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Abstract: Network simulation is an important technique for designing interconnection networks and communication 
libraries. Also network simulations are useful for the analysis of internal communication behavior in parallel 
applications. This paper introduces a new interconnection network simulator NSIM-ACE. This simulator 
enables us to evaluate RDMA directly while existing simulators do not have such capability. NSIM-ACE 
also provides a similar user-interface to RDMA-based parallel programs for easy use. The experimental 
evaluation indicates that the simulation accuracy is sufficient to compare performance of some RDMA-
based algorithms and the simulator is capable of predicting performance scalability for non-extinct 
networks. 

1 INTRODUCTION 

Modern high performance parallel computers consist 
of a large number of computing nodes connected via 
an interconnection network. Applications running on 
such systems perform computation                                                                                                                           
in parallel by communicating data between nodes. 
Designing high speed interconnection networks and 
communication libraries have an important role for 
running parallel applications efficiently. However, it 
is not an easy task to predict performance of 
interconnection networks and communication 
libraries at the design stage. Particularly, if a large 
number of nodes communicate a large amount of 
data simultaneously, communication performance 
degrades from the theoretical value due to 
communication contention. Therefore, simple 
mathematical models of parameters including the 
minimum communication latency between nodes 
and the bandwidth predict inaccurate communication 
performance. Analyzing communication behaviors 
inside real machines is also an issue for efficient 
parallel applications. It may be difficult because of 
the same reason. As an attempt to solve these 
problems, many interconnection network simulators 
were developed so far. 

NSIM is an interconnection simulator developed 
for evaluating extreme-scale systems. Users can 
configure detail of the target network. This simulator 
focuses on simulation speed. The simulation model 
is simplified not at the great expense of simulation 
accuracy. A feature of NSIM is accepting programs 
compatible with Message Passing Interface (MPI) as 
input communication patterns. NSIM simulates the 
target network by means of pseudo execution of 
such a program. This feature provides with a user-
friendly simulation environment. NSIM is 
implemented to be a parallel simulator on distributed 
memory systems. 

Adiga et al. (2005) developed a dedicated 
simulator for predicting performance of three 
dimensional torus network of IBM BlueGene/L. The 
simulator inputs are traces of pseudo application 
codes. The developers extended an IBM tracer for 
generating the traces. This is a parallel simulator on 
shared memory systems. Simulations of up to a 64K-
node network were reported. 

BigNetSim (Choudhury et al., 2005) is a 
simulator supporting various interconnection 
networks. Users can flexibly configure network 
parameters including topology, size and 
communication latency. BigNetSim has two 
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execution modes. In one mode, it simulates 
according to communication patterns artificially 
generated inside the simulator. In the other mode, 
BigNetSim simulates according to traces generated 
by BigSim (Zheng et al., 2004), a simulator for 
extreme-scale parallel computers.  

FSIN (Ridruejo and Alonso, 2005) is an 
interconnection network simulator included in a 
simulation framework called INSEE. FSIN supports 
a variety of router models and network topologies. 
This simulator is based on relatively simple network 
models where every network event spends equal 
time. FSIN accepts two types of simulation inputs, 
artificially generated communication patterns and 
traces of MPI applications. FSIN has a unique 
feature that it can feedback the simulation results to 
original trances.  

SimGrid (Casanova et al., 2014) is a simulator 
for a wide area of computer systems including 
processor, network, storage and grid computing. 
SimGrid simulates these computer resources in a 
unified model where if multiple tasks on the target 
system require a resource simultaniouly, the 
resource is shared by the tasks in an optimization 
rule. This simulator accepts two types of simulation 
inputs, programs written in an original format and 
unmodified MPI programs. 

Meanwhile, recent network interface cards 
(NICs) used in high performance parallel computers 
have the function of Remote Direct Memory Access 
(RDMA). RDMA has the following advantages: 

 Low communication latency: RDMA directly 
transfer data from memory on the send node to 
memory on the receive node. 

 Efficient parallelization of communication and 
computation: RDMA transfers data 
independently of node processors. 

 Minimum consumption of memory: RDMA 
need no communication buffer.  

Since MPI is the de fact standard of parallel 
programming, the RDMA-based programming 
model is not the main stream. However, the 
advantages above give RDMA a potential to become 
an alternative in coming high performance parallel 
computers. 

