
An Approach to Add Multi-tenancy to Existing Applications

Uwe Hohenstein and Preeti Koka
Siemens AG, Corporate Technology, Otto-Hahn-Ring 6, D-81730 Muenchen, Germany

Keywords: Multi-tenancy, Cloud Migration, Aspect-Orientation, AspectJ, Industrial Application, Case Study.

Abstract: Multi-tenancy, i.e., sharing resources amongst several tenants, is a key element to make SaaS profitable by
saving resources and operational costs. This paper considers multi-tenancy in the context of Cloud migra-
tion and presents an approach to let existing applications become multi-tenant. The novelty of this approach
is that no reengineering and modification of the application’s source code is required. Adding some new
components is sufficient to achieve tenant management, authentication, tenant isolation, and also customiza-
tion. Using a case study, the paper demonstrates in detail how to benefit from aspect-orientation, particular-
ly the AspectJ language, in this respect and concludes with experiences.

1 INTRODUCTION

According to (Mell and Grance, 2011), Cloud com-
puting is a model for enabling convenient, on-
demand network access to a shared pool of configu-
rable computing resources that can rapidly be deliv-
ered with a minimal management effort or service
provider interaction.

Particularly, software is more and more becom-
ing an on-demand service drawn from the Cloud.
The so-called Software-as-a-Service (SaaS) is a
delivery model that enables customers, the so-called
tenants, to lease services without a local installation
(Lee and Choi, 2012). Tenants pay for what they use
to what extent without buying software licenses.

While a traditional application service provider
typically manages one dedicated application instance
per tenant, SaaS providers usually adopt a multi-
tenant architecture (Chong and Carraro, 2006). Mul-
ti-tenancy is a software architecture principle that
lets several tenants share a common infrastructure.
This saves operational cost due to an efficient utili-
zation of hardware and software resources and im-
proved ease of maintenance (Bezemer and Zaidman,
2010). A well-economical SaaS application has to
pursue a multi-tenant architecture.

In order to benefit from features such as elastici-
ty and pay-as-you-go, businesses want to move
applications into the cloud. One challenge for indus-
try is to convert legacy applications into multi-tenant
SaaS without major code changes and high effort
(Binz et al., 2011), thus preserving investments

while entering SaaS business.
This paper takes a practical view on Cloud mi-

gration and presents a low-effort approach for offer-
ing legacy applications as multi-tenant SaaS in a
Cloud – without refactoring the source code. To
explore our idea, we use an existing industrial appli-
cation that was originally not developed for a multi-
tenant environment and serves users of exactly one
tenant. Currently, each tenant has an application
deployed on a Tomcat server and an Oracle database
on premise.

Several authors such as (Walraven et al., 2011)
or (Guo et al., 2007) discuss multi-tenant architec-
tures with pros and cons according to what is shared
by the tenants: the topmost web frontend, middle tier
application servers, the underlying database. Others,
e.g., (Andrikopoulos et al., 2013) define further
degrees of sharing and categorize other migration
types to cloud-enable applications. Striving for mul-
ti-tenancy, the SaaS provider has to balance between
easy implementation and saving operational costs by
efficient resource utilization.

The simplest approach to make our application
multi-tenant with lowest development effort is cer-
tainly to let each tenant obtain a VM with Tomcat,
the application, and Oracle. (Krebs et al., 2012) call
this a virtualization approach. The ease of this ap-
proach is paid by well-known disadvantages such as
high consumption of resources and high costs espe-
cially in public clouds. Moreover, each tenant re-
quires an Oracle license or additional costs for using
Oracle as a Cloud service.

Hohenstein, U. and Koka, P.
An Approach to Add Multi-tenancy to Existing Applications.
DOI: 10.5220/0005973800390049
In Proceedings of the 11th International Joint Conference on Software Technologies (ICSOFT 2016) - Volume 2: ICSOFT-PT, pages 39-49
ISBN: 978-989-758-194-6
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

39

Fully efficient multi-tenancy (Chong and Carra-
ro, 2006), at the other edge of the scale, allows for
sharing all resources, one Tomcat, one application,
and one Oracle server among all tenants. Setting up
a fully multi-tenant application requires a significant
re-engineering of applications, and thus causes high
development costs (Momm and Krebs, 2011).

While serving several tenants by sharing one in-
stance, SaaS applications have to be customizable or
configurable to fulfill the varying functional re-
quirements of individual tenants (Krebs et al., 2012).
Tenant customization is recognized as one important
requirement and challenge by (Guo et al., 2007),
(Bezemer et al., 2010), and others. (Lee and Choi,
2012) state that it is not trivial to adapt the business
logic and data to the requirements of the different
tenants. Most work on customization focuses on
product-line approaches (Pohl et al., 2005) to offer
variability. Using aspect-oriented programming
(AOP) is sometimes proposed to achieve configura-
bility, e.g., by (Shahin et al., 2013) and (Wang and
Zheng, 2010).

In this paper, we also apply AOP, more precisely
the AspectJ language (Laddad, 2009), to migrate
existing applications into fully multi-tenant SaaS
applications. We elaborate upon how to benefit from
AspectJ in this context and show that it is possible to
have a simple and cheap mechanism by only adding
components to existing applications – without any
further reengineering. Using a real existing industrial
application, we demonstrate the major advantages of
our migration approach. In a nutshell, it is possible
to achieve tenant isolation, to modify existing be-
havior in a tenant-specific manner, to introduce new
services for specific tenants, and to monitor requests
per tenant for billing purposes.

Enabling such multi-tenancy facets is achieved
without explicitly touching source code or building a
new application; only a restart of Tomcat is required
after having deployed some additional components.

The motivation for our work is manifold. The
approach is a first step to let existing applications
become Cloud ready and to enable entering SaaS
business fast and easily. Such a first trial can explore
SaaS business opportunities and to expand business
to a larger customer base with low expenses. Being
easily applicable to other applications, our solution
reduces time-to-market and saves development ef-
fort. And finally, free demo versions of existing
applications can be made publicly available in a
Cloud as a teaser, maybe with reduced functionality.
Since no profit can be directly made in that case, we
benefit from small investments in development.

