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Abstract: The daily use of smartphones along with third-party apps, which involve location data to be continuously
collected, shared and used, have become a significant privacy concern. Besides, taking advantage of the rapid
growth of wireless access points, the capability of these location-based services to track users’ lives, even
sometimes with their consent, creates an urgent need for the development of more user-friendly and socially-
accepted approaches to location privacy preservation. In this paper, we introduce a novel privacy-aware model
for location-based apps to overcome the shortcomings related to user privacy during the location calculation
process. By making the user device play a bigger role in the process, our model prevents users from relying
on service providers’ trustworthiness. The model applies a cache-based technique to determine the position
of client devices by means of wireless access points and achieve data minimisation in the current process.
The model also establishes new personalised permission settings for the users while sharing their location
information. We outline possible implementation of the proposal, and preliminary findings of the work-in-
progress evaluation on the wireless data feasibility and usability that demonstrate deployment viability.

1 INTRODUCTION

The explosive growth of context-aware mobile apps
has leveraged tremendous opportunities for a whole
new class of Location-Based Services (LBS) (Pontes
et al., 2012). Geo-marketing and geo-social net-
working, location-based games, monitoring, assisted
eHealth, and energy consumption 3D maps represent
a small subset of the third-party apps nowadays avail-
able as LBS and can certainly pose a serious threat to
the users’ privacy. (Muslukhov et al., 2012; Shklovski
et al., 2014).

Currently, approaches to privacy settings of user
location on smartphones are based on a binary pro-
cess1. Users are forced to rely on third party ser-
vice providers that in many cases continuously col-
lect, use and share their location data, and in some
cases even prompt the user to give away their posi-
tion on page load (Almuhimedi et al., 2015; Mus-
lukhov et al., 2012; Felt et al., 2012; Shklovski et al.,

1Data protection directives and acts (European Commis-
sion, 2016; IETF, 2016) across the globe state that personal
data should not be disclosed or shared with third parties
without consent from subject(s). Such a consent is typi-
cally obtained by mandatory acceptance of the conditions
mentioned in the End User License Agreement (EULA), or
through opt-out possibilities and other regulations(Michael
and Clarke, 2013).

2014). Moreover, both academia and industry agree
on the urgent need of adopting a Privacy-by-Design
(PbD) approach for the development of more user-
friendly and socially-accepted solutions to location
privacy preservation on their mobile products and ser-
vices (Cranor and Sadeh, 2013).

To encounter these challenges, we introduce the
model called Location Privacy Caché (LP-Caché).
LP-Caché envisions beyond the simple grant/deny ac-
cess method and provides the user with advanced
mechanisms to decide the extent of disclosing lo-
cation data with service providers. Several caching
based solutions (Zhu et al., 2013; Amini et al., 2011;
Niu et al., 2015) have been proposed to minimise the
risk of major location privacy threats, but lacking of
deployment feasibility. They rely on unrealistic as-
sumptions such as vast cache data storage require-
ments, or on the app developers modifying the code
to incorporate their cached databases. LP-Caché in-
corporates caching technique to determine users’ ge-
ographical location in a privacy preserving manner,
and with minimum cache storage requirements. The
main contributions in this paper are:

• Detailed analysis of the current location computa-
tion process deployed in smartphones when run-
ning location-based apps.

• Definition of LP-Caché and its main implementa-
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tion requirements. The main identified benefits of
LP-Caché are twofold:

– Provides enhanced personalised location pri-
vacy settings that control every installed app
distinctly and protect sharing of user’s private
location with third-party app providers.

– Minimises the amount of wireless access point
data that is being shared within the current ar-
chitecture for computing the device’s location
by means of minimum on-device caching.

• Evaluation of wireless access point data availabil-
ity and consistency, and of the implementation re-
quirements to demonstrate that LP-Caché is feasi-
ble without modifying installed apps.

The rest of the paper is organized as follows. Sec-
tion 2 outlines the current location computation pro-
cess and its evaluation. Section 3 reviews the related
work. Section 4 presents the design and architecture
of LP-Caché, and Section 5 fully elaborates on design
decisions and possible implementation. We evaluate
the feasibility and usability requirements in Section 6.
Finally, Section 7 concludes and sets future research
plans.

2 CURRENT LOCATION
COMPUTATION PROCESS

In this section, we describe roles and processes
involved in the current architecture for computing
user’s device location.