Communication libraries that adopt the RDMA-
based model include ARMCI (Nieplocha and 
Carpenter, 1999) and GASNet (Bonachea, 2002). 
These libraries have put/get operations in the RDMA-
base model. MPI also defines put/get operations in 
addition to the message passing model. A recent 
example of communication libraries that support the 
RDMA-based model is the basic layer of ACP library 
(Sumimoto et al., 2016). It aims at a primitive 

communication library for parallel programing. 
Unlike communications that require operations 

in both the send and receive nodes, RDMA starts the 
communication by either the send node or the 
receive node. On the other hand, RDMA often needs 
extra processing such as preparation for the 
communication and the confirmation of a write 
operation on the receive node. We need a different 
design of communication libraries and a different 
style of parallel programing. 

However, existing interconnection network 
simulators do not provide the function of handling 
RDMA directly nor user-friendly interface to the 
RDMA-based programs. In order to break this 
limitation, we implemented the NSIM-ACE 
interconnection network simulator by extending 
NSIM. In this paper, we present this new simulator. 

2 NSIM OVERVIEW 

2.1 Network Model 

NSIM supports mesh/torus networks up to six 
dimensions and fat tree networks. NSIM assumes 
that each node connected by the target network 
consists of one processor and one or multiple NICs. 
The target network is modeled as a combination of 
routers, router-to-router links and router-to-NIC 
links. The router model assumes static dimensional 
routing, virtual cut-through and a pipelined router. 
Data transfer on each link is simulated basically at a 
packet level. However, NSIM employs a simulation 
technique that gives the same accuracy as flit level 
simulations. For saving memory usage, actual data are 
not transferred but only information on data size is. 

2.2 Inputs and Outputs 

For communication patterns, NSIM accepts an MPI-
like program in which the prefix MPI_ of MPI 
functions are replaced with MGEN_. This program 
is called an MGEN program. In the MGEN program, 
computational parts except for MPI functions are 
replaced with MGEN_Comp (t) functions, where t is 
a predicted computation time. This function enables 
us to simulate communication taking into account 
the difference of the start times between processes. It 
is also used for simulations including computation 
times. After a simulation, NSIM outputs a predicted 
execution time of the input MGEN program. 
Detailed statistics including the effective bandwidth 
and the effective usage of each link are also 
reported. 
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2.3 Modules 

NSIM consists of the following five modules:  
 DES (Discrete Event Simulation) 

A parallel discrete event simulator. 
 MGEN (Message level event GENerator) 

MGEN performs pseudo execution of the input 
MGEN program and generates Message Level 
Events (MLEs). An MLE corresponds to a 
message in MPI. 

 PGEN (Packet level event GENerator) 
PGEN calls MGEN for generating MLEs and 
generates Packet Level Events (PLEs) from the 
MLEs. A PLE is an event of DES. 

 SIM (SIMulation control) 
SIM calls PGEN for generating PLEs and 
enqueues them to the event queue of DES. SIM 
also proceeds the simulation time of DES. 

 EP (Event Processing) 
EP processes packet transfer on the network. It is 
the event procedure of DES. 

2.4 Simulation Flow 

At the beginning of a simulation, SIM calls PGEN. 
PGEN internally calls MGEN. MGEN generates 
MLEs from the MGEN program. It does not perform 
actual communications. Then PGEN generates PLEs 
from the MLEs. Each of these PLEs is an event that 
injects a packet into the network from a send NIC. 
SIM enqueues these PLEs to the event queue of DES 
and proceeds the simulation time of DES so that 
events are processed in correct time order. EP 
processes PLEs so that the packet is injected into the 
network. Also EP generates a new PLE that transfers 
the packet to a next link, a next router or the receive 
NIC. These PLEs are processed in correct time order 
by DES. Finally the packet reaches the receive NIC. 
The simulation is completed when all packets reach 
receive NICs. 

