemented in a module
called/ryu/topology/switches.py.

Another mechanism to discover hosts could be the
use of the LLDP protocol in hosts. However, this so-
lution requires that a LLDP daemon has to be running
in each host. And depending of the case, this could
be very difficult to assert, i.e. in topologies where
hosts and network devices are not administrated by
the same entity.

In the next section we present a host discovery
module that enhances the typical topology discovery.
Although the proposed mechanism has been imple-
mented in Ryu, it could be adapted to other SDN con-
trollers.

DCNET 2016 - International Conference on Data Communication Networking

82

4 PROPOSED HOST DISCOVERY
IN OPENFLOW-BASED
NETWORKS

4.1 Technical Aspects to be Considered

Our proposed mechanism to implement initial host
discovery, that is, without having to wait for the host
to generate traffic, uses three kinds of information that
the SDN controller knows: the knowledge of a switch
ports, the changes in the status of the ports, and the
knowledge of links between switches. Next, we are
going to discuss each one and how it is useful during
the host discovery procedure.

After the session establishment, the controller
sends a port description request message to each
switch querying a description of all the Open-
Flow ports. The OpenFlow message type is
OFPT_MULTIPART_REQUEST, concretely a OF-
PMP_PORT_DESC. Each switch responds with a
port description reply message. In this case, the
message type is a OFPT_MULTIPART_REPLY, con-
cretely a OFPMP_PORT_DESC.

The port description reply enables the controller
to get a description of all the OpenFlow ports of that
switch. Among other fields, the description of a port
includes a unique port number that identifies the port
on the switch, the MAC address for the port and two
fields called "config" and "state" which are composed
of several flags. The structure of both fields is de-
scribed below:

enum ofp_port_config {
OFPPC_PORT_DOWN=1<<0;

/*Port is administratively down*/
OFPPC_NO_RECV=1<<2;

/*Drop all the pkts received by port*/
OFPPC_NO_FWD=1<<5;

/*Drop packets forwarded by port*/
OFPPC_NO_PACKET_IN=1<<6;

/*Do not send packet-in msgs for port*/
};

enum ofp_port_state {
OFPPS_LINK_DOWN=1<<0;

/*No physical link present*/
OFPPS_BLOCKED=1<<1;

/*Port is blocked*/
OFPPS_LIVE=1<<2;

/*Live for Fast Failover Group*/
};

The "config" value is set by the controller and it
is not changed by the switch. It is composed of four
flags. According to the OpenFlow version 1.3 specifi-
cation, the OFPPC_PORT_DOWN flag indicates that

the port has been administratively brought down and
should not be used by OpenFlow.

The "state" value indicates the state of the phys-
ical link. It is composed of three flags. Accord-
ing to the OpenFlow version 1.3 specification, the
OFPPS_LINK_DOWN flag indicates that the phys-
ical link is not present. The port state bits are
read-only and cannot be changed by the controller.
When any state flags change, the switch sends a
OFPT_PORT_STATUS message to notify the con-
troller of the change.

Thanks to the LLDP-based topology discovery
mechanism implemented in most of the controllers,
the controller can distinguish between edge ports and
non-edge ports of the switches. The non-edge ports
are the ports which are used within the links between
switches. Consequently, they send and receive LLDP
messages. The edge ports are the ports which are not
used within the links between switches. They send
LLDP messages but do not receive anyone. Thus, the
controller can identify the ports that potentially could
be connected to hosts.

The definition of the "link down" flag seems clear:
no physical link present. However, after analyzing
some experiments we made with the ONetSwitch
platform, the obtained results introduced some doubts
about it. According to the OpenFlow specification,
the "link down" flag in the port description reply
should be 0 if there is a connected link and 1 if not.
Nevertheless, from the experiments, we could con-
clude that the "state" value of a switch port is al-
ways 4, regardless whether there is a physical link
connected or not when the port description request is
received. That is, the "live" flag is set to 1 and the
"link down" flag is set to 0. Even more, if a switch
port is free, and then a host that is on is connected
to it, the "link down" flag does not change and any
OFPT_PORT_STATUS message is generated.