The remainder of this paper is structured as fol-

lows. Section 2 presents related research and deduc-
es the necessity for this work.

Before discussing the migration approach, we
give in Section 3 a short introduction into the aspect-
oriented AspectJ language, as far as it is necessary to
understand how we applied AspectJ.

We used a concrete industrial project to prove ef-
fectiveness. Section 4 introduces the application in
its original single-tenant form and presents our ap-
proach to migrate to a multi-tenant Cloud applica-
tion with low programming effort in detail. We dis-
cuss the components that implement important fac-
ets of multi-tenancy such as tenant isolation and
customization.

In Section 5, we evaluate the AspectJ approach
and discuss the lessons learned. Finally, the conclu-
sions summarize the discussion and presents future
ideas.

2 RELATED WORK

Several papers are related to our work in two sepa-
rate directions: Multi-tenancy and cloud migration.

The possible variants of multi-tenancy are de-
scribed, among others, by (Chong et al., 2006) and
(Kwok et al., 2008). (Momm and Krebs, 2011) con-
sider approaches to reduce resource consumption
and discuss some cost aspects of sharing. Based on
the number of tenants, the number of users per ten-
ant, and the amount of data per tenant, (Wang et al.,
2008) make recommendations on the best multi-
tenant variant to use.

(Guo et al., 2007) discuss implementation princi-
ples for application-level multi-tenancy, exploring
different approaches to improve isolation of security,
performance, availability, and administration.

(Fehling et al., 2010) come up with prospects for
the optimization of multi-tenancy by distributing the
tenants with respect to Quality of Service.

An architectural approach for reengineering appli-
cations to enable multi-tenancy in software services is
defined by (Bezemer et al., 2010). Their multi-
tenancy reengineering pattern requires a multi-tenant
database, tenant-specific authentication, and configu-
ration. The discussion takes into multi-tenancy reen-
gineering account workflow and UI configuration.
The reengineering pattern is applied to an existing
single-tenant application. Because of a well-designed
and layered architecture, the effort was relatively
little. Furthermore, (Bezemer and Zaidman, 2010)
manually transform the ScrewTurn wiki case to a
multi-tenant application and encounter performance
isolation of tenants, scalability issues for tenants from

ICSOFT-PT 2016 - 11th International Conference on Software Paradigm Trends

40

different continents, security, data protection, configu-
rability, and data isolation as the core challenges,
however, not solving all these issues. The paper also
stresses on another cost aspect for multi-tenant appli-
cations: The recurrence of maintenance tasks (e.g.,
patches or updates) raises operating cost too.

In contrast to this general work on strategies and
their impact on resource consumption, we tackle the
problem of adding multi-tenancy in a smart way.

A lot of research considers tenant-specific cus-
tomizations as an important requirement. Case stud-
ies such as (Kwok et al., 2008) stress on configura-
bility of multi-tenant applications. (Tsai et al., 2010)
discuss the elements of an application that need to be
customized: Graphical user interface, workflow
(business logic), service selection and configuration,
and data.

According to (Shahin et al., 2013), customization
could be performed in two ways. In a source-code
manner, SaaS applications are customized by inte-
grating new tenant-specific source code. (Zhou et
al., 2011) and (Kong et al., 2010) pursue such an
approach. Despite providing tenants with flexibility
in the customization process, this approach suffers
from several drawbacks. The tenant must be aware
of the implementation details of the SaaS applica-
tion. Next, allowing tenants to integrate source code
may violate the security regulations of the applica-
tion. And finally, the process of software upgrades
becomes more complicated for the SaaS provider,
since all the tenant-specific extensions have to be
retained.

In an alternative composition-based approach,
SaaS applications are customized by composing
variants, selected from a provided set of compo-
nents. The current state of practice in SaaS devel-
opment is that configuration of pre-defined exten-
sions is preferred over source code based approach-
es, which is considered too complex as pointed out
in (Walraven et al., 2011). One prominent approach
is providing an application template with unspeci-
fied parts, often called customization points (Lizhen
et al., 2010), which can be configured by selecting
predefined components from a provided set (Moens
et al., 2012); (Park et al., 2011); (Li et al., 2012).

(Pohl et al., 2005) point out four key concerns to
be addressed: modelling customization points and
variations, describing relationships among varia-
tions, validating customizations performed by ten-
ants, and dis-/associating variations to/from custom-
ization points during runtime.

(Shahin et al., 2013) deal with all these concerns.
Illustrated by a Travel Agency example, they pro-
pose the Orthogonal Variability Modeling (OVM) to

model customization points and variations and to
describe the relationships among variations. A
Metagraph-based algorithm validates tenants’ cus-
tomizations. An aspect-oriented extension of the
Business Process Execution Language (BPEL) is
used to associate and disassociate variations to/from
customization points at run-time.

(Lizhen et al., 2010) deal with three of the above
concerns by using Metagraphs to model customiza-
tion points, variants, and their relationships. They
also propose an algorithm to validate customizations
made by tenants.

(Tsai et al., 2010) and (Tsai and Sun, 2013) han-
dle only the modeling of customization points and
variants using an ontology-based customization
framework with OVM. To avoid unpredictable cus-
tomizations, tenants are guided through the customi-
zation process.

(Walraven et al., 2011) consider middleware
component models as inflexible for offering soft-
ware variations to different tenants. They use
Google AppEngine to build a multi-tenancy support
layer that combines dependency injection with mid-
dleware support. Using an online booking scenario,
they evaluate operational expenses and flexibility.
The application requires dedicated customization
points for applying customization.

(Wang and Zheng, 2010) apply the more general
AOP in a case study, but still have to prepare the
software architecture accordingly.

All this research starts from green-field or re-
quires at least a preparation of an existing applica-
tion with customization points, while our approach
leaves the original application as it is.