3 NSIM-ACE 

3.1 Simulation Model 

NSIM-ACE models two types of RDMA, i.e., put 
and get operations. We focus put operations. In a put 
operation, the send process transfers data from 
memory on the send node to memory on the receive 
node. First, data on memory are transferred to the 
send NIC using DMA. The send NIC injects the data 
into the network as packets. The packets are 

transferred to the receive NIC on the network. 
Packet transfer on the network is modeled as the 
same way as in NSIM. If a packet of put data 
reaches to the receive NIC, it is transferred to 
memory on the receive node using DMA. After all 
put data are transferred to memory, the receive NIC 
sends a control packet to the send NIC. The put 
operation is completed when the control packet 
reaches the send NIC. 

3.2 Inputs and Outputs 

NSIM-ACE accepts an MGEN program for the 
communication pattern. 

For describing RDMA in MGEN programs, we 
added new MGEN functions to NSIM.  
 MGEN_acp_handle MGEN_rdma_put (int 

dest_rank, int data_size, int tag) 
MGEN_rdma_put issues a put operation which 
transfers data of data_size bytes from the process 
that calls this function to the process of rank 
dest_rank. The tag is used for specifying a put 
operation in the receive process. This function is 
completed even if the put operation has not 
completed yet. This function returns a handle 
that corresponds to the put operation. 

 void MGEN_rdma_poll (int tag) 
MGEN_rdma_poll waits until the put operation 
specified by tag completes data transfer to 
memory on the receive node. 

 void MGEN_acp_complete (MGEN_acp_handle 
handle) 
MGEN_acp_complete waits for the completion 
of the put operation specified by handle. 
The functions and the type those have prefix of 

MGEN_acp_ in the names are similar to functions 
and type in ACP library those have names without 
MGEN_. 

We show a sample MGEN program below. 
#include “mgen.h” 
int MGEN_Main(int argc, char 

**argv){ 
int rank, size, ms=4, r, tag=0; 
MGEN_Comm com = MGEN_COMM_WORLD; 
MGEN_acp_handle handle; 
MGEN_Comm_rank(com, &rank); 
MGEN_Comm_size(com, &size); 

 
r = (rank + 1) % size; 

 
handle = MGEN_rdma_put(r, ms, 

tag); 
MGEN_rdma_poll(tag); 
MGEN_acp_complete(handle); 

} 
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In this program, each process puts data to a 
neighbor process. 

The NSIM-ACE simulates the target network 
according to the communication pattern described 
by the input MGEN program. After the simulation, 
NSIM-ACE outputs a predicted execution time and 
the same kinds of detail statistics as NSIM outputs. 

3.3 Implementation 

We implementation the put operation in a similar 
way to a send operation in NSIM.  If a put operation 
is issued in the MGEN program, MGEN generates 
an MLE that corresponds to the put data. One 
difference from NSIM is that no receive operation is 
explicitly issued in the MGEN program. Another 
difference is the ordering of send and receive 
operations. In NSIM, send and receive operations 
are issued in order in the MGEN program. In NSIM-
ACE, the control packet of the put operation is sent 
when all put data are transferred to memory 
independently of the MGEN program, i.e., the order 
is determined by intermediate results of the 
simulation. We added the following new flow to 
NSIM. After SIM proceeds the simulation time of 
DES, it checks packets that reach each NIC. If all 
packets of the put data reach a NIC, SIM calls 
PGEN. PGEN internally calls MGEN. MGEN 
generates an MLE that corresponds to the control 
packet. From the MLE, PGEN generates a PLE that   
injects the control packet into the network. SIM 
enqueues it to the event queue. This modification 
was not straightforward because NSIM was 
designed on the assumption that all send and receive 
operations are described and they are issued in order 
in the MGEN program.  

Another consideration is the choice of the time 
step. DES was parallelized using conservative 
algorithm with lookahead. We assumed that a PLE 
of time t1 that injects a control packet is generated 
and then enqueued after the simulation time is 
proceeded from t to t + Δt. The PLE is processed 
after the simulation time is proceeded to t + Δt. 
However, if Δt is too large, t1 < t + Δt. Since any 
event of time between t1 and t + Δt is processed 
when the simulation time is proceeded to t + Δt, the 
PLE is processed in a wrong time order. We set Δt to 
the minimum latency of router-to-NIC links. The 
injection PLE is generated when DES processes a 
PLE of time t2 that transfers the last packet of the put 
data from a router to a NIC between t and t + Δt. 
Since t2 > t and the latency from the router to the 
NIC is equal to or larger than Δt, t1 ≥ t2 + Δt > t + Δt. 
This guarantees that the injection PLE is processed 

in correct time order. A similar discussion is applied 
to get operations. 

