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Abstract: In this article, an inversion-based control approach is proposed and presented for tracking desired 
trajectories with high-speed (100Hz), non-smooth (triangle and sawtooth waves), and microscale-amplitude 
(10 micron) wave forms. The interesting challenge is that the tracking involves the trajectories that possess a 
high frequency, a microscale amplitude, sharp turnarounds at the corners.  Two different types of wave 
trajectories, which are triangle and sawtooth waves, are investigated. The model, or the transfer function of 
a piezoactuator is obtained experimentally from the frequency response by using a dynamic signal analyzer. 
Under the inversion-based control scheme and the model obtained, the tracking is simulated in MATLAB. 
The main contributions of this work are to show that (1) the model and the controller achieve a good 
tracking performance measured by the root mean square error (RMSE) and the maximum error (Emax), (2) 
the maximum error occurs at the sharp corner of the trajectories, (3) tracking the sawtooth wave yields 
larger RMSE and Emax values,compared to tracking the triangle wave, and (4) in terms of robustness to 
modeling error or unmodeled dynamics, Emax is still  less than 10% of the peak to peak amplitude of 20 
micron if the increases in the natural frequency and the damping ratio are less than 5% for the triangle 
trajectory and Emax is still  less than 10% of the peak to peak amplitude of  20 micron if the increases in the 
natural frequency and the damping ratio are less than 3.2 % for the sawtooth trajectory. 

1 INTRODUCTION 

A piezo stage is widely used in positioning and 
actuating motions in nano/microscale displacements 
or amplitudes. Several works have used a 
piezoactuator  to achieve the goals. For example, the 
works done by Kongthon et al., (2010, 2011 and 
2013) employed a piezo-based positioning system to 
drive the biomimetic cilia-based device so that the 
mixing performance in a micro device was 
improved. Moallem et al., (2004) used piezoelectric 
devices for the flexure control of a positioning 
system. 

The tracking of a trajectory is very common in 
control problems such as the works by Beschi et al., 
(2014) and Martin et al., (1996). Tracking can be 
challenging in high-frequency applications with very 
small displacements. The challenge in this work is 
that the trajectories are of high-speed (100Hz), non-
smooth (triangle and sawtooth waves), and 
microscale-amplitude (10 micron) wave forms. The 
goal is to propose a controller that can track 

prescribed trajectories properly with a good tracking 
performance. The tracking performance can be 
measured by the root mean square error (RMSE) and 
the maximum error (Emax). 

The rest of this article is structured as follows. 
Section 2 introduces the two trajectories. The 
piezoactuator model is obtained in section 3. The 
control scheme is proposed in section 4. Section 5 
shows the results. In section 6, the robustness is 
investigated. Section 7 concludes the article. 

2 TRAJECTORIES 

2.1 The Trajectories to Be Tracked 

In this work, there are two types of wave form 
trajectories used to investigate the tracking 
performance of the piezoactuator model: triangle 
wave, shown in Fig. 1 and sawtooth wave, shown in 
Fig. 2. 
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Figure 1: Original trajectory for triangle wave of 10 mμ  
amplitude and 100 Hz frequency 

 
Figure 2: Original trajectory for sawtooth wave of 10 mμ
amplitude and 100 Hz frequency 

2.2 Filtered and Desired Trajectories 

It can be seen in Figs. 1 and 2 that the original 
trajectories contain very sharp turnarounds at the 
corners. In practice, an actuator cannot track a 
trajectory with  a very sharp corner properly as it has 
a limited bandwidth. In order to achieve a good 
tracking performance, the original trajectories 
therefore need to be smoothen by a second-order 
filter with the filtering transfer function of the form. 
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where fω is the break frequency of the filter , and In 

this work, fω of 10 Hz, or )2(10 π rad/s is selected to 
get the trajectories filtered. The filtered trajectory is 
hereafter referred to as the desired trajectory. The 

controller then needs to track the desired trajectory 
of each type. 