Another branch of related research considers mi-
grating legacy applications into the cloud as a chal-
lenge. There is a lot of work on checklists and meth-
odologies to perform such migrations. The project
ARTIST (Orue-Echevarria et al., 2014), e.g., pro-
vides methods, techniques, and tools to guide com-
panies to move applications into the cloud. A meth-
odology supports the complex, time-consuming, and
expensive transition with three phases: pre-
migration, migration, and post-migration.

Vendor lock-in is seen by (Binz et al., 2011) as a
major difficulty for migrating existing applications
into and between different clouds. The CMotion
framework models entities and their dependencies to
support migration, but requires the implementation
of adapters.

(Khajeh-Hosseini et al., 2012) present a frame-
work to support decision makers. Decisions to mi-
grate existing systems to the cloud can be compli-
cated as the benefits, risks, and costs of using the

An Approach to Add Multi-tenancy to Existing Applications

41

Cloud are complex and should also consider organi-
zational and socio-technical factors. Their Cloud
Adoption Toolkit offers a collection of tools for
decision support and helps to identify those concerns
and match them to appropriate technologies. A cost
modeling tool is presented in detail with a case
study; the tool can be used to compare the cost of
different cloud providers and deployment options.

To our knowledge, there is no work combining
an approach to migrate applications to the Cloud
with adding multi-tenancy for a real application by
avoiding major code changes.

3 ASPECT-ORIENTED
PROGRAMMING IN AspectJ

Aspect-orientation (AO) is a paradigm that helps to
develop software in a modular manner (Kiczales et
al., 1997). AO provides systematic means for effec-
tive modularization of crosscutting concerns
(CCCs), i.e., those functionalities that are typically
spread across several places in the source code.
CCCs often lead to lower programming productivity,
poor quality and traceability, and lower degree of
code reuse (Elrad, 2001).

AO has brought up new languages with special
concepts to modularize CCCs and to avoid the well-
known symptoms of non-modularization such as
code tangling and code scattering.

The AspectJ language (Laddad, 2009) essentially
extends Java with aspects. An aspect can change the
dynamic structure of a program by intercepting cer-
tain points of the program flow, called join points.
Examples of join points are method and constructor
calls or executions, field accesses, and exceptions.
Join points are syntactically specified by means of
pointcuts. Pointcuts identify join points in the flow
by means of a signature expression. Advices specify
certain actions to be taken before and/or after the
join points. The following is an example for a simple
AspectJ aspect:

@Aspect class MyAspect {
 @Before(“execution(* MyClass*.get*(..))”)
 public void myPc() {
 do something (Java) before myPc join points }
}

An annotation @Aspect lets the Java class MyAspect
become an aspect. A method annotated with
@Before, @After, @Around is an advice that is exe-
cuted before, after or around join points. Those an-
notations specify pointcuts as a string. MyAspect

possesses a before advice that adds logic before
executing those methods that are captured by the

pointcut myPc: Any execution of any method starting
with get, having any parameters and any return type,
belonging to a class starting with MyClass. Wildcards
can be used to determine several methods of several
classes. A star “*” in names denotes any character
sequence. “*”as a type stands for any type. Parame-
ter types can be fixed or left open (..).

This is pure Java code that runs with any Java
compiler. So-called load-time weaving (LTW) let
the advices be woven into the code whenever a class
is loaded by the class loader. In addition to aspect
annotations, AspectJ offers a language of its own (in
fact, an extension of Java), however, requiring an
AspectJ compiler. But a compiler changes the build
process, which is often not desired, so for us. We do
not want to re-compile the existing application.

4 ADDING MULTI-TENANCY TO
EXISTING APPLICATIONS

4.1 Application Case

Our case study considers an existing Java applica-
tion, a REST service in the travel management do-
main with the following characteristics.
 The application is currently shipped as a single-

tenant application to customers and deployed in
Tomcat at the customer site.

 Each customer obtains a full application stack of
its own, consisting of Tomcat, the application,
and an Oracle database (DB) server at the
backend for storing data, all running on-premise.

The goal is to deploy this application in a public
cloud while sharing Tomcat, the application and the
database amongst several tenants.

Tomcat offers several forms of user authentica-
tion: form-based (for Web application), basic au-
thentication (for REST services) etc. If authentica-
tion is enabled, user and password are requested for
accessing an application. User, passwords, and user
roles are maintained in a configurable “user/roles
store” like in an XML file, a relational DB, a JDNI
store etc. During authentication, the Tomcat con-
tainer checks for access control privileges against
that store. In addition, the application can restrict
functionality to users with specific roles. Our appli-
cation uses the basic authentication of Tomcat.

An Oracle database possesses a dedicated sche-
ma Auth(entication) that contains the user/roles
tables. The connect string with a specific us-
er/password is part of the Tomcat configuration file.

Oracle has very specific terms that should be un-

ICSOFT-PT 2016 - 11th International Conference on Software Paradigm Trends

42

derstood. Any access to a database has to be granted
to users. Each user has a password to login and an
associated DB schema with the same name. To ac-
cess data of another user, tables can be prefixed by a
schema name. However, a user has to be explicitly
granted access by the owner, i.e., schemas are isolat-
ed from each other by default. Each user can create
the same set of tables with the same statement – in
his schema. Thus, the concept of a tenant “database”
maps to a user/schema within one Oracle server. In
the following, we use the notion schema.table to
refer to a table in a specific schema.

A database instance is the Oracle notion of a DB
server with exactly one database being associated. A
JDBC driver connects to that database.

Details about the application are subject to con-
fidentiality and irrelevant for the message of this
paper.