From our observations we conclude that the "link
down" flag does not inform if a link is present or not.
Actually, the "link down" flag is used to indicate that a
change has happened, in particular, that the link con-
nected to that port is not available anymore.

For all that, in order to implement the host dis-
covery module, it is not enough knowing the edge
ports and check the initial "state" value indicated by
the port description reply messages. It is necessary to
implement a mechanism to certainly identify which
ports are connected to hosts. As it will be detailed
later, this mechanism is inspired by the host discovery
option of the open source utilitynmap(Lyon, 2008).

On the other hand, the proposed advanced host
discovery mechanism also improves the basic host
discovery solution by offering reaction to the dy-

Host Discovery Solution: An Enhancement of Topology Discovery in OpenFlow based SDN Networks

83

Table 1: Pseudocode of the proactive_host_discovery func-
tion.

01: proactive_host_discovery():
02: for switch in network.switches:
03: for port in switch.ports:
04: if edge_port(port):
05: send_ping_arp_flowmod(switch,port)
06: send_ping_arp(switch,port,netaddress)

07: send_ping_arp_flowmod(switch,port):
08: match = (ether_types==ARP & eth_dst==port.hw_addr)
09: action = output_to_controller
10: msg=create_flow_mod_message(match,action)
11: send(msg, switch)

12: send_ping_arp(switch,port,netaddress):
13: for ip in range netaddress:
14: dst=FF:FF:FF:FF:FF:FF
15: src=port.hw_addr
16: dst_ip=ip
17: src_ip=broadcast_netaddress
18: ethfr=ether_frame(ARP_request,dst,src,dst_ip,src_ip)
19: send_packet_out(ethfr,switch,port)

namism of the network. Hosts can leave the network
at any moment and links can fail. To identify and
respond to the network changes, the proposed mod-
ule will listen and process the OFPT_PORT_STATUS
messages that are generated by the switches when a
port is added, modified or removed.

4.2 Proactive Search of Hosts

The proposed host discovery module must be able to
locate hosts which are initially connected to the net-
work, and also new hosts which join the network dur-
ing the period of time that the network is being moni-
tored.

As described before, using only the control mes-
sages exchanged between the switches and the con-
troller, it is not possible to differentiate non-connected
ports from ports connected to hosts. In order to solve
this first task, the proposed mechanism implements a
solution inspired by the host detection option of the
open sourcenmaputility.

After the session establishment, and once the port
description messages have been exchanged, the con-
troller starts a proactive search of hosts. The pseu-
docode is shown in table 1.

The controller sends a set of
OFPT_PACKET_OUT messages for each
edge port to each edge switch (line 6). Each
OFPT_PACKET_OUT message contains an ARP
request asking for a particular IP address belonging
to the IP network address range. Although the
ARP request is created by the controller, the source
hardware address is set to the hardware address of the
edge port. Thus, when an ARP reply is generated to
respond to a proactively generated ARP request, the
switch will be able to differentiate the packet from
‘normal’ ARP replies (which are generated due to

traffic between hosts) and send it to the controller.
After receiving each of the OFPT_PACKET_OUT

messages destined to a particular edge port, the switch
sends the ARP requests out of the specified port. If
the edge port is a non-connected port, no ARP replies
will be received. However, if a host is connected to
the edge port, an ARP reply will be sent to the switch.

However, in order to perform the host discov-
ery task, the ARP reply must be received by the
controller. For that reason, as it can be observed
in the pseudocode (line 5), before sending the
OFPT_PACKET_OUT messages to a switch, the con-
troller sends a OFPT_FLOW_MOD message for each
edge port to add a new flow entry in the OpenFlow ta-
ble. The match conditions for each new flow entry
are: the input packet must be an ARP packet whose
hardware destination address is the edge port hard-
ware address. If the input packet matches, the packet
will be sent to the controller. Then, the controller will
process the ARP traffic as usual (defined in/topol-
ogy/switches.py), and a host will be discovered and
added to the list of hosts.

Based on both topology discovery and host dis-
covery modules, the controller will know the com-
plete network topology, that is, the switches, the links
between them, the IP and MAC addresses of the hosts
and the switch ports they are connected to.