3 PIEZO ACTUATOR MODEL 

A piezo-based positioning system, or piezo stage, 
can be used in applications that require very small 
displacements and large frequency ranges. A 
piezoactuator can generate an extremely small 
displacement down to the subnanometer range. 

The number of vibration modes for the piezo 
stage is infinite since the beam mechanism inside the 
piezo stage has an infinite dimension. In general, an 
infinite dimensional plant can be approximated by a 
finite dimensional model, and in practice, it is  
possible to take the first few modes of vibration to 
represent the total dynamics of the plant. 

3.1 Frequency Response Experiment 

To obtain the model of the piezoactuator shown in 
Fig. 3, the piezoactuator and the dynamic signal 
analyzer shown in Fig. 4, together with an inductive 
sensor and a power amplifier are connected as 
shown in Fig. 5 to get the frequency response, and 
the model is then obtained.  
 

 
Figure 3: Piezoactuator used to produce micro-scale 
amplitudes of oscillations with high frequencies. 

 
Figure 4: Dynamic signal analyzer used to get the 
frequency response to obtain the model of the actuator. 
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Figure 5: Block diagram used for obtaining the frequency 
response of the piezoactuator. 

3.2 Transfer Function and Time 
Scaling 

In this work, the poles, the zeros, and the gain of the 
piezoactuator are found experimentally and the 
experimental result from the frequency response 
shows that the model is composed of 6 poles and 4 
zeros in the frequency range of 0 to 1000 Hz. 

The poles are located in the complex s-plane at 
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The zeros are located in the complex s-plane at 
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The constant gain is 
 

K = 1.1879x 107 (3)
 

The poles and the zeros specify and define the 
properties of the transfer function, thus describing 
the input-output system dynamics. The poles, the 
zeros, and the gain K all together completely provide 
a full description of the system and characterize the 
system dynamics and the response. 

The transfer function can now be constructed by 
using the poles, the zeros, as well as the gain, and 
the resulting transfer function )(sG  is found to be of 
the form. 
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The DC gain of the system in dB is equal to 
20log10(5.622x1021/1.95x1021) = 9.20 dB. 

The inspection of Eq.(4) indicates that the system 

response is very fast with the settling time in 
milliseconds. To avoid numerical problems with 
simulations in MATLAB, the time unit needs to be 
changed from second to millisecond. To do this, 
each variable, s, in the transfer function in Eq.(4 ) is 
replaced by 1000s ,and the new transfer function 

)(sGms  in terms of millisecond is obtained as 
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The s variable in the new transfer function in Eq.(5) 
has the unit in radian/millisecond. In MATLAB, the 
time axis must therefore be rescaled to millisecond. 
The Bode diagram that represents the frequency 
response of the piezoactuator is plotted by using 

)(sGms  and illustrated in Fig. 6. 
 

 
Figure 6: Bode diagram of the piezoactuator. 

In this work, the sixth-order model of the 
actuator is decomposed into three modes of second-
order systems by using the parallel state space 
realization method, shown in Fig.7 so that 
robustness can be investigated by providing each 
mode with variations in the natural frequency and 
the damping ratio. 
 

 
Figure 7: Diagram for parallel state space realization, an 
approach to decoupling the modes of oscillations. 
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To find the state space representation by the 
parallel state space realization method, the transfer 
function can be rewritten in the form of partial 
fractions. 
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where 1r , 2r ,… 6r
 
are the residues, 1p , 2p ,… 6p

 are the poles of the system, and sk is the direct term. 
The direct term is equal to zero for a strictly 

proper transfer function. The poles located at =s
1p , 2p , …, 6p

  
are shown in Eq.(1), and it follows 

that 
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Where ),(1, sGms ),(2, sGms and
 

)(3, sGms
 
are obtained 

as follows. 
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Now, the system is decoupled to three modes, and 
each mode is represented by a second-order transfer 
function. The system in Eq.(7) represents the 
original system described by Eq.(5) and preserves  
the original

 
system response characteristics. 