2.1 Current Architecture

The current location computation architecture to use
location-based apps on smartphones comprises four
main entities: 1. Smartphones with installed apps,
2. App Provider, 3. Network Infrastructure, and 4.
Location Provider. This architecture mainly relies
on third party location providers, e.g., Google Loca-
tion Service (Google Location Service, 2016), Sky-
hook (Skyhook, 2016), and Navizon (Navizon, 2016).
The location provider represents the central database,
which maps the received signatures of nearby wire-
less access points to the geo-coordinates, i.e., lati-
tude and longitude, so handling every geo-location
request. Therefore, the location provider has con-
stant access to the user’s location as well as to the
trajectory data. To respond to any location request,
the location provider maintains a database of sur-
rounding network infrastructure, including WiFi Ac-
cess Points (APs), cellular-towers, and IP addresses,

which must be mapped to their exact geographical co-
ordinates. Compared to GPS and cell-tower based po-
sitioning, WiFi Positioning Systems (WPS) is nowa-
days considered as a very accurate method for loca-
tion calculation (Skyhook, 2016). Location providers
rather use enhanced WPS than GPS, primarily due
to current smart-mobile devices benefit from built-
in WiFi clients that perform faster than most expen-
sive GPS receivers. This enables the service provider
to get user’s precise location at all times and, as a
result, more effective privacy preservation measures
are needed in the current process to mitigate privacy
threats.

WiFi APs continuously announce their existence
in the way of network frames/beacons and transmit
their Service Set Identifier (SSID) and Basic Ser-
vice Set Identifier (BSSID)/MAC addresses. Location
providers use these WiFi APs identifers to create net-
work signatures and map them with geo-coordinates,
also called geolocation. IEEE 802.11 states two stan-
dardised ways to collect beacons from WiFi APs: 1.
Active scanning, and 2. Passive scanning. Location
providers are capable of deploying systems with ei-
ther active scanning, passive scanning, or both to-
gether. Location providers use three different ways
to collect geo-location of WiFi APs:

1. Statically- They collect WiFi beacons by the so
called wardiving process. Basically, they map the
equipped vehicle’s exact geo-coordinates along
with the signal strength of the captured beacons
from surrounded APs.

2. Dynamically- They can collect data from WiFi
APs automatically once the user device uses lo-
cation services, e.g. Maps and Navigation appli-
cations. The user device as configured to be ge-
olocated acquires unique identifiers from the sur-
rounding WiFi APs, even if the network is en-
crypted, and then sends it over to the location
provider in order to perform geolocation calcula-
tion. The collected information is utilised to build
and update the database autonomously, for exam-
ple, by applying crowdsourcing (Zhuang et al.,
2015).

3. User input- They encourage users to manually
input the WiFi APs’ information, i.e., BSSID
and the geo-coordinates, into their databases, e.g.,
Skyhook2 to register WiFi APs.

2Submit a Wi-Fi Access Point. See http://www.skyhook
wireless.com/submit-access-point (last access in March.
2016).
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2.2 Evaluation of Current Location
Computation Process

We conducted a series of experiments on differ-
ent mobile devices installed with Android, Windows
Phone, and iOS operating systems to categorise the
data flow in the current location computation pro-
cess. With the assistance of sniffers, such as Wire-
shark (Wireshark, 2016) and tPacketCapture (tPack-
etcapture, 2016), we captured and analysed sequence
and location data transmission when using location-
based apps, e.g., Navigation and Friend Finder.

Observation. These experiments were designed to
understand whether there is any difference on the lo-
cation calculation process on each of these three mo-
bile operating systems/ platforms. Based on the re-
sults, all of them display common patterns of location
data retrieval. The user device collects the unique
identifiers from the surrounding network along with
GPS data, and sends it to the location provider to get
the exact device location. Figure 1 shows the structure
of the WiFi and Cell-tower objects sent to the location
provider. Once calculation is performed, the loca-
tion provider sends to the device the precise location
in the way of a geo-location object containing geo-
coordinates. Figure 2 represents the structure of the
location object received from the location provider.
In short, the app developer over any mobile platform
can utilize this location object to get the user’s geo-
location with no need of focusing on the details of the
underlying location technology. In the following sec-
tion, we give the detailed description of the process
sequence.

Figure 1: Structure of WiFi AP object (left) and cell-tower
object(right) sent to the location provider.