We did not change EP, which determines the 
network model. The network is simulated in the 
same way as NSIM. 

4 EXPERIMENTAL 
EVALUATION 

In order to evaluate the simulation accuracy of 
NSIM-ACE, we compared simulation results and 
measurements on a real machine in three 
experiments. In addition, we predicted performance 
scalability beyond the number of processes in real 
measurements using NSIM-ACE. 

4.1 Random Ring 

The random ring traffic is one of High Performance 
Computing Challenge benchmark suite (Luszczek, 
2006). Processes of the benchmark compose a ring 
in a random order. Each process sends 2MB data to 
the left and right neighbor processes in parallel and 
receives 2MB data from the left and right neighbor 
processes in parallel. The benchmark measures the 
bandwidth of the data transfer.  

4.1.1 Experimental Environment 

We ran the benchmark on Fujitsu PRIMERGY 
RX200 S7. Each node has one quad-core Intel Xeon 
processor E5-2609 (2.40 GHz). Sixteen nodes are 
connected by InfiniBand QDR switches. The 
throughput of each switch is 4GB/s per one 
direction. The port-to-port latency is 140 
nanoseconds or below. The routing is destination-
based. The original random ring traffic benchmark is 
written using MPI. We rewrote it using the put or get 
operation in the basic layer of ACP library. We used 
the InfiniBand implementation of ACP library. The 
InfiniBand implementation creates a communication 
thread per process. The communication thread are 
always running when the process is running. We ran 
only two processes per node for excluding the 
impact of the communication thread on the 
bandwidth. We ran two processes per node also in 
two other experiments. The original benchmark 
measures bandwidth in ten different random process 
orders. We measured only in one process order. 

The simulation parameters are listed in Table 1. 
The DMA transfer speed was obtained by measuring 
the throughput in the random ring traffic benchmark 
of two processes on one node. We set the 
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communication library overhead to zero because it is 
so small compared to the one-hop latency of 2MB 
data transfer that it has little impact on simulation 
results. We set the other parameters according the 
specification of the real machine. In order to predict 
performance scalability above 16 nodes, we 
simulated with another parameter set where the 
parameters are the same except for that the number 
of nodes are 256. 

Table 1: Configuration Parameters for NSIM-ACE. 

Type Parameter Value 

Router 

Maximum theoretical 
communication speed of 
network 
Switch throughput 
Routing calculation time 
Virtual channel allocation 
time 
Switch allocation time 
Switch latency 
Cable latency 

4.0 GB/s 
 
 
4.0 GB/s 
4.0 ns 
 
4.0 ns 
4.0 ns 
128 ns 
0.6 ns 

Node 

DMA transfer speed 
Communication library 
overhead 
Number of processes 

 

2.8 GB/s 
 
0 ns 
One process 
/ node 

There are a few differences between the 
simulations and the real measurement. One is in the 
programs. The MGEN program was described by 
extracting communication parts of the original 
benchmark. NSIM-ACE assumes one process per 
node as NSIM. We described the MGEN program so 
that one process performs communications in 
parallel that correspond to two processes in the real 
machine. Another difference is intra-node 
communications. NSIM-ACE does not simulate 
intra-node communications. Instead we described 
MGEN_Comp (t), where t is the communication 
latency of 2MB data transfer in the node DMA. In 
addition, algorithms of arbitration and routing are 
different between the simulations and the real 
machine. These differences may cause simulation 
errors described below.  

We performed simulations on HP ProLiant 
ML350e Gen8 v2 in all three experiments. It has two 
quad-core Intel Xeon processor E5-2407 v2 (2.4 
GHz). NSIM-ACE required approximately 40 
seconds for simulations when the number of process 
was 512. These times were measured in sequential 
executions including two other experiments. 