4.3 Tracking of Host Connections

Dynamism of networks must be taken into account
when implementing a topology discovery solution:
ports can be added or deleted from switches, new
links can be established or existing links can fail.
Thus, the proposed host discovery mechanism must
also react to network changes that affect host connec-
tions.

As said before in section 4.1, if a change hap-
pens on a port, the switch notifies the controller by
sending a OFPT_PORT_STATUS message. The rea-
sons to generate this type of message are: a port has
been added (OFPPR_ADD), a port has been deleted
(OFPPR_DELETE) or the state of a port has changed
(OFPPR_MODIFY).

The first two reasons only affect to the number of
ports that must be taken into account: a port has been
added or a port has been deleted. However, the last
event is more complex.

If a link is suddenly disconnected, the switch de-
tects that a physical link is not present anymore, and
then a OFPT_PORT_STATUS message is sent to the
controller indicating the change in the port state from
4 (the "live" flag set to 1) to 5 (both "live" flag and
"link down" flags are set to 1). This event is associ-

DCNET 2016 - International Conference on Data Communication Networking

84

ated to the physical disconnection of a link.
In a first experiment, a ONetSwitch initially

has 4 non-connected ports. By means of an OF-
PMP_PORT_DESC message, the switch informs the
controller of the port state values: 4 (only the "live"
flag set to 1). Then, a host (that is on) is connected
to the switch. In this situation, no OpenFlow message
is generated. A new physical link has been created
between the host and the switch, but no notification
of port state change is generated. As it was tested be-
fore, the standard just defines a "link down" flag to
indicate that the existing link connected to a port is
not available anymore.

Consequently, if the host (that is on) is phys-
ically disconnected, the switch generates a OF-
PPR_MODIFY message indicating that the port state
value has changed to 5 (both "live"and "link down"
flags are set to 1). Finally, if the host is connected
again, another OFPPR_MODIFY message with port
state value 4 is sent to the controller. The conclu-
sion of this first experiment is that the "link down"
flag is certainly related to the fall (and later recovery)
of physical links, but it is not related to the establish-
ment of a new link.

In a second experiment the same switch has three
non-connected ports and the last one is connected to a
host that is off. As in the previous experiment, an OF-
PMP_PORT_DESC message is sent to the controller
to inform of the port state values: 4 (only the "live"
flag set to 1). Continuing with the experiment, the
host is turned on. Although in this case the physi-
cal link already existed, a series of OFPPR_MODIFY
messages are sent to the controller.

Although there is a number of mechanisms which
can have impact on the link state, after analyzing the
OpenFlow traffic capture and the host and switch logs,
we could conclude that the OFPPR_MODIFY mes-
sages were generated due to Ethernet auto-negotiation
phase. The initial "port state" value that the switch
sent to the controller was 4. Then, when the host
is turned on, the switch indicates to the controller
that the link changes to down (a OFPPR_MODIFY
message is sent with "port state" value 5) until the
100 Mbps negotiation phase finishes. Then, a new
OFPPR_MODIFY message with "port state" value
4 is sent. Next, again, the switch indicates to the
controller that the link changes to down (a OF-
PPR_MODIFY message is sent with "port state"
value 5) until the 1000 Mbps negotiation phase fin-
ishes. Then, a new OFPPR_MODIFY message with
"port state" value 4 is sent. Finally, when the host is
turned off again, two OFPPR_MODIFY messages are
sent to the controller: the first one indicating a "port
state" value of 5 and the second one a "port state"

Figure 2: Fat-tree topology.

value of 4.
Taking into account the conclusions of the exper-

iments, the host discovery module must react to the
reception of OFPPR_MODIFY messages. When the
received "port state" value is 5, it must be checked
if there were a previously detected host connected to
that port. If so, the host will be eliminated from the
list of hosts. Otherwise, if the received "port state"
value is 4, it must be checked if it is an edge port.
If so, a proactive search of hosts on that port will be
initiated, as described in the previous section.

However, due to the fact that the joining of host
that is on does not generate a port status change and
consequently it does not generate any message to be
sent to the controller, it is necessary to periodically
repeat the proactive mechanism on all the edge ports.