Process Sequence. Figure 3 illustrates the sequence
of processes and messages involved in the current
location computation architecture. Note that, on a

Figure 2: Structure of the location object received from the
location provider.

smartphone, location sharing service settings must be
‘ON’ while using any location-based app. If the lo-
cation sharing is ‘OFF’, then the device prompts for
changing the setting from ‘OFF’ to ‘ON’; otherwise,
user cannot use the service.

3 RELATED WORK

Existing approaches to location privacy preservation
can be classified into three categories: 1. Mobile Plat-
form, 2. Location Query, and 3. Privacy-aware Net-
work Communication.

3.1 Mobile Platform

A few studies have proposed static and dynamic
methods to detect privacy leaks in mobile platforms.
The former method statistically analyse apps by creat-
ing permission mapping, generating call graphs, and
data flow analysis to report privacy leaks for further
auditing, e.g, AndroidLeaks (Gibler et al., 2012) and
PiOS (Egele et al., 2011) for Android and Apple iOS,
respectively. The latter involves modification of ex-
isting mobile platforms, such as TaintDroid (Enck
et al., 2014) and MockDroid (Beresford et al., 2011).
TaintDroid adds taint tracking information to sensi-
tive sources calls from apps, and it tracks location data
flow as it generated through applications during exe-
cution. Whereas, MockDroid relies on instrumenting
Android’s manifest permission mechanism to mock
sensitive data from OS resource, including location
data, which can affect apps’ usability and functional-
ity. LP-Caché not only monitors the location sources
but also modify, if required, the generated location
data based on defined user permissions. Fawaz and
Shin (Fawaz and Shin, 2014) apply indistinguisha-
bility into the advertising and analytics libraries as
well as on installed apps as location privacy preser-
vation mechanism; however, it does not give control
on the amount of WiFi and location data that is be-
ing shared with the location provider, indistinguisha-
bility technique increases computational overhead on
smartphones.
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Figure 3: Sequence diagram of current location computation process.

3.2 Location Query

Apps share location information with the provider
in the form of LBS queries. The transmission of
such queries to the location server may allow at-
tackers to gain access to user location data. Pri-
vacy Enhancing Techniques (PET) like k-anonymity,
dummy locations, region cloaking, location perturba-
tion and obfuscation, and mix-zone pseudonyms have
been applied to different architectures for location
query formation and privacy preservation from LBS
providers (Patel and Palomar, 2014; Wernke et al.,
2014; Khoshgozaran et al., 2011). Most of these tech-
niques rely on theoretical assumptions - like trusted
infrastructure to provide the privacy protection, re-
quiring a group of similar app users to be at the same
time and same place. The main issue with PETs and
cryptographic schemes is that it relies entirely on the
data collection servers to comply with location pri-
vacy.

Caching. Several authors have used caching
scheme along with PETs to build privacy preserving
location based queries. MobiCaché (Zhu et al.,
2013) applies k-anonymity for caching location
based queries. Similarly, Niu et al. (Niu et al.,
2015) attempt to improve k-anonymity based caching
by adding dummy locations. Both proposals re-
quire trusted infrastructure to maintain privacy.
Caché (Amini et al., 2011) maintains a local caché
within the device to reuse the data types available
from applications in future location based queries;
however, storing entire LBS query data increases
the cache storage requirements. Besides, Caché

also requires app developer to modify the way app
access location data. Whereas, LP-Caché caches
the network fingerprints and geo-coordinates, which
reduces the storage overhead drastically; it considers
installed apps as black box, and therefore, does not
require app developer to modify the code, it works
as a middleware between the app and the mobile
platform. All these cache-based systems either intent
to generalise or obfuscate the LBS query or minimise
the number of queries sent to the app providers,
but they do not provide privacy from WiFi content
distributors. Besides, mobile devices not only send
vast amounts of location data to app providers but
also to location providers creating different location
privacy shortcomings (Almuhimedi et al., 2015;
Shklovski et al., 2014). In this regard, limited work
has been published on privacy preservation from
the location provider perspective (Damiani, 2011;
Doty and Wilde, 2010). Damiani (2011) proposes a
theoretical approach for privacy-aware geolocation-
based web services to encourage further research to
minimise the amount of location data being shared
with the location provider. This is mainly due to
that the location provider is considered as the only
source to get the user location when developing any
location-based app. In LP-Caché, we minimise the
process of wireless AP data collection by the WiFi
content distributors or location providers, and we
control information disclosure within the generated
LBS query (e.g., points of interests (POIs) and nearest
neighbor) since it will be sent to the third-party app
provider.
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3.3 Privacy-aware Network
Communication

Besides location queries, device’s IP address can also
reveal user’s private locations. To this regard, anony-
mous communication protocols, e.g., Anonymizer
(Anonymizer, 2016) and TOR (TOR, 2016), deal with
anonymous service usage at the network layer while
communicating over Internet (i.e., the server cannot
infer user’s location via received device’s IP address
along with location query), and they are most promi-
nent and commonly used network layer solutions.