A second-order system possesses a pair of 
complex conjugate poles and the pole location 
determines the natural frequency and the damping 
ratio. For a second-order system, the location of the 
poles 21, ss is related to the natural frequency nω  
and the damping ratio ζ  by 

 

2
21 1, ζωζω −±−= nn iss  (8)

 

From the pole locations and Eq.(8) above, the 
natural frequency nω and the damping ratioζ  for 
each mode of vibration can be found and shown in 
Table 1. It is noted that the system is stable since all 
the poles have

 

a negative real part, and the mode 
number is determined by realizing that the higher 
mode number will have a greater natural frequency.

 

Table 1: Pole location, natural frequency and damping 
ratio for each mode. 

Pole Location (Hz)nω  ζ  Mode 

1952.7i  -346.81 +=p  315.65 0.175 1 

1952.7i  -346.82 −=p  315.65 0.175 1 

4149.2i  -169.43 +=p  660.92 0.041 2 

4149.2i  -169.44 −=p  660.92 0.041 2 

5361.0i  -65.95 +=p  853.29 0.012 3 

i0.5361 -65.96 −=p  853.29 0.012 3 

4 CONTROL SCHEME 

The notions and the developments of inversion-
based control have attracted researchers in the field 
and have been around for more than four decades.  
The early and remarkable works on inversion-based 
approach were presented by Silverman (1969) and 
Hirschorn (1979). Later on, many developments and 
contributions were made by means of inversion-
based control, or feedforward control methods such 
as the works by Peng et al., (1993), Meckl et al., 
(1994), Piazzi et al., (2001), Devasia (2002), Dunne 
et al., (2011), Yang et al., (2011) and Boekfah et al., 
(2016). The standard inversion control theory is 
based on a known or pre-described trajectory. 

In this work, the trajectories are prescribed or 
known a priori and the system is a minimum phase 
type and is stable. The inversion-based control 
approach is hence suited and proposed for tracking 
the desired trajectories. 

4.1 State Space Representation 

It is well known that for a linear time-invariant 
system (LTI system), the plant dynamics can be 
represented by the state equation of the form. 

)()()( tButAxtx +=�  (9)
 

and the output equation of the form. 
 

)()()( tDutCxty +=  (10)
 

For a strictly proper system such as the case here, D 
is equal to zero. 

Now ),(1, sGms
 

),(2, sGms
 
 and

 
)(3, sGms in Eq.(7) 

can be cast into the state space form of Eq. (9) and 
Eq. (10), and matrices A, B, C, and D are as follows. 
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4.2 Inversion-based Control Approach 

The relative degree, r, of the system is defined by 
the difference between the number of poles and the 
number of zeros. For the model governed by Eq.(5), 
the relative degree is the number of poles  minus the 
number of zeros , or 6 - 4 = 2. 

The full order inverse can lead to a 
computational drift due to numerical errors in the 
simulation software. To avoid the computational 
numerical problem, the reduced order inverse 
approach is to be used to find the inverse input, as in 
the work by Boekfah et al., (2016). 

To determine the inverse input in the inversion-
based method, it is necessary to take the rth time 
derivative so that the input appears, i.e., 
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r

r
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The inverse input invu  required to track a 
sufficiently smooth trajectory y is determined from 
Eq.(11),i.e., 
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In the reduced order inverse, some components of 
the state are known when the desired output, (.)dy , 
and its time derivatives are defined. In particular, the 
following coordinate transformation can be made. 
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where (.)dζ  is the known portion of the state, and 
η is the unknown portion of the state, and the 
bottom portion ηT  of the coordinate transformation 
matrix T  is chosen such that the matrix T  is 
invertible, leading to the inverse transformation, i.e., 
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By taking the time derivative of η  in Eq.(13) and 
using the state equation in Eq.(9),the inverse input in 
Eq.(12) can be rewritten as the output of η  in the 
following inverse system.  
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Now the state )(tx in Eq.(14) can be used in Eq.(15) 
to obtain the inverse system. 
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For this particular work of the relative degree r =2, 
there are therefore four more states to be chosen, and 
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can be chosen. 

where 
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and the matrix T is 
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The tracking can now be simulated in MATLAB 
computing software. 