5 USEFULNESS AND
EVALUATION OF HOST
DISCOVERY

Using the mechanism based on the exchange of LLDP
messages, SDN controllers can discover switches and
connections between switches. This topology infor-
mation can be used to determine the best path (short-
est path, in terms of number of hops) from a source
switch port to a destination switch port. However, ex-
isting SDN controllers only perform a basic host dis-
covery.

The discovery of hosts can be useful in a SDN net-
work topology discovery tool. For example, in a data
center, it is tedious and error-prone to manually main-
tain the locations of virtual machines due to their fre-
quent migration (Hong et al., 2015). The host discov-
ery module together with an adequate monitoring tool
provide an easy way to guarantee flexible network dy-
namics, optimizing the use of the network resources.

On the other hand, the host discovery before they
generate traffic can also be useful in redundant net-
works to solve the problem of ARP flooding. With

Host Discovery Solution: An Enhancement of Topology Discovery in OpenFlow based SDN Networks

85

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0 20 40 60 80 100 120 140 160 180

B
ps

Seconds

Flow Bandwitdth measured at the last switch

Figure 3: Flow bandwidth measurement obtained on the last
switch s5.

the proposed host discovery mechanism, ARP Re-
quest messages are only sent to edge switches, and
the ARP Responses are directly sent to the controller
who will be able to maintain a database of the MAC
and IP addresses of the activate hosts.

Figure 2 shows a fat-tree network, an example of
common data center interconnection topology. We
have used Mininet to emulate this topology. In this
scenario, we are going to show an example of the util-
ity of the tracking of host in the network management.

In the testbed, an UDP flow is created between
host h2 (10.0.0.2) and host h5 (10.0.0.5) using the
iperf tool. When switch s2 receives the first UDP
packet, due to the fact that there is no any flow entry in
the OpenFlow table that matches, a miss-table event
occurs and, consequently, the UDP packet is sent to
the controller using an OFPT_PACKET_IN message.
The controller, who knows the location of h5 thanks
to the proposed host discovery module, calculates the
optimum path between switch s2 and switch s5, and
installs an adequate flow entry on each intermediate
switch. If at a given moment h2 fails or migrates to
another point of the network, it is useful for the con-
troller to detect this change immediately in order to
act accordingly.

In this test, the UDP connection between host h2
and host h5 lasts 180 seconds. During this period, the
host h5 leaves the network and joins again later three
times. In the second 30, h5 leaves the network for 30
seconds; in the second 90, h5 leaves the network for
15 seconds and; in the second 120, h5 leaves the net-
work for 30 seconds. Thanks to the proposed host dis-
covery module, that includes host tracking, each time
that the host h5 leaves the network, the controller re-
alizes and intermediately deletes the flow entries cor-
responding to the route between h2 and h5 on all in-
volved switches.

Figure 3 represents the transmission rate corre-

sponding to the flow entry on switch s5 associated
to the UDP flow between 10.0.0.2 (h2) and 10.0.0.5
(h5). The UDP flow has been monitorized using a
monitoring tool developed by the authors of this work
(Muñoz-Gea et al., 2016). It has been monitored on
the last switch on the flow path since this is what is
seen by the receiver. As can be observed, there is no
flow entries corresponding to the UDP connection in
the flow table of switch s5 during the interval in which
the host h5 is disconnected. Similar results are ob-
tained when the rest of switches are monitored.

OpenFlow also provides the possibility of get-
ting detailed statistics on specific ports on selected
switches. Making use of this functionality, results
showed in figure 4 have been obtained. The first graph
shows the transmission rate of the ports on switch s2
(that is, the first switch on the path between h2 and
h5).

The second graph corresponds to switch s5, the
last switch on the path. In this figure it can be ob-
served the reception rate of the ports on switch s5,
and even more descriptive, the transmission rate of
the port to which h5 is connected. As can be seen,
the transmission rate coincides with the expected re-
sult. The last two graphs represent the transmission
and reception rates of the ports on switches s1 and s4.

It is interesting to point out that, as can be seen
in the these graphs, at the beginning of the commu-
nication, the controller decides that the optimum path
between h2 and h5 is s2-s4-s5. However, after the
first time that h5 leaves the network and later joins
again, the controller decides to select a new route be-
tween h2 and h5: s2-s1-s5. After the third and forth
re-joining to the network, the controller chooses the
route s2-s4-s5 again.