4 LP-CACHÉ MODEL

In this section, we describe LP-Caché’s threat model,
design goals, architecture and main processes’ se-
quence diagram.

4.1 Threat Model

Apps deliberately collect user’s sensitive data, includ-
ing location and other sensitive information as part of
their operations. User tracking, identification and pro-
filing (i.e. personal habits, movement patterns, etc.)
are fundamental threats to location privacy (Felt et al.,
2012; Wernke et al., 2014). Furthermore, the current
direct link of smartphones to the location provider
and the continuous flow of LBS queries that include
device’s exact geo-coordinates over network create a
serious risk to the protection of users’ sensitive infor-
mation, even more challenging, in the presence of a
malicious location provider and via advanced network
sniffing practices.

LP-Caché computes the exact location within user
device, without service provider’s involvement, and
trusts the device on the storage of sensitive data.
However, the user has still the option of giving con-
sent for app providers or location provider to access
their location. Mobile network providers might, how-
ever, collect user location data via cellular clients. It
is also excluded from our model the option of manu-
ally inserting the location data (e.g. street name, zip
code, post code) within LBS query.

4.2 LP-Caché Control Flow
Architecture

LP-Caché’s three main design goal are: 1) the third-
party app provider will not be able to infer the de-
vice’s exact location without getting uses’s consent;
2) the user can set distinct privacy preferences for
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Figure 4: LP-Caché architecture.

different apps and private places; and 3) the model
works independently without the need of modifying
the app’s code. Figure 4 depicts the block diagram
for LP-Caché architecture; its main components are:

Permission Setter is the user interface (UI), which
enables users to set and manage their private
places and apply improved personalised permis-
sions when running installed location-based apps.
Once received the user inputs, pre-set private lo-
cations are sent to the Private Location Manager
module, and permissions are sent to the Rule Map-
per Module.

Request Manager is responsible to intercept the
event of location access calls, and then lead the
app’s control flow to the Private Location Man-
ager module. Besides, it will also be in control of
receiving the processed user location (i.e., could
be either anonymised or altered) from Rule Map-
per, and then delivering it to the app in order to
maintain every session’s control flow.

Private Location Manager module’s main task is to
detect unique identifers of the surrounding WiFi
APs and compare them with the stored net-
work fingerprints to determine whether the user is
within the set of private places. User inputs from
the Permission Setter will create network finger-
prints for known private locations, which are then
added or updated in the Caché database. More-
over, it maintains a binary flag to detect private
places. In the case of a hit the location data is sent
to the Rule Mapper. Otherwise, the location is re-
ceived from the Location Receiver. Whenever the
Private Location Manager receives a new private
place request, the received location is mapped to
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the detected network fingerprint and stored in the
Caché database.

Rule Mapper dynamically collects and checks set
permissions from Permission Setter. Once the
representative location object is received from the
Private Location Manager, it applies the user per-
missions on the location co-ordinates, alters them
(if required), and outputs the processed location to
the Request Manager module. If the flag is nega-
tive, then it forwards the exact location.

Caché is the established on-device cached database,
and it is routinely queried by the Private Loca-
tion Manager module, which can add, update and
delete the cached location data. The locations in
caché are those which are to be protected, and
they can also represent regions of space. Each en-
try is recorded along with a network fingerprint
and geo-location that is acquired from the loca-
tion provider.

Location Receiver module receives a location object,
which includes the user device’s geo-coordinates
(as in Figure 2), from location providers and sends
it over to the Private Location Manager for fur-
ther processing.

4.3 Process Sequence

LP-Caché modifies the current location resource han-
dling process, however, the involved entities (as in
Section 2) remain the same. Figure 5 illustrates the
sequence of processes and messages involved in LP-
Caché:
1. At the event of app requesting the device location,

our service will intercept the request to get the lo-
cation from the cache database instead of sending
the request to the location provider.