4.2 Tenant and User Management

The major concern of this paper is to let an existing
Tomcat application become multi-tenant, thus shar-
ing a Tomcat and the Oracle database instance. As
pointed out in (Bezemer et al., 2010), the prerequi-
site for multi-tenancy is an appropriate tenant/user
management supporting the following workflow:
1. There must be a possibility to let tenants register

for using the application, if they are interested.
2. After having clarified the payment details be-

tween the SaaS provider and the tenant and set
up a contract, a SaaS administrator should be
able to acknowledge or deny the tenant for using
the application. To this end, we set up a new or-
ganizational Tomcat role SaaS which allows the
administrator to manage SaaS. After acknowl-
edgement, each tenant obtains an Oracle user and
schema, i.e., a DB of its own thereby keeping the
tenant’s application data isolated.

3. The SaaS provider usually delegates the tasks of
creating and maintaining users to each tenant.
Any acknowledged tenant obtains a TAdmin role
that allows registering his users for the applica-
tion by specifying credentials for authentication.

4. The tenant’s users obtain a role User and can log
in to the application once they are authenticated.
This principle is called a centralized authentica-
tion system in (Chong and Carraro, 2006).

Thus, we have the following roles in Tomcat giving
privileges to the various types of users: the adminis-
trator for SaaS applications (SaaS), the administrator
for a tenant who is enabled to register tenant’s users
(TAdmin), and the user of the application (User); in-

deed, there may be several with specific privileges.
For the ease of discussion, we collapse them to one.

4.3 Initial DB Setup for Multi-tenancy

We assume a database schema Appl in the original
application to keep the application’s data (indeed,
there might be several). Another schema, referred to
as Auth, contains the tables Users and User_Roles to
keep Tomcat users with their roles. Tomcat accesses
these tables for authentication to check the password
and roles. This means that only Tomcat users in the
Users table are allowed to access the application,
provided they have the requested role.

First, we extend the Users table in the Auth
schema with a column tenant to keep the association
between a user and the tenant s/he belongs to.

We add a new Oracle user/schema Admin exclu-
sively used by the SaaS admin to keep information
about tenants. A new table Tenants is created in this
schema to keep registered tenants with their admin-
istrators. We also add a UserMonitoring table to the
schema for monitoring purposes (cf. 4.7).

A new Tomcat user SaaS with a role SaaS is add-
ed to the Users and User_Roles table. This allows
him to use the new tenant administration (cf. 4.4).

Finally, we need an SQL script createApplica‐
tionTables.sql that can be executed in any new
tenant schema to add the application’s tables.

These steps can be done by means of an SQL
script, without affecting the existing application.
Other Tomcat authentication schemes require similar
steps, e.g., operating on XML files.

4.4 Tenant Administration Service

We need new services for administration purposes,
especially for registering tenants and users, and new
functionality according to the workflow in Subsec-
tion 4.2. These services can simply be deployed as a
new application in Tomcat in order to become im-
mediately effective. There is again no impact on the
existing application source code. For instance, a
REST server can offer the following major services
supporting the workflow.

(1) POST TenantService allows tenants to register
for the application. The payload specifies a name
Tenanti, an administrator name, and a password,
both being used for Tomcat authentication. This
information is stored in the table Admin.Tenants
(name, admin, password, acknowledged, ...). Ac-
cess to this service is granted to everyone.

(2) PUT TenantService/Tenants/{Tenanti} with
a body {“acknowledge”:Yes|No} can only be used by

An Approach to Add Multi-tenancy to Existing Applications

43

the SaaS administrator to enable or disable access
for Tenanti. If a TenantA is acknowledged by the
administrator, then acknowledged=1 is set for
TenantA in the Admin.Tenants table. The record for
TenantA’s admin is taken from Admin.Tenants and
added to the Auth.Users and Auth.User_Roles tables,
assigning a Tomcat role TAdmin. Next, a new schema
TenantA is created with all the application tables for
exclusively keeping application data for TenantA,
executing the SQL script createApplication‐

Tables.sql.
(3) POST TenantService/Tenants/{Tenanti} cre-

ates a user for Tenanti to make the user known to
the application. Using the payload, a user name and
a password are added to the Auth.Users table for
Tomcat authentication giving the users a User role;
the association of a user to his tenant is stored in the
tenant column of the Auth.Users table. This service
is only accessible by the registered tenant admin,
i.e., the role TAdmin is checked by Tomcat authenti-
cation. If the administrator AdminA for TenantA
registers two users UserA1 and UserA2, the Users
and User_Roles tables finally contain the contents
shown in Table 1; an explanation describes when
each record has been added.

Table 1: Database contents for authentication.

Users user_name user_pass tenant

 … ex. users … NULL

 SaaS SaaS NULL in 4.3
 AdminA PwA TenantA Step 2
 UserA1 PwA1 TenantA Step 3
 UserA2 PwA2 TenantA Step 3

User_Roles user_name role_name
 … ex. users … ex. roles

 SaaS SaaS in 4.3
 AdminA TAdmin Step 2
 UserA1 User Step 3
 UserA2 User Step 3

(4) UserA1 and UserA2, registered for TenantA,
are now able to authenticate. They are allowed to
use the application with a Tomcat User role.

4.5 Making an Existing Application
Become Tenant-aware

Tenants and their users are now known to the
Tomcat application. Indeed, all these users are al-
lowed to access the application since Tomcat au-
thenticates against the Auth.User/UserRoles tables.
Moreover, the application still uses the existing
tables in the Appl schema for all users. Hence, the
overall effect is as if the application has new users,

but without any effective data isolation for tenants.
However, the application must enforce measures

to ensure isolation between different tenants (Guo et
al., 2007). To achieve data isolation, a user’s data
must be stored in the tenant’s schema (i.e., data-
base). This requires determining the tenant for a
logged-in user to use the correct schema; any access
must be directed to that one. Here, AspectJ comes
into play to intercept every authentication: the user
is determined and the corresponding Tenanti for the
user is derived in such a way that the original appli-
cation is not explicitly modified, i.e., compiled
and/or rebuilt. This is the novelty in our approach.