6 CONCLUSIONS

In this paper we have proposed a solution to imple-
ment a dynamic host discovery and tracking in SDN
OpenFlow networks. It has been implemented as a
new module of the well-known Ryu controller.

The module complements the non-standardized
topology discovery mechanism implemented in most
of the SDN OpenFlow controllers which, based on
the exchange of LLDP packets, are able to identify
switches and links between them. In order to define
the host discovery mechanism, we had to analyze a
particular aspect of the OpenFlow 1.3 standard: the
"port state" flags and their relation with the genera-
tion of OFPT_PORT_STATUS messages. Both as-
pects are not widely described in the standard neither
the bibliography.

DCNET 2016 - International Conference on Data Communication Networking

86

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0 50 100 150 200

B
ps

Switch s2: Tx speed port 4
Switch s2: Tx speed port 1

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0 50 100 150 200

Switch s5: Rx speed port 1
Switch s5: Rx speed port 2
Switch s5: Tx speed port 3

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0 50 100 150 200

B
ps

Seconds

Switch s1: Rx speed port 1
Switch s1: Tx speed port 3

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0 50 100 150 200

Seconds

Switch s4: Rx speed port 1
Switch s4: Tx speed port 3

Figure 4: Transmission and reception rate of the ports on switches s2, s5, s1 and s4.

The proposed host discovery solution has been
tested in emulated OpenFlow-SDN networks us-
ing Mininet, and also, in real scenarios using
ONetSwitches, an all programmable SDN platform.
Some of the benefits of the host discovery function-
ality have been described, and a use case has been
described and analyzed considering a data center in-
terconnection topology.

ACKNOWLEDGEMENTS

This work was supported by the MINECO/FEDER
Project Grant TEC2013-47016-C2-2-R (COINS) and
the MINECO/FEDER Project Grant TIN2015-66972-
C5-2-R.

REFERENCES

Akyildiz, I., Lee, A., Wang, P., Luo, M., and Chou, W.
(2014). A roadmap for traffic engineering in sdn-
openflow networks.Computer Networks (71).

Floodlight (2016). Project floodlight: Open source
software for building software-defined networks.
http://www.projectfloodlight.org/floodlight.

Haleplidis, E., Denazis, S., Pentikousis, K., Salim, J.,
Meyer, D., and Koufopavlou, O. (2016). Sdn layers
and architectures terminology. InRFC 7426.

Hong, S., Xu, L., Wang, H., and Gu, G. (2015). Poison-
ing network visibility in software-defined networks:
New attacks and countermeasures. InProceedings
of the 2015 Network and Distributed System Security
(NDSS) Symposium.

Hu, C., Yang, J., Zhao, H., and J.Lu (2014). Design of all
programmable innovation platform for software de-
fined networking. InOpen Networking Summit.

IEEE (2009). Ieee standard for local and metropolitan area
networks - station and media access control connec-
tivity discovery. InIEEE Std 802.1AB.

Lyon, G. F. (2008).Nmap Network Scanning. Insecure.com
LLC.

Mininet (2016). Mininet. an instant virtual network on your
laptop (or other pc). http://www.mininet.org.

Muñoz-Gea, J., Manzanares-Lopez, P., Malgosa-Sanahuja,
J., and de la Cruz, A. F. (2016). Network failures sup-
port for traffic monitoring mechanisms in software-
defined networks. InProceedings of the IEEE/IFIP
Network Operations and Management Symposium,
NOMS’16.

ODL (2016). Opendaylight. http://www.opendaylight.org.

ONF (2012). Openflow switch specification. version 1.3.0.
https://www.opennetworking.org/images/stories/

Host Discovery Solution: An Enhancement of Topology Discovery in OpenFlow based SDN Networks

87

downloads/sdn-resources/onf-
specifications/openflow/openflow-spec-v1.3.0.pdf.

POX (2016). Pox controller.
http://github.com/noxrepo/pox.

Ryu (2016). Build sdn agilely. component-based
software defined networking framework.
https://osrg.github.io/ryu/.

DCNET 2016 - International Conference on Data Communication Networking

88