2. Upon receiving the location request, our service
will scan the surrounding network infrastructure.

3. Using observed network frames our service will
execute as follows:

(a) Our service compares the collected beacons
with the stored network fingerprints to re-
trieve corresponding stored representative loca-
tion coordinates.

(b) In the case of an unmatched entry on the
database, the LP-Caché prompts the user two
options either input the location using UI, or al-
low the query to be sent to location provider
that will calculate and send the current location
coordinates. Note that this will only occur if
the user has set the current location as private
but the geo-coordinates are not cached.

(c) The received location data for the encountered
APs will be tracked within the local cache
database for future use.

4. User location coordinates can be altered based on
the privacy settings. LP-Caché provides three op-
tions for controlled information disclosure: (1)
Adjust Location Granularity, (2) Obfuscate Loca-
tion, and (3) No Change. Computed location is
populated in the location object and sent to the
app.

5. Once the app obtains the location object, it is
then used by the app provider to send the corre-
sponding reply to LBS query via the standard pro-
gramming interface/API (Android Developer Ref-
erence, 2016).

5 IMPLEMENTATION
REQUIREMENT

In the following sections, we describe LP-Caché’s
implementation requirements. LP-Caché orchestrates
a mobile platform based location protection ser-
vice to modify the location resource handling pro-
cess. For instrumenting the LP-Caché implementa-
tion, Android will be the best choice since it is open
source; however, it can also be implemented on other
permission-based mobile platforms.

5.1 Bootstrapping

LP-Caché aims to protect user’s private places. Ini-
tially, LP-Caché does not have enough informa-
tion to function, the two main required information
are private places’s network fingerprints and geo-
coordinates. LP-Caché cannot collect network fin-
gerprints and geo-cordinates for private places at run-
time, as by the time we have this information, other
installed apps will have access to it. Therefore, when
LP-Caché first boots and before turning ‘ON’ location
sharing settings, user will have to do the initial setup,
which includes allow WiFi AP scanning, input geo-
cordinates and set privacy choices (see Section 5.4).
In 2013, Google presented a new service API (also
works on older Android versions) for location-based
apps that allows developers to use the new and ad-
vanced Location and Activity API, i.e., they changed
Location Manager to Fused Location Manager,
hence combining sensors, GPS, Wi-Fi, and cellular
data into a single API for location-based applications
(Hellman, 2013). As a result, separating data from
GPS PROVIDER and NETWORK PROVIDER is no longer
straight forward. LP-Caché addresses this issue by
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Figure 5: Sequence diagram of location computation process using proposed model

preventing app’s location request to reach the Fused
Location Manager that collects and sends the net-
work session data to the location provider. Instead,
the requested location is retrieved from the on-device
cache, and then, it is sent to the requesting app (with
privacy rules applied). Besides, geographic tool3 can
be incorporated in the LP-Cache’s UI to get the corre-
sponding geo-cordinates. This will allow LP-Caché
to achieve effective privacy without affecting loca-
tion accuracy, at the same time, prevent from the non-
authorised sharing of device’s exact location and net-
work session data.

5.2 Mobile Platform

For performance evaluation, there are two possible
ways of implementing LP-Caché location protection
service. The first requires modifying the app’s loca-
tion accessing interfaces and intercepting location up-
dates before they reach the app provider. Whereas, the
second option requires modifying the platform and
changing the location data before reaching the app.

App Code Modification. This comprises unpack-
ing the app, rewriting the code to work according
3LatLong is a geographic tool. See http://www.latlong.net/
(last access in March. 2016)

to the new rules, and then repackaging it again,
e.g.,(Jeon et al., 2012). However, app repackaging
changes the signature and stops future updates, and
therefore, affects its functionality. Another way to
modify app’s location accessing interfaces is through
the creation of an Android service and allowing apps
to register with it. Then, Apps can use the location
data provided by this service. This approach is easy
to implement but relies heavily on app developers to
modify their app’s code, which is highly infeasible
and unrealistic. Nonetheless, this approach can be
used as simulated testing environment for any devel-
oped service.