The following code sketches an AspectJ @Around
advice which changes the behavior accordingly:

@Aspect public class MTE {
 @Around("execution(*
 com.siemens.app.ExistingAppl.svc*(..)
 && !within(com.siemens.app.aspects.MTE)")
 public Object interceptServices
 (final ProceedingJoinPoint jp) {

(1) determine user from HTTPRequest and
 derive role & tenant (from Users table);

(2) store user/tenant/role for later usage;
 return jp.proceed(jp.getArgs()); /* call
 original logic of svc* method */
 }
}

We use Java with AspectJ annotations and LTW
instead of the AspectJ language and compiler. The
annotation @Aspect makes a Java class MTE (Mul‐

titenancyEnabler) be an aspect. The annotation
@Around defines an advice to be executed at join
points. @Around includes a pointcut as a String to
determine the relevant join points: Any execution of
methods starting with svc... belonging to the basic
REST service class ExistingAppl returning a value
of any type (*) with any parameters (..). Instead of
wildcards, we could also specify several method
signatures individually and combine them with ‘||’.

The @Around method interceptServices imple-
ments the logic to be executed at each join point.
This advice traps the execution of svc... methods
and replaces the behavior with its body. The parame-
ter jp of type ProceedingJoinPoint serves two pur-
poses. First, it is used to execute the original logic at
the join points by means of jp.proceed(). Further-
more, jp gives access to the context of invocation
such as the parameter values (jp.getArgs()) and the
signature of the join point (jp.getSignature()), i.e.,
the concrete svc... method to be executed.

Since the method is implicitly invoked in our as-
pect inside by jp.proceed(), we must exclude this
invocation in order to avoid an endless loop. That is
the reason why !within(MTE) is added in the pointcut

ICSOFT-PT 2016 - 11th International Conference on Software Paradigm Trends

44

to not intercept any invocation that occurs within the
aspect itself.

Only the pointcut "execution(*

com.siemens.app. ExistingAppl.svc*(..)" of
interceptServices, which specifies what methods or
services to intercept, depends on the application
code, here the class ExistingAppl that implements
the REST service.

All of this looks very straightforward, but with
one challenge: how to get the user name from
Tomcat authentication (cf. (1) in the code above)?

Usually, there is a HttpServletRequest req,
which can be used to derive authentication infor-
mation, e.g., by req.getUserPrincipal().getName().
Such a variable declaration can be annotated with
@Context in a class; the value is then injected by the
Tomcat container. But there are also other ways that
could have been used in the original application,
e.g., passing an additional @Context HttpS‐

ervletRequest parameter to a service method. Un-
fortunately, it is unknown what mechanism has been
used, and moreover, even a global variable req is
usually private and not accessible from an external
aspect.

We noticed that Tomcat invokes for authentica-
tion in any case a _handleRequest method of a class
WebApplicationImpl. A @Before advice can pick up
this information in the MTE aspect, to give access to
the ServletRequest and the user name:

@Before("execution
 (*com.sun.jersey.server.impl.application
 .WebApplicationImpl._handleRequest(..))
 && this(w)
 && !within(com.siemens.app.aspects.MTE)")
public void getUserInfo(JoinPoint jp,
 WebApplicationImpl w) {
 String user = w.getThreadLocalHttpContext()
 .getRequest().getUserPrincipal().getName();
 determine role and tenant for user;
}

Please note AspectJ intercepts JARs, even of 3rd
party tools; the unavailability of the source code
does not hinder AspectJ to intercept Tomcat!

The clause this(w) binds the variable w to the
called object of type WebApplicationImpl. The meth-
od getThreadLocalHttpContext() is used to get the
user who has logged in. The tenant, the user belongs
to, can be determined by using the Auth.Users table.

But now the next challenge (2) arises: How can
the advice interceptServices access this infor-
mation? This is possible because the aspect can be
used for sharing information. The advice getUserIn‐
fo can store the user information in a variable within
the MTE aspect. The advice interceptServices simply
uses this information. That is, the user information is

shared amongst several advices in the sense of Lad-
dad’s wormhole pattern (Laddad, 2009).

This advice does not depend on the application
but only on Tomcat. Any other application server
will require slight modifications of this advice.

Next, for the purpose of tenant isolation, any
connection to the database requested from the appli-
cation must be directed to the tenant schema. This is
achieved by another advice within MTE, e.g.:

@Around("call(java.sql.Connection
 java.sql.DriverManager.getConnection(...))
 && !within(com.siemens.app.aspects.MTE)")
public Object interceptGetConnection
 (final ProceedingJoinPoint jp) {
 Object[] args = jp.getArgs();
 get the user and tenant (stored in MTE);
 Object conn = (Connection) jp.proceed(args);
 // original logic gets connection
 Statement stmt = conn.createStatement();
 // switch to tenant’s database/schema:
 stmt.execute("SET SCHEMA '" + tenant + "'");
 return conn;
}

In case of Oracle, we have to set the tenant’s schema
for any successive DB operation. Indeed, an @After
advice would have been sufficient here. However,
other databases have different concepts to use such
as an explicit database name in the URL. This par-
tially requires to modify the getConnection parame-
ters (obtained by jp.getArgs()) in the advice accord-
ingly before calling the original logic.

We can also implement other strategies such as
sharing the original tables between several tenants in
this advice. Obviously, this advice depends on the
database system and the isolation strategy, but not
on the application.

4.6 Customization

According to (Shahin et al., 2013) and others, a
tenant-specific customization of an application is a
major challenge of multi-tenancy. Once the tenant is
known, AspectJ enables the SaaS provider to give an
application a tenant-specific behavior without
changing the existing source code.

From an implementation point of view, each ten-
ant-specific behavior requires one aspect class. Such
a class has to implement an interface GenericModifi‐
er which demands for a method getTenantName(). A
class TenantAModifier implements GenericModifier
could define an aspect for TenantA. Using the get‐
TenantName method, an advice can compare the call-
ing tenant with the expected TenantA and modify
the logic only for that tenant:

if (nameOfCallingTenant.equals(getTenantName())
{ … modify logic …

An Approach to Add Multi-tenancy to Existing Applications

45

} else { // don’t modify behavior
 return jp.proceed(jp.getArgs()); // orig logic
}

We first show how to add new features to a specific
tenant, offering additional functionality that is not
part of the original application, e.g., adding new
REST services. Please note this is not possible by
simply adding the same @Path to another class in a
new WAR; Tomcat will complain. However, static
introduction in AspectJ helps here.