4.1.2 Results and Discussions 

The comparison of simulation and real machines are 
shown in Figure 1. Simulation results agree well 
with the real measurements at 4 and 8 processes. 
However, they show lower bandwidth than the real 
measurements at 16 and 32 processes. The 
difference may be caused by differences in 
arbitration and routing algorithms of the switches. In 
this experiment, all nodes on which processes are 
running are connected to the same switch if the 
number of processes is 4 or 8. In this case, the 
algorithm differences are unlikely to be seen. 
Otherwise, the nodes on which processes are 
running are connected to multiple switches. In this 
case, there are multiple communication routes 
between nodes. The simulation can be more likely to 
occur communication contention than the real 
measurements. As a result, it is possible to show 
lower bandwidth than the real measurements. 

The 256-node simulations predict that the 
bandwidth gradually decreases above 32 processes. 
However, if we actually increase nodes and those 
connected to each switch for the real machine like 
the simulations, such a machine is expected to give 
higher bandwidth than the simulations because the 
real machine shows higher bandwidth than the 
simulations at 16 and 32 processes. 
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Figure 1: Random ring bandwidth of put operation. 

4.2 Synchronization Barrier 

Since a synchronization barrier communicates small 
data, simple mathematical modeling is effective for 
the performance prediction of the barrier itself. 
However, we need the barrier simulation if it is 
included in another communication pattern. For 
example, a barrier is used for waiting until multiple 
receive processes become ready for a put operation. 
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4.2.1 Ring Algorithm 

Many algorithms are known for synchronization 
barrier of p processes. One of simple algorithms is 
ring. The complexity is O(p). This algorithm can be 
implemented using put operations as follows. The 
ring algorithm performs a barrier in p − 1 steps. In 
each step, the process of rank i (i ≠ p − 1) puts some 
data to some memory region of the process of rank i 
+ 1. The process of rank p − 1 puts to the process of 
rank 0. After that, the process of rank i (i ≠ 0) waits 
for receiving the data from the process of rank i − 1 
by polling the memory region. The process of rank 0 
waits for receiving from the process of rank p − 1. 
After p − 1 steps, the barrier is completed. 

4.2.2 Recursive Doubling Algorithm 

One of O(log p) algorithms is recursive doubling, 
which can be implemented using put operations as 
follows. If p = 2n, the recursive doubling algorithm 
performs a barrier in n steps. In step i (i = 1, 2, 3, ..., 
n), 2n processes are divided into groups of 2i 
processes in the rank order. In each group, each 
process of smaller 2i − 1 ranks puts some data to 
some memory region of the process whose rank is 
the sender's rank + 2i − 1. Each process of larger 2i − 
1 rank puts some data to some memory region of the 
process whose rank is the sender's rank − 2i − 1. 
Then the two processes waits for receiving the data 
from each other by polling the memory region. After 
n steps, the barrier is completed. If p = 2n + r (0 < r 
< 2n), this algorithm needs extra steps for r processes 
before step 1 and after step n. 

4.2.3 Experimental Environment 

We compared simulation results of barrier time to 
real measurements. We executed programs of both 
algorithms written using ACP library on the same 
machine as in the random ring experiment. In this 
experiment, we observed fluctuation in average 
barrier times larger than in usual measurements. We 
measured the minimum barrier time in 100 same 
barriers for obtaining the time required for the 
barrier at the least on this machine. 

We used the same configuration parameters as in 
the random ring experiment except for the 
communication library overhead. In this experiment, 
the communication library overhead is not negligible 
compared to the one-hop latency of put data. We 
determined the communication library overhead by 
measuring the barrier time of two processes on one 
node. In this case, each of the two processes puts the 
data to each other. The barrier time corresponds to 

the communication library overhead excluding 
network latency. In this environment, half of the 
barrier time is closer because the NIC of the node 
performs two put operations sequentially. The 
determined value was 0.8 microseconds. For 
obtaining the communication library overhead fitting 
real measurements best, we also varied nearby 0.8 
microseconds. The communication library overhead 
in configuration parameters corresponds to the node 
latency including the minimum latency of memory 
access and that of the node DMA transfer in addition 
to the communication library overhead. We call this 
parameter node latency, hereafter. 

We described MGEN programs in a similar way 
to that in the random ring experiment. 

When p = 512, NSIM-ACE needed 148 and 0.33 
seconds for simulating the ring and recursive 
doubling algorithms, respectively. 