Platform Modification. For the sake of experimen-
tation, we develop LP-Caché via platform modifica-
tion. One of the main task is to add a system service,
where the class belongs to the location APIs; thus, it
is placed in the android.location package, which
detects private locations via APs and can also be used
by other components when calling context. In An-
droid, a context allows an app to interact with the OS
resources. Another task is to make LP-Caché com-
municate with location requesting apps. On Android
there are two methods to access user’s location: 1) Lo-
cation Manager Service (Old), and 2) Fused Location
Manager Service (New) that is a part of Google Play
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Services. Both methods require the app to request a
callback function to get regular updates by registering
a location listener. The app receives a new location
object when a new location is available, the callback
function is invoked. Modifying these two Google ser-
vices is complicated, but there is a possibility to inter-
cept the location object before it reaches requesting
apps. We will add a static context field to the loca-
tion class, which will be populated when the app is
invoked; this will enable us to know which app is cur-
rently requesting the location object, and also com-
municate with the OS (Fawaz and Shin, 2014). The
created location object will have reference to the re-
questing app’s context, and therefore, it can interact
with our external service.

5.3 On-device Cache Database Creation

LP-Caché requires fixed wireless APs data (i.e.,
802.11) to create cached database of private locations.
Initially, we decided to focus on WPS since it infers
accurate user location. However, we can later include
other fixed radio sources (e.g., cell-tower unique iden-
tifiers).

Network Fingerprinting. We can distinguish two
main types of WPS techniques to determine the po-
sition of client devices in respect to APs (Bell et al.,
2010): 1) Signal trilateration and 2) Fingerprinting.
The former undertakes trilateration of Received Sig-
nal Strength (RSS), Angle of Arrival (AoA), and Time
of Flight (ToF) from observed APs, and the later
involves mapping observed APs signatures with a
stored database. LP-Caché uses fingerprinting to cre-
ate cached location database; however, fingerprinting
performance is highly related to the number of APs.
Therefore, in Section 6 we have evaluated WiFi AP
availability and consistency. The detected network
management frames/beacons are mapped with the de-
vice’s representative geo-location to create a network
fingerprint, which is then stored in the local cached
database, an example private location fingerprint is
shown in Equation 1. Moreover, to reduce storage and
computation overhead, our model only caches net-
work fingerprints of private places (e.g., home, work,
frequently visited places or particular stores), and it
relies on user input for initial pre-set up. The user
will have to select the option (via LP-Caché UI) to set
current location as private place pi, and then finger-
print will be recorded. Later, the private place will be
detected automatically with respect to observed bea-
cons.

pi = [n1], [n2], ..., [nx]→ [lr] (1)

Algorithm 1: Location Calculation Algorithm.

Input: nx: Network Frames
Output: lr: Representative Location

1: nx = 0
2: read nx
3: while nx 6= null do
4: if nx = ni , ∀ i ∈ p then
5: (step 1) retrieve the corresponding lr
6: add flag f = (if private 1, else 0)
7: send lr
8: else
9: (step 2) request lr from user or location

provider
10: set received lr to corresponding pi
11: update c
12: send lr
13: end if
14: end while

where pi represent ith private place IDs, n is the
scanned beacon, and lr is a representative location
for that private place. WiFi AP beacon frame n con-
sists of four attributes 〈SSID, BSSID/MAC address,
Signal-strength, and Timestamp〉. The private rep-
resentative location lr consists of a tuple 〈Lattitude,
Longitude, and Accuracy〉.

On-device Cache-based Location Calculation Al-
gorithm. The detailed steps of privacy-aware geo-
location calculation process are summarised in Algo-
rithm 1. The surrounded beacons nx are scanned and
compared to the list of private WiFi fingerprints ni
to detect private place p stored in cached database c.
Further, the representative lr is altered based on set
permissions (see Section 5.4).

5.4 Personalised Permissions for
Location Sharing

A general LBS query consists of different attributes,
e.g., LBS query {POI, Latitude and Longitude, User-
Info}, where included geo-coordinates estimate the
device’s geo-location. To satisfy one of the privacy
property called controlled information disclosure,
we designed enhanced permission mechanism to
control these geo-coordinates before it is sent to app
providers. When using LP-Caché, for every installed
app and set private place, the UI provides three
distinct privacy settings: (1) Adjust Location Gran-
ularity, (2) Obfuscate Location and, (3) No Change.
In the first option, geo-coordinate truncation method
adjusts location precision level; in the second option,
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Algorithm 2: Enhanced Permissions Algorithm.