@Aspect public class TenantAModifier
 implements GenericModifier {
 @DeclareParents(defaultImpl=com.siemens.
 newfunc.NewFunctionality.class,
 value="com.siemens.app.ExistingAppl")
 public com.siemens.nf.NewFunctionalityIF mix;
}

@DeclareParents adds a new superclass NewFunction‐
ality of interface NewFunctionalityIF on top of
those classes that are specified by the value clause,
here the single class ExistingAppl, which imple-
ments the REST service. The new functionality, e.g.,
a new GET service /newFunc, can then be imple-
mented in the class NewFunctionality.

@Path("newFunc")
public class NewFunctionality
 implements NewFunctionalityIF {
 @GET public Response svcNewGetOperation(...) {
 ... }
}

The new service will be available in the Ex‐

istingAppl although its definition is done in another
class. The interface NewFunctionalityIF has only
syntactical reasons to enable a cast from Ex‐

istingAppl to NewFunctionality, its “new” super-
class. The variable mix is of no further importance.

Existing features can be disabled by putting an
advice around a pointcut that catches the method,
then ignoring the original call by omitting
jp.proceed(). An empty result, a result masked out
with stars ‘*’, or an HTTP code 403 (FORBIDDEN)
in case of REST services can also be returned.

Similarly, an @Around advice can modify the ex-
isting behavior, for example extending or changing
information to be returned, removing some records
or fields from a result etc. In any case, the original
logic and result can be used for modifications.

One important question is what has to be pre-
pared by the application in order to allow intercepted
code at the right place. The power of what can be
achieved depends on the pointcut syntax (specifying
what to intercept, i.e., where to replace logic) and
the context information available at those join
points. Intercepting methods is sufficient for REST
services and always feasible. Anyway, the applica-

tion code has to be known to find appropriate join
points (although the aspect itself is satisfied with
byte code and does not require the source code).
This is in contrast to other customization approaches
that require prepared customization points, where to
plug in tenant logic, thus violating our goal to leave
the original application untouched.

4.7 Monitoring

The next point is related to economical concerns of
SaaS providers. On the one hand, IaaS/PaaS provid-
ers define cost models; a SaaS provider has to pay
for running an application in a public cloud. On the
other hand, a SaaS provider has to define a billing
model to charge his tenants for using the application.
Both models have to be balanced in such a way that
a SaaS provider is able to make profit. The invest-
ment covers both the operational costs in a Cloud as
well as the costs for developing an application or
SaaS-enabling it (Momm and Krebs, 2011) and later
maintenance (Bezemer et al., 2010).

Most popular public cloud billing models are
post-paid models where the tenant receives a bill and
pays for usage periodically. This requires monitoring
and aggregating the consumption costs of each ten-
ant (Ruiz-Agundez et al., 2011). A SaaS provider
can also charge his tenants by a fixed rate, e.g., per
month or based upon other factors such as the num-
ber of users (registered or in parallel). Here, it is
important to predict the costs a tenant’s usage will
produce. Moreover, exhaustive usage by one tenant
could reduce the SaaS providers’ revenue.

No matter what billing model would be applied,
it is necessary to monitor and log the activities of all
tenants’ users and the costs they produce.

(Schwanengel and Hohenstein, 2013) discuss the
challenges of calculating the costs each tenant gen-
erates in a public cloud to establish a profitable bill-
ing model for a SaaS application. They show that
only rudimentary support is available by cloud pro-
viders. A user receives a monthly bill from a cloud
provider, not being detailed enough to determine the
costs for resources for each tenant individually.

To enable a tenant-specific monitoring, we added
a table UserMonitoring(id, name, tenant, opera‐

tion, timestamp, elapsed) to the Admin schema in
order to track tenants’ users activities.

We again use AspectJ to intercept any relevant
user actions. To this end, we extend the inter‐
ceptServices advice in Subsection 4.5 to compute
the elapsed time around jp.proceed() and to log it
together with the signature of the method, tenant,
user etc. at a central place. Dedicated pointcuts can

ICSOFT-PT 2016 - 11th International Conference on Software Paradigm Trends

46

define what has to be tracked; this might depend on
the application. The table now gives an overview
over all user activities. This forms the basis for
 a consumption-based model that charges back

tenants for their consumed resources;
 a tenant-specific profit-making check, i.e.,

whether the chosen business model for one/all
tenant(s) is appropriate to make profit;

 a timely reaction on frequent and massively
active tenants to throttle them before costs rise.

The presented approach is quite general and can
support further use cases. If a Service Level Agree-
ment (SLA) specifies a certain maximum number of
concurrent users, this SLA can be checked by a
@Before advice: Before executing a service request,
the number of concurrent users for the tenant is
checked in the UserMonitoring table. Similarly, it is
possible to accumulate the (elapsed) execution times
or the number of service requests for each user or
tenant and to throttle or reject further access if
thresholds are exceeded. If an SLA states a threshold
for the number of registered users, the Users table
can be used to supervise the limit in the user regis-
tration process. Finally, we can use the monitoring
information to implement auto-scaling features that
benefit from a Cloud’s elasticity.

5 EVALUATION

5.1 Advantages

We certainly achieve the general advantages of mul-
ti-tenancy such as cost saving by sharing resources
(hardware, application server, database etc.) among
tenants and reducing operational expenses (OPEX).

The additional advantage of our approach lies in
the fact that the source code of the existing applica-
tion does not need to be modified explicitly.

In order to add tenant management, we have to
deploy a new admin service (cf. 4.4) as a WAR file.
Adding MTE.class to the deployed application WAR,
we achieve tenant isolation. Additional files Ten‐
antXModifier.class in the WAR can provide a ten-
ant-specific behavior for each TenantX. This facili-
tates customization. Thanks to AspectJ load-time
weaving, only a restart of Tomcat is required to
make the multi-tenancy aspects apply.