4.2.4 Results and Discussions 

The comparison of the simulation results and the 
real measurements is shown in Figure 2. If we set 
the node latency to the real measurement (0.8 μs), 
the simulation results are somewhat smaller than the 
real measurements in both algorithms. If we vary the 
node latency, the simulation results follow best the 
trend of real measurements in the case of 0.6 
microseconds. The comparison of the two 
algorithms shows the recursive doubling algorithm 
is faster than ring in real measurement as expected. 
The simulation indicates the same result. 
Furthermore, we find that the recursive doubling 
algorithm is faster if p = 2n than otherwise in the real 
measurements. The simulations also give the same 
trend. In this experiment, the simulation accuracy of 
NSIM-ACE is sufficient to compare the two 
algorithms and reproduce the characteristics of the 
recursive doubling algorithm if we give an 
appropriate node latency. We conclude that NSIM-
ACE is so useful for the performance prediction of 
barriers as simple mathematical modelling. Results 
of 256-node simulations followed as the algorithm 
complexities. 

4.3 Particle Data Communication after 
Domain Decomposition 

4.3.1 Communication Pattern 

In parallel gravitational N-body simulations, particle 
data communications after domain decomposition 
are described more directly than point-to-point or 
collective communications of MPI  (Susukita  et  al., 
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2015). In this communication pattern, we need a 
synchronization barrier before the data packing or 
after that. 

4.3.2 Experimental Environment 

In a previous report (Susukita et al., 2015), we 
showed that simulation results of NSIM-ACE are in 
good agreement with real measurements in regard to 
this communication pattern. In addition, we found 
that the simulations distinguish performance change 
between two different synchronization points 
described later. In this paper, we simulated the 
communication pattern beyond the system size of 
the real machine.  

The same environment was used as in the report. 
We executed with 64 and 128 processes on another 

real machine only for recording communication 
patterns. The largest put data decreased from 2.1 
MB in the 32-process execution to 0.79 MB in the 
128-process execution.  

We described an MGEN program by extracting 
put operations of particle data. We also simulated a 
variant of the MGEN program in which we do not 
describe MGEN_Comp calls for intra-node 
communications, i.e., inter-node only variant. 

NSIM-ACE required 0.65 and 0.83 seconds for 
the 128-process simulations when we performed the 
barrier before and after the packing, respectively. 

4.3.3 Results and Discussions 

The simulation results are shown in Figure 3. For 32 
processes, differences between the simulation results 
and the real measurements are less than 10% both in 
the pack time and put operations. The simulations 
predict that the barrier before the packing provides 
better performance than the barrier after the packing 
up to 128 processes. This means that NSIM-ACE is 
able to propose a better synchronization point for a 
non-existent machine on which we cannot actually 
measure the performance. 
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Figure 3: Execution time of particle data communication. 

The simulations of the inter-node only variant 
indicate contributions of inter-node put operations. 
They suggest that both inter- and intra- node put 
operations are possible to make a great impact on the 
results. When the number of processes is 32, the 
latency of inter-node only simulations make little 
difference between the two synchronization points, 
while original simulations make a difference. We 
inferred that intra-node put operations make the 
difference. For example, intra-node put operations 
may cause communication contention if we 
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performed a barrier after the packing. By contrast, 
when the number of processes is 64, the latency of 
put operations is increased if we performed a barrier 
after the packing even in inter-node only simulation. 
In this case, inter-node put operations may cause 
communication contention. 

5 CONCLUSIONS 

In this paper, we introduced NSIM-ACE, a new 
interconnection network simulator for RDMA 
evaluation. We implemented it by extending NSIM 
simulator for large-scale interconnection networks. 
The NSIM-ACE has a user-friendly interface where 
the communication pattern is given in a similar way 
to RDMA-based parallel programs. We performed 
three experiments for evaluating the simulation 
accuracy and predicting performance scalability. 
The experiment on random ring bandwidth shows 
that the simulator produces bandwidth degradation 
due to communication contention. The experiment 
on synchronization barrier indicates that the 
simulation accuracy is sufficient to compare 
performance of RDMA-based algorithms and find 
algorithm characteristics. In addition, NSIM-ACE 
can predict the better algorithm for a communication 
pattern appearing in a particle simulation. 
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