Input: lr: Representative Location
Output: l′r: Processed Location

1: up = User Input
2: read l, lg, f , up
3: if up = Adjust Granularity then
4: check granularity level gl
5: truncate(l, lg)
6: replace l to l′ and lg to l′g
7: return l′r
8: else if up = Obfuscate then
9: randomly generate angle θ

10: obfuscate(l, lg, θ)
11: replace l to l′ and lg to l′g
12: return l′r
13: else
14: unchanged
15: return l′r
16: end if

geo-coordinate transformation obfuscate user’s loca-
tion; whereas, in the third option, the exact unchanged
geo-coordinates are sent to the requesting app.

Enhanced Permissions Algorithm. Once LP-
Caché receives an invoked location object lr, it alters
the location data according to the enhanced permis-
sion settings and returns processed location l′r. The
steps involved in enhanced permission mechanism are
summarised in Algorithm 2, where up is the set per-
mission, gl is the adjusted location precision level, l
is the latitude, and lg is the longitude.

Geo-coordinates Truncation. The geographical
coordinates looks like 52◦28’59.200” N
1◦53’37.0001” W, where the last digits specify more
accurate geo-location. Geo-coordinate truncation
method will enable us to adjust the location precision
level, i.e., by removing last digits and rounding the lo-
cation accuracy from street to city level or even more
general. Generally, for any third party reuse, ser-
vice providers or data collectors assure in the EULA
that this method will be applied on the collected data
since the truncated coordinates increase the ambiguity
level(Aad and Niemi, 2010). On contrary, LP-Caché
applies this method on the user device with user’s per-
mission in order to minimise the user’s sensitive data
collection and privacy concerns.

Geo-coordinates Transformation. For privacy
preservation, position transformation functions such
as scaling, rotation and translation have been used

Table 1: WiFi measurement dataset summary.

Total number of scans 25480
Distinct private locations selected 34
Total APs detected 486
Average APs detected 396

by location data distributors or anonymisers (Lin
et al., 2008; Wernke et al., 2014). In LP-Caché,
we use geo-coordinate transformation on the device
to obfuscate user’s private locations. Our service
represents the geo-coordinate transformation using
scaling and rotation, and denotes its parameters as a
tuple 〈s, θ, (l, lg)〉, where s is the scaling factor, θ is
the rotation angle, and (l, lg) are the original coordi-
nates. It applies Equation 2 to generate transformed
or obfuscated geo-cordinates (l′, l′g), where angle θ is
randomly generated.

l′ = θ(s.l)
l′g = θ(s.lg)

(2)

6 FEASIBILITY AND USABILITY
ANALYSIS

LP-Caché’s actual performance evaluation depends
on the location-based apps performance. In this sec-
tion, we analise the WiFi AP data availability and con-
sistency to measure feasibility of WiFi fingerprinting
method to be included in LP-Caché’s implementation.

6.1 WiFi APs Availability and
Consistency

Experimental Set-up. The experimental set-up to
measure WiFi AP data availability and consistency
consists of three steps:

1. Data collection. We collected beacons from
fixed WiFi APs using WiEye (WiEye, 2016) and
Network Info II (NetworkInfoIi, 2016) apps
on Android smartphones that have 802.11a/b/g/n
radio feature so they can operate in both 2.4GHz
and 5GHz bands at 34 different private places for
a period of one month.

2. Location categorisation. App users are more
concern about sharing their private loca-
tions(Almuhimedi et al., 2015); therefore, in our
analysis, we selected three distinct categorise of
private places: 1. Home (i.e., residential place),
2. Work (i.e., commercial place), and 3. Arbitrary
(i.e., any frequently visited place) to determine
categorical distribution pattern of WiFi APs.
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Figure 6: Measured density of detected WiFi APs at private
places.

3. Data analysis. We collected and statistically anal-
ysed the scanned WiFi AP data. Table 1 compiles
the included sample size; whereas, Figure 6 shows
the relative difference between WiFi APs density,
and Figure 7 depicts the relative average accuracy
distribution pattern of detected WiFi APs for each
category.

Observation. For each category of private places,
experiments revealed the following:

Home The results demonstrate that Wifi APs are
fixed and frequent and the difference between
number of constant beacons and minimum num-
ber of similar beacons is comparatively less,
and therefore, it achieved highest accuracy rate.
Moreover, the ratio of SSID to BSSID is 1:1, i.e.,
1 SSID (abc) has 1 BSSID (a0:12:b3:c4:56:78),
this makes fingerprints distinct so improving the
location detection performance.