All the multi-tenancy logic is concentrated in
classes to be added. These components rely on sim-
ple mechanisms that can easily be applied to other
legacy applications to make them multi-tenant.
Thus, development cost can be reduced.

The MTE aspect mainly depends on tools, i.e., the
application server and the DB system, especially the
isolation strategy to apply. That is, a modification of
this aspect becomes necessary only if we, e.g.,
switch to JBoss and/or MySQL. The pointcuts to
intercept DB accesses are not DB-specific but rely
on JDBC. Any adoption and modification to other
tools can be made in central components anyway.

However, the pointcut interceptServices in MTE
also specifies the application methods to be inter-
cepted. Other applications require different
pointcuts. To this end, an abstract aspect can imple-
ment an advice, but leave out the pointcut, while
application-specific sub-aspects specify the concrete
specific pointcuts, but reuse the general logic.

In general, REST services are easier to handle.
There are methods annotated with @GET, @PUT
etc., which are the entry points for functionality.
Moreover, it is just Java code.

Taking a look at the lines of code, it becomes
obvious how simple the approach is:
 The new tenant management service consists of

about 400 lines of Java code;
 The aspect MTE has about 150 lines;
 Any TenantXModifier certainly depends on what

should be modified. To give an impression for
REST services, an advice to disable functionality
has 10 lines, an advice introducing a new REST
service about 60, and an advice for a simple
modification of behavior has 23 lines.

To sum up, the approach offers a cost-efficient way
to migrate existing applications quickly and cheaply
into SaaS-offerings speeding up time-to-market.
Moreover, our approach also allows for a flexible
configuration, e.g., for tenant isolation (one DB
server or one DB for each tenant, single-table for all
tenants).

5.2 Lessons Learned

In case of AOP, comprehension and maintainability
are often cited. However, we did not detect any
problems. In fact, we only have a small number of
aspects. Moreover, the behavior of aspects is man-
ageable, especially since AO is not available to all
programmers.

One major contribution of AOP we benefit from
is the possibility to exchange information between
even unrelated classes by means of an aspect accord-
ing to the “Wormhole Pattern” (Laddad, 2009).

Anyway, we also detected some limitations: The
first idea to let newly registered users to authenticate
was to have a Users table in each tenant schema.

An Approach to Add Multi-tenancy to Existing Applications

47

Authentication must then be intercepted to refer to
the correct database. We ran into the technical prob-
lem that authentication is part of the Tomcat con-
tainer, i.e., to intercept loading the application is not
sufficient. Our attempts to intercept loading Tomcat
failed (but maybe we overlooked a possibility).

6 CONCLUSIONS

This paper presented an approach for migrating
existing single-tenant to fully multi-tenant applica-
tions, which can afterwards be offered as SaaS.

While other approaches require a more or less
large reengineering of the existing source code in
order to bring in multi-tenancy, our approach con-
sists of simply adding components to the legacy
application – without explicitly touching the existing
application’s source code.

The additive components are implemented as as-
pects in AspectJ and depend only on technological
choices such as application server, database system,
and the data isolation strategy. The components can
easily be applied to other applications by just adjust-
ing some pointcuts.

Using an existing REST application that runs in
Tomcat and uses Oracle, the paper presented the
approach and discussed how to achieve two main
concerns in detail:
 tenant isolation (Chong and Carraro, 2006);
 tenant-specific customization of behavior.

We demonstrated the details of the approach and the
effort to be spent; the overall principle requires only
a few 100 lines of aspect code. We also elaborated
upon how to benefit from AspectJ in this respect and
concluded with some evaluation and lessons learnt.

In fact, REST services are simpler to handle as
demonstrated in this paper. There is just Java code
without any parts in HTML or Javascript. Future
work will go one step further and tackle other types
of applications, especially to determine the limits. So
far, we have first experiences that show the MTE
aspect working well. Customization of logic is also
possible as far as no GUI is concerned. Further in-
vestigations will handle customizing the UI. Moreo-
ver, we want to combine our approach with feature
modeling tools to control the configuration in an
easy manner.

Certainly, migrating an application into the cloud
is much more than just adding multi-tenancy. In case
of too much load, e.g., several Tomcat instances
have to be started with a load balancer in front. Tak-
ing care of scalability issues and replacing software

components with Cloud services is also subject to
future work.

REFERENCES

Andrikopoulos, V., Binz, T., Leymann, F., Strauch, S.,
2013. How to adapt applications for the Cloud envi-
ronment - Challenges and solutions in migrating appli-
cations to the cloud. Computing 2013, 95(6): pp. 493-
535.

Bezemer, C., Zaidman, A. Platzbeecke, B. Hurkmans, T.,
Hart, A., 2010. Enabling multitenancy: An industrial
experience report. In: Technical Report of Delft Uni. of
Technology, TUD-SERG-2010-030, 2010.

Bezemer, C., Zaidman, A., 2010. Challenges of reengi-
neering into multitenant SaaS applications. In: Tech-
nical Report of Delft Uni. of Technology, TUD-SERG-
2010-012, 2010.

Binz, T., Leymann, F., Schumm, D., 2011: CMotion: A
framework for migration of applications into and be-
tween clouds. SOCA 2011, pp 1-4.

Chong, F., Carraro, G., 2006. Architecture strategies for
catching the long tail (2006), https://msdn
.microsoft.com/en-us/library /aa479069.aspx.

Chong, F., Carraro, G., Wolter, R., 2006. Multi-tenant data
architecture. http://msdn.microsoft.com/en-us/library
/aa479086.aspx (June 2006).

Elrad, T., Filman, R., Bader, A., 2001: Theme section on
aspect-oriented programming. CACM 44(10), 2001.

Fehling, C., Leymann, F., Mietzner, R., 2010: A frame-
work for optimized distribution of tenants in cloud ap-
plications. IEEE 3rd Int. Conference on, Cloud Com-
puting (CLOUD), 2010, pp. 252-259.