5 RESULTS AND DISCUSSIONS  

With the initial conditions of being zeros for all the 
states at time t = 0, the tracking results are illustrated 
in Fig.8 and Fig.9. 

5.1 Quantifying Thetracking Errors 

To measure the performance of the tracking, the 
error E(t) of tracking, or tracking error can be 
defined as 
 

)()()( tytytE da −=  (18)
 

where )(tya is the actual trajectory output and )(tyd  
is the desired trajectory output. 

Eq.(18) defines an error for each point of time (t) 
and the error for each point of time is plotted along 
with the trajectory outputs in Fig. 8 and Fig.9. 

Another quantification of tracking performance 
that can be used to evaluate the tracking is the 
maximum tracking error maxE   and the maximum 
tracking error is given by 
 

)(maxmax tEE =  (19)
 

To evaluate the overall tracking performance for the 
entire tracking time of 30 milliseconds, the root 

mean square error (RMSE) can also be used as an 
index of the tracking performance, and the root 
mean square error is defined as 
 

∑ −=
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where N is the number of the data points. 
 

 
Figure 8: Tracking results for the triangle wave trajectory. 

 
Figure 9: Tracking results for the sawtooth wave 
trajectory. 

5.2 Tracking Performance 

From Fig.8 and Fig.9, it can be seen that the tracking 
error tends to reach a maximum value at the 
turnarounds of the waves. Table 2 shows very small 
values of the maxE  and the RMSE values of tracking 
the triangle wave and the saw tooth wave and 
indicates very good tracking performances. In 
particular, maxE  values are very small, compared to 
the wave amplitude of 10 mμ i.e., 41081.1 −× mμ for 
the triangle wave and 31087.3 −× mμ for the 
sawtooth wave. This reports that the tracking 
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performance is very good. Table 2 also indicates that 
tracking the saw tooth wave (with sharper 
turnarounds at the corner, compared to the triangle 
wave) yields larger values of the maxE and the RMSE 
values, compared to tracking the triangle wave. In 
other words, tracking of the sawtooth wave is more 
difficult than that of the triangle wave. 

Table 2: Maximum Error ( maxE ) and Root Mean Square 
Error (RMSE). 

Wave Type maxE )( mμ  RMSE )( mμ  

Triangle 41081.1 −×  51050.6 −×  

Sawtooth 31087.3 −×  41011.4 −×  

6 ROBUSTNESS OF TRACKING 

To delve into the robustness against unmodeled 
dynamics, modeling error, or disturbance, for this 
particular study, it is assumed that the natural 
frequency nω  and the damping ratio ζ  are 
increased by some percentage. 

There are four cases that are investigated for 
each trajectory for the study of robustness. 
Case [1]: nω  and ζ are not changed and their 
numerical values are shown in Table 1.The study of 
this case was completed in Section 5. 
The plots were shown in Fig.8 for the triangle case 
and in Fig.9 for the sawtooth case. The tracking 
errors were quantified and shown in Table 2. This is 
a reference case for the other three cases. 
Case [2]: nω  and ζ are increased by 3.2 %.  
The plots are shown in Fig. 10 for the triangle case 
and in Fig.13 for the sawtooth case. 
Case [3]:  nω  and ζ are increased by 5.0 %.  
The plots are shown in Fig.11 for the triangle case 
and in Fig.14 for the sawtooth case. 
Case [4]: nω  and ζ are increased by 10.0 %.  
The plots are shown in Fig.12 for the triangle case 
and in Fig.15 for the sawtooth case. 