Work This category has many fixed WiFi APs but
with fluctuating signal strengths, and therefore,
the sequence of available APs changes. However,
the observed ratio of SSID to BSSID is many to
one, i.e., 1 SSID has many BSSIDs; therefore, in
this case, SSIDs along with BSSIDs can be used
as unique identifiers to create a fingerprint to de-
tect a private place dynamically.

Arbitrary In this category, the data collector could
select any frequently visited locations, e.g., gym,
shop, or friend’s home. Figure 7 demonstrates that
the outcome of this category is related to the other
two categories, it either shows results similar to
home or work.

The range of average accuracy for all the three cat-
egories of private places falls between 74% to 96%.
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Figure 7: Relative average accuracy distribution pattern of
detected WiFi APs at private places.

Hence, it is evident that smartphones regularly de-
tect similar beacons at frequently visited place, for
place detection at least one beacon should match with
the stored fingerprints. Thus, the results demonstrates
that WiFi fingerprinting can be effectively used as pri-
vate place detection source in LP-Caché. Nonethe-
less, to achieve efficient capability for place recog-
nition via beacons place discovering algorithm like
(Kim et al., 2009) can be implemented (in future
work).

6.2 Ongoing Evaluation of Caching
Method

Following WiFi data availability and consistency
analysis, LP-Caché’s feasibility evaluation will be ex-
tended to analyse how frequently cache needs to be
updated and what are the trade-offs of cache update
frequency vs location privacy and accuracy in order
to measure further computational and communication
overheads. We also intent to conduct a thorough user
study to determine comfortability of the users to ac-
commodate LP-Caché’s functionality. Moreover, we
plan to consider the fundamental caching based tech-
nical challenges such as cache hits and cache misses,
data freshness, data consistency, and estimated band-
width requirements in the further development and
implementation of LP-Caché paying special attention
to storage-efficient caching.

7 CONCLUSIONS

Secure gathering and transfer of location data via
smart mobile devices while at the same time preserv-
ing users’ privacy are concerning needs. Research and
industry communities are making joint efforts to iden-
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tify the requirements for LBS applications in future
large scale scenarios and addressing end user con-
cerns. Studies based on cryptographic schemes and
PETs have been tested on service provider’s data col-
lection servers but neither are implemented on the
mobile platform, nor on the actual app operation. In
addition, the lack of usability is one of the factors that
hinders the adoption of existing privacy-aware solu-
tions. We presented detailed analysis of the current
location computation process and proposed a novel
privacy-aware model. Both the end users and ser-
vice providers benefits from LP-Caché since the on-
device caching technique works on the minimisation
of the user’s private location collection process. With
a personalised permission mechanism, users can man-
age each app and private place distinctly. Immedi-
ate future work focuses on the implementation of the
model to measure the feasibility, usability and effi-
ciency of our approach while interacting with differ-
ent location-based apps.
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mobile devices: Überveillance stalks the streets. Com-
puter Law & Security Review, 29(3):216–228.

Muslukhov, I., Boshmaf, Y., Kuo, C., Lester, J., and
Beznosov, K. (2012). Understanding users’ require-
ments for data protection in smartphones. In ICDE
Workshop, IEEE Int. Conf. on Secure Data Manage-
ment on Smartphones and Mobiles, pages 228–235.
IEEE.

Navizon (2016). http://www.navizon.com.
NetworkInfoIi (2016). http://play.google.com/store/apps/.

LP-Cache: Privacy-aware Cache Model for Location-based Apps

193



Niu, B., Li, Q., Zhu, X., Cao, G., and Li, H. (2015). En-
hancing Privacy through Caching in Location-Based
Services. In Proc. of IEEE INFOCOM.

Patel, A. and Palomar, E. (2014). Privacy Preservation in
Location-Based Mobile Applications: Research Di-
rections. In Procs. of IEEE Int. Conf. on Availabil-
ity, Reliability and Security (ARES), pages 227–233.
IEEE.

Pontes, T., Vasconcelos, M., Almeida, J., Kumaraguru, P.,
and Almeida, V. (2012). We know where you live:
Privacy characterization of foursquare behavior. In
Procs. of ACM Conf. on Ubiquitous Computing, pages
898–905. ACM.

Shklovski, I., Mainwaring, S. D., Skúladóttir, H. H., and
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