Guo, C., Sun, W., Huang, Y., Wang, Z., Gao, B., 2007: A
framework for native multi-tenancy application devel-
opment and management. In: CEC/EEE 2007: Int.
Conf. on Enterprise Computing, E-Commerce Tech-
nology and Int. Conf. On Enterprise Computing, E-
Commerce and E-Services, pp. 551-558 (2007).

Khajeh-Hosseini, A., Greenwood, D., Smith, J., Sommer-
ville, I., 2012. The cloud adoption toolkit: supporting
cloud adoption decisions in the enterprise. Software,
Practice Experiences 42(4): 447-465 (2012).

Kiczales, G., et al., 2007. Aspect-oriented programming.
In: Proc. of the European Conf. on Object-Oriented
Programming (ECOOP), pp. 230-242, Finland 1997.

Kong, L., Li, Q., Zheng, X., 2010. A novel model support-
ing customization sharing in SaaS applications,” in Int.
Conf. on Multimedia Information Networking and Se-
curity (MINES), 2010, pp. 225–229.

Krebs, R., Momm, C., Kounev, S., 2012. Architectural
concerns in multi-tenant SaaS applications. CLOSER
2012, pp. 426-431.

Kwok, T., Nguyen, T., Lam, L., 2008. A software as a
service with multi-tenancy support for an electronic
contract management application. In: Int. Conf. on
Services Computing (SCC) 2008. pp. 179-186.

Laddad, R., 2009: AspectJ in Action: Practical Aspect-

ICSOFT-PT 2016 - 11th International Conference on Software Paradigm Trends

48

Oriented Programming (2nd ed.) Manning, Greenwich
(2009).

Lee, W., Choi, M., 2012. A multi-tenant web application
framework for SaaS. In 2012 IEEE 5th Int. Conf. on
Cloud Computing (CLOUD), 2012, pp. 970–971.

Lee, J., Kang, S., Hur, S., 2012. Web-based development
framework for customizing java-based business logic
of SaaS application. In 14th Int. Conf. on Advanced
Communication Technology (ICACT), 2012, pp.
1310–1313.

Li, Q., Liu, S., Pan, Y., 2012. A cooperative construction
approach for SaaS applications. In 2012 IEEE 16th Int.
Conf. on Computer Supported Cooperative Work in
Design (CSCWD), 2012, pp. 398–403.

Lizhen, C., Haiyang, W., Lin, J., Pu, H., 2010. Customiza-
tion modeling based on metagraph for multi-tenant
applications. In 5th Int. Conf. on Pervasive Computing
and Applications (ICPCA), 2010, pp. 255–260.

Mell, P., Grance, T., 2011. The NIST definition of cloud
computing,” National Institute of Standards and Tech-
nology, Sept. 2011. http://csrc.nist.gov /publications/
nistpubs/800-145/SP800-145.pdf.

Moens, H., Truyen, E., Walraven, S., Joosen, W., Dhoedt,
B., De Turck, F., 2012. Developing and managing cus-
tomizable software as a service using feature model
conversion. In IEEE Network Operations and Man-
agement Symposium (NOMS), 2012, pp. 1295–1302.

Momm, C., Krebs, R., 2011. A qualitative discussion of
different approaches for implementing multi-tenant
SaaS offerings. Proc. Software Engineering 2011, pp.
139-150.

Orue-Echevarria et al., 2014. Cloudifying applications
with ARTIST: A global modernization approach to
move applications onto the cloud. CLOSER 2014, pp.
737-745.

Park, J., Moon, M., Yeom, K., 2011. Variability modeling
to develop flexible service-oriented applications.
Journal of Systems Science and Systems Engineering
2011, Vol. 20, no. 2, pp. 193–216.

Pohl, K., Böckle, G., v. d. Linden, F., 2005. Software
product line engineering: foundations, principles and
techniques. Secaucus, NJ, USA: Springer-Verlag New
York, Inc., 2005.

Ruiz-Agundez, I., Penya, Y., Bringas, P., 2011. A flexible
accounting model for cloud computing," SRII, 2011.

Schwanengel, A., Hohenstein, U., 2013. Challenges with
tenant-specific cost determination in multi-tenant ap-
plications. 4th Int. Conf. on Cloud Computing, Grids
and Virtualization 2013.

Shahin, A., Samir, A., Khamis, A., 2013. An aspect-
oriented approach for SaaS application customization.
48th Conf. on Statistics, Computer Science and Opera-
tions Research, Cairo University, Egypt, 2013.

Tsai, W., Shao, Q., Li, W., 2010. OIC: Ontology-based
intelligent customization framework for SaaS. In IEEE
Int. Conf. on Service-Oriented Computing and Appli-
cations (SOCA), 2010, pp. 1–8.

Tsai, W., Sun, X., 2013. SaaS multi-tenant application
customization. In IEEE 7th Int. Symposium on Service
Oriented System Engineering (SOSE), 2013, pp. 1–12.

Walraven, S., Truyen, E., W. Joosen, W., 2011. A mid-
dleware layer for flexible and cost-efficient multi-
tenant applications. Proc. on Middleware, 2011 (LNCS
7049), pp. 370-389.

Wang Z. et al, 2008: A study and performance evaluation
of the multi-tenant data tier design pattern for service
oriented computing. In IEEE Int. Conf. On eBusiness
Engineering, (ICEBE) 2008, 94-101.

Wang, H., Zheng, Z., 2010. Software Architecture Driven
Configurability of Multi-tenant Saas Applications.
LNCS Vol. 6318, 2010 pp. 418-424.

Zhou, X., Yi, L., Liu, Y., 2011. A collaborative require-
ment elicitation technique for SaaS applications. In
2011 IEEE Int. Conf. on Service Operations, Logistics,
and Informatics (SOLI), 2011, pp. 83–88.

An Approach to Add Multi-tenancy to Existing Applications

49