For all cases, the tracking errors are quantified 
and shown in Table 3 for the case of the triangle 
trajectory and Table 4 for the case of the sawtooth 
trajectory. 

From Fig.10 to Fig.15, Table 3 and Table 4, it is 
observed that 
1. Emax is still less than 10% of the peak to peak 

amplitude of 20 micron if the increases in the 

natural frequency and the damping ratio are less 
than 5% for the triangle trajectory, and Emax is 
still less than 10% of the peak to peak amplitude 
of 20 micron if the increases in the natural 
frequency and the damping ratio are less than 3.2 
% for the sawtooth trajectory. 

2. maxE  and RMSE increase as the percentage of  
change in the natural frequency and the damping 
ratio is increased. 

3. The tracking is quite sensitive to the change in 
the natural frequency and the damping ratio. 
Particularly, if the increases by 10%, the tracking 
gets worse.  

4. The maximum error tends to occur at the sharp 
corner of the trajectories. 

5. The actual trajectory of the sawtooth oscillates 
obviously if there are changes in the natural 
frequency and the damping ratio.  
 

 
Figure 10: Tracking results for the triangle wave trajectory 
in case [2]. 

 
Figure 11: Tracking results for the triangle wave trajectory 
in case [3]. 
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Figure 12: Tracking results for the triangle wave trajectory 
in case [4]. 

 
Figure 13: Tracking results for the sawtooth wave 
trajectory in case [2]. 

 
Figure 14: Tracking results for the sawtooth wave 
trajectory in case [3]. 

 
Figure 15: Tracking results for the sawtooth wave 
trajectory in case [4]. 

Table 3: Maximum Error ( maxE ) and Root Mean Square 
Error (RMSE) for triangle trajectory. 

Case maxE )( mμ  RMSE )( mμ  

[1] 41081.1 −×  51050.6 −×  

[2] 331.1  11030.7 −×  
[3] 99.1  11.1  
[4] 70.3  06.2  

Table 4: Maximum Error ( maxE ) and Root Mean Square 
Error (RMSE) for sawtooth trajectory. 

Case maxE )( mμ  RMSE )( mμ  

[1] 31087.3 −×  41011.4 −×  

[2] 97.1  11003.8 −×  
[3] 88.2  22.1  
[4] 80.4  21.2  

 

7 CONCLUSIONS 

This article presents an inversion-based control 
approach to tracking wave trajectories. The 
interesting challenge is that the tracking involves the 
trajectories that possess a high frequency, a 
microscale amplitude, sharp turnarounds at the 
corners. The model or transfer function of a 
piezoactuator is obtained experimentally from the 
frequency response by using a dynamic signal 
analyzer. Under the inversion-based control scheme 
and the model obtained ,the tracking is simulated in 
MATLAB. The main contributions of this work are 
to show that (1) the model and the controller achieve 
a good tracking performance measured by the root 

ICINCO 2016 - 13th International Conference on Informatics in Control, Automation and Robotics

506



 

mean square error (RMSE) and the maximum  error 
(Emax), (2) the maximum error tends to occur at the 
sharp corner of the trajectories, (3) tracking the 
sawtooth wave yields larger RMSE and Emax values, 
compared to tracking the triangle wave, and (4) in 
terms of robustness against modeling error or 
unmodeled  dynamics, Emax is still  less than 10% of 
the peak to peak amplitude of  20 micron if the 
increases in the natural frequency and the damping 
ratio are less than 5% for the triangle trajectory and 
Emax is still  less than 10% of the peak to peak 
amplitude of  20 micron if the increases in the 
natural frequency and the damping ratio are less than 
3.2 % for the sawtooth trajectory. 

There is still room for developing the tracking 
and improving the tracking performance, in 
particular for the robustness against unmodeled 
dynamics or disturbances by means of adding a 
feedback control to the inversion-based control. 